Skip to main content
Top
Published in: Cellular Oncology 5/2018

Open Access 01-10-2018 | Original Paper

Interplay between base excision repair protein XRCC1 and ALDH2 predicts overall survival in lung and liver cancer patients

Authors: Xin Chen, Arnaud J. Legrand, Siobhan Cunniffe, Samuel Hume, Mattia Poletto, Bruno Vaz, Kristijan Ramadan, Dengfu Yao, Grigory L. Dianov

Published in: Cellular Oncology | Issue 5/2018

Login to get access

Abstract

Background

To deliver efficacious personalised cancer treatment, it is essential to characterise the cellular metabolism as well as the genetic stability of individual tumours. In this study, we describe a new axis between DNA repair and detoxification of aldehyde derivatives with important implications for patient prognosis and treatment.

Methods

Western blot and qPCR analyses were performed in relevant non-transformed and cancer cell lines from lung and liver tissue origin in combination with bioinformatics data mining of The Cancer Genome Atlas database from lung and hepatocellular cancer patients.

Results

Using both biochemical and bioinformatics approaches, we revealed an association between the levels of expression of the aldehyde detoxifying enzyme aldehyde dehydrogenase 2 (ALDH2) and the key DNA base excision repair protein XRCC1. Across cancer types, we found that if one of the corresponding genes exhibits a low expression level, the level of the other gene is increased. Surprisingly, we found that low ALDH2 expression levels associated with high XRCC1 expression levels are indicative for a poor overall survival, particularly in lung and liver cancer patients. In addition, we found that Mithramycin A, a XRCC1 expression inhibitor, efficiently kills cancer cells expressing low levels of ALDH2.

Conclusions

Our data suggest that lung and liver cancers require efficient single-strand break repair for their growth in order to benefit from a low aldehyde detoxification metabolism. We also propose that the ratio of XRCC1 and ALDH2 levels may serve as a useful prognostic tool in these cancer types.
Appendix
Available only for authorised users
Literature
2.
go back to reference E.M. Tacconi, X. Lai, C. Folio, M. Porru, G. Zonderland, S. Badie, J. Michl, I. Sechi, M. Rogier, V. Matia Garcia, A.S. Batra, O.M. Rueda, P. Bouwman, J. Jonkers, A. Ryan, B. Reina-San-Martin, J. Hui, N. Tang, A. Bruna, A. Biroccio, M. Tarsounas, BRCA1 and BRCA2 tumor suppressors protect against endogenous acetaldehyde toxicity. EMBO Mol Med. 9, 1398–1414 (2017). https://doi.org/10.15252/emmm.201607446 CrossRefPubMedPubMedCentral E.M. Tacconi, X. Lai, C. Folio, M. Porru, G. Zonderland, S. Badie, J. Michl, I. Sechi, M. Rogier, V. Matia Garcia, A.S. Batra, O.M. Rueda, P. Bouwman, J. Jonkers, A. Ryan, B. Reina-San-Martin, J. Hui, N. Tang, A. Bruna, A. Biroccio, M. Tarsounas, BRCA1 and BRCA2 tumor suppressors protect against endogenous acetaldehyde toxicity. EMBO Mol Med. 9, 1398–1414 (2017). https://​doi.​org/​10.​15252/​emmm.​201607446 CrossRefPubMedPubMedCentral
3.
go back to reference P.J. O'Brien, A.G. Siraki, N. Shangari, Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol 35, 609–662 (2005)CrossRefPubMed P.J. O'Brien, A.G. Siraki, N. Shangari, Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol 35, 609–662 (2005)CrossRefPubMed
13.
go back to reference G. Dianov, T. Lindahl, Reconstitution of the DNA base excision-repair pathway. Curr Biol 4, 1069–1076 (1994)CrossRefPubMed G. Dianov, T. Lindahl, Reconstitution of the DNA base excision-repair pathway. Curr Biol 4, 1069–1076 (1994)CrossRefPubMed
14.
go back to reference A. Klungland, T. Lindahl, Second pathway for completion of human DNA base excision-repair: Reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J 16, 3341–3348 (1997)CrossRefPubMedPubMedCentral A. Klungland, T. Lindahl, Second pathway for completion of human DNA base excision-repair: Reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J 16, 3341–3348 (1997)CrossRefPubMedPubMedCentral
18.
go back to reference L.F. Stead, S. Berri, H.M. Wood, P. Egan, C. Conway, C. Daly, K. Papagiannopoulos, P. Rabbitts, The transcriptional consequences of somatic amplifications, deletions, and rearrangements in a human lung squamous cell carcinoma. Neoplasia 14, 1075–1086 (2012)CrossRefPubMedPubMedCentral L.F. Stead, S. Berri, H.M. Wood, P. Egan, C. Conway, C. Daly, K. Papagiannopoulos, P. Rabbitts, The transcriptional consequences of somatic amplifications, deletions, and rearrangements in a human lung squamous cell carcinoma. Neoplasia 14, 1075–1086 (2012)CrossRefPubMedPubMedCentral
22.
23.
go back to reference E. Cerami, J. Gao, U. Dogrusoz, B.E. Gross, S.O. Sumer, B.A. Aksoy, A. Jacobsen, C.J. Byrne, M.L. Heuer, E. Larsson, Y. Antipin, B. Reva, A.P. Goldberg, C. Sander, N. Schultz, The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov 2, 401–404 (2012). https://doi.org/10.1158/2159-8290.CD-12-0095 CrossRefPubMed E. Cerami, J. Gao, U. Dogrusoz, B.E. Gross, S.O. Sumer, B.A. Aksoy, A. Jacobsen, C.J. Byrne, M.L. Heuer, E. Larsson, Y. Antipin, B. Reva, A.P. Goldberg, C. Sander, N. Schultz, The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov 2, 401–404 (2012). https://​doi.​org/​10.​1158/​2159-8290.​CD-12-0095 CrossRefPubMed
29.
go back to reference M.J. Stewart, K. Malek, D.W. Crabb, Distribution of messenger RNAs for aldehyde dehydrogenase 1, aldehyde dehydrogenase 2, and aldehyde dehydrogenase 5 in human tissues. J Investig Med 44, 42–46 (1996)PubMed M.J. Stewart, K. Malek, D.W. Crabb, Distribution of messenger RNAs for aldehyde dehydrogenase 1, aldehyde dehydrogenase 2, and aldehyde dehydrogenase 5 in human tissues. J Investig Med 44, 42–46 (1996)PubMed
36.
go back to reference M.J. Nokin, F. Durieux, P. Peixoto, B. Chiavarina, O. Peulen, A. Blomme, A. Turtoi, B. Costanza, N. Smargiasso, D. Baiwir, J.L. Scheijen, C.G. Schalkwijk, J. Leenders, P. De Tullio, E. Bianchi, M. Thiry, K. Uchida, D.A. Spiegel, J.R. Cochrane, C.A. Hutton, E. De Pauw, P. Delvenne, D. Belpomme, V. Castronovo, A. Bellahcene, Methylglyoxal, a glycolysis side-product, induces Hsp90 glycation and YAP-mediated tumor growth and metastasis. elife 5 (2016). https://doi.org/10.7554/eLife.19375 M.J. Nokin, F. Durieux, P. Peixoto, B. Chiavarina, O. Peulen, A. Blomme, A. Turtoi, B. Costanza, N. Smargiasso, D. Baiwir, J.L. Scheijen, C.G. Schalkwijk, J. Leenders, P. De Tullio, E. Bianchi, M. Thiry, K. Uchida, D.A. Spiegel, J.R. Cochrane, C.A. Hutton, E. De Pauw, P. Delvenne, D. Belpomme, V. Castronovo, A. Bellahcene, Methylglyoxal, a glycolysis side-product, induces Hsp90 glycation and YAP-mediated tumor growth and metastasis. elife 5 (2016). https://​doi.​org/​10.​7554/​eLife.​19375
38.
go back to reference D. Lessel, B. Vaz, S. Halder, P.J. Lockhart, I. Marinovic-Terzic, J. Lopez-Mosqueda, M. Philipp, J.C. Sim, K.R. Smith, J. Oehler, E. Cabrera, R. Freire, K. Pope, A. Nahid, F. Norris, R.J. Leventer, M.B. Delatycki, G. Barbi, S. von Ameln, J. Hogel, M. Degoricija, R. Fertig, M.D. Burkhalter, K. Hofmann, H. Thiele, J. Altmuller, G. Nurnberg, P. Nurnberg, M. Bahlo, G.M. Martin, C.M. Aalfs, J. Oshima, J. Terzic, D.J. Amor, I. Dikic, K. Ramadan, C. Kubisch, Mutations in SPRTN cause early onset hepatocellular carcinoma, genomic instability and progeroid features. Nat Genet 46, 1239–1244 (2014). https://doi.org/10.1038/ng.3103 CrossRefPubMedPubMedCentral D. Lessel, B. Vaz, S. Halder, P.J. Lockhart, I. Marinovic-Terzic, J. Lopez-Mosqueda, M. Philipp, J.C. Sim, K.R. Smith, J. Oehler, E. Cabrera, R. Freire, K. Pope, A. Nahid, F. Norris, R.J. Leventer, M.B. Delatycki, G. Barbi, S. von Ameln, J. Hogel, M. Degoricija, R. Fertig, M.D. Burkhalter, K. Hofmann, H. Thiele, J. Altmuller, G. Nurnberg, P. Nurnberg, M. Bahlo, G.M. Martin, C.M. Aalfs, J. Oshima, J. Terzic, D.J. Amor, I. Dikic, K. Ramadan, C. Kubisch, Mutations in SPRTN cause early onset hepatocellular carcinoma, genomic instability and progeroid features. Nat Genet 46, 1239–1244 (2014). https://​doi.​org/​10.​1038/​ng.​3103 CrossRefPubMedPubMedCentral
43.
go back to reference B.J. Kennedy, Metabolic and toxic effects of mithramycin during tumor therapy. Am J Med 49, 494–503 (1970)CrossRefPubMed B.J. Kennedy, Metabolic and toxic effects of mithramycin during tumor therapy. Am J Med 49, 494–503 (1970)CrossRefPubMed
Metadata
Title
Interplay between base excision repair protein XRCC1 and ALDH2 predicts overall survival in lung and liver cancer patients
Authors
Xin Chen
Arnaud J. Legrand
Siobhan Cunniffe
Samuel Hume
Mattia Poletto
Bruno Vaz
Kristijan Ramadan
Dengfu Yao
Grigory L. Dianov
Publication date
01-10-2018
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 5/2018
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-018-0390-8

Other articles of this Issue 5/2018

Cellular Oncology 5/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine