Skip to main content
Top
Published in: Cellular Oncology 6/2017

01-12-2017 | Original Paper

Opposing roles of the aldo-keto reductases AKR1B1 and AKR1B10 in colorectal cancer

Authors: Betul Taskoparan, Esin Gulce Seza, Secil Demirkol, Sinem Tuncer, Milan Stefek, Ali Osmay Gure, Sreeparna Banerjee

Published in: Cellular Oncology | Issue 6/2017

Login to get access

Abstract

Purpose

Aldo-keto reductases (including AKR1B1 and AKR1B10) constitute a family of oxidoreductases that have been implicated in the pathophysiology of diabetes and cancer, including colorectal cancer (CRC). Available data indicate that, despite their similarities in structure and enzymatic functions, their roles in CRC may be divergent. Here, we aimed to determine the expression and functional implications of AKR1B1 and AKR1B10 in CRC.

Methods

AKR1B1 and AKR1B10 gene expression levels were analyzed using publicly available microarray data and ex vivo CRC-derived cDNA samples. Gene Set Enrichment Analysis (GSEA), The Cancer Genome Atlas (TCGA) RNA-seq data and The Cancer Proteome Atlas (TCPA) proteome data were analyzed to determine the effect of high and low AKR1B1 and AKR1B10 expression levels in CRC patients. Proliferation, cell cycle progression, cellular motility, adhesion and inflammation were determined in CRC-derived cell lines in which these genes were either exogenously overexpressed or silenced.

Results

We found that the expression of AKR1B1 was unaltered, whereas that of AKR1B10 was decreased in primary CRCs. GSEA revealed that, while high AKR1B1 expression was associated with increased cell cycle progression, cellular motility and inflammation, high AKR1B10 expression was associated with a weak inflammatory phenotype. Functional studies carried out in CRC-derived cell lines confirmed these data. Microarray data analysis indicated that high expression levels of AKR1B1 and AKR1B10 were significantly associated with shorter and longer disease-free survival rates, respectively. A combined gene expression signature of AKR1B10 (low) and AKR1B1 (high) showed a better prognostic stratification of CRC patients independent of confounding factors.

Conclusions

Despite their similarities, the expression levels and functions of AKR1B1 and AKR1B10 are highly divergent in CRC, and they may have prognostic implications.
Appendix
Available only for authorised users
Literature
1.
go back to reference N. González, I. Prieto, L. Del Puerto-Nevado, S. Portal-Nuñez, J.A. Ardura, M. Corton, B. Fernández-Fernández, O. Aguilera, C. Gomez-Guerrero, S. Mas, J.A. Moreno, M. Ruiz-Ortega, A.B. Sanz, M.D. Sanchez-Niño, F. Rojo, F. Vivanco, P. Esbrit, C. Ayuso, G. Alvarez-Llamas, J. Egido, J. García-Foncillas, A. Ortiz, Diabetes Cancer Connect Consortium, 2017 update on the relationship between diabetes and colorectal cancer: epidemiology, potential molecular mechanisms and therapeutic implications. Oncotarget 8, 18456–18485 (2017)PubMedPubMedCentral N. González, I. Prieto, L. Del Puerto-Nevado, S. Portal-Nuñez, J.A. Ardura, M. Corton, B. Fernández-Fernández, O. Aguilera, C. Gomez-Guerrero, S. Mas, J.A. Moreno, M. Ruiz-Ortega, A.B. Sanz, M.D. Sanchez-Niño, F. Rojo, F. Vivanco, P. Esbrit, C. Ayuso, G. Alvarez-Llamas, J. Egido, J. García-Foncillas, A. Ortiz, Diabetes Cancer Connect Consortium, 2017 update on the relationship between diabetes and colorectal cancer: epidemiology, potential molecular mechanisms and therapeutic implications. Oncotarget 8, 18456–18485 (2017)PubMedPubMedCentral
2.
go back to reference L.A. Flores-Lopez, M.G. Martinez-Hernandez, R. Viedma-Rodriguez, M. Diaz-Flores, L.A. Baiza-Gutman, High glucose and insulin enhance uPA expression, ROS formation and invasiveness in breast cancer-derived cells. Cell Oncol. 39, 365–378 (2016)CrossRef L.A. Flores-Lopez, M.G. Martinez-Hernandez, R. Viedma-Rodriguez, M. Diaz-Flores, L.A. Baiza-Gutman, High glucose and insulin enhance uPA expression, ROS formation and invasiveness in breast cancer-derived cells. Cell Oncol. 39, 365–378 (2016)CrossRef
3.
go back to reference P. Papanagnou, T. Stivarou, M. Tsironi, Unexploited antineoplastic effects of commercially available anti-diabetic drugs. Pharmaceuticals 9, 24–44 (2016)CrossRefPubMedCentral P. Papanagnou, T. Stivarou, M. Tsironi, Unexploited antineoplastic effects of commercially available anti-diabetic drugs. Pharmaceuticals 9, 24–44 (2016)CrossRefPubMedCentral
4.
go back to reference R.D. Mindnich, T.M. Penning, Aldo-keto reductase (AKR) superfamily: genomics and annotation. Hum. Genomics 3, 362–370 (2009)PubMedPubMedCentral R.D. Mindnich, T.M. Penning, Aldo-keto reductase (AKR) superfamily: genomics and annotation. Hum. Genomics 3, 362–370 (2009)PubMedPubMedCentral
5.
go back to reference R. Saraswathy, S. Anand, S.K. Kunnumpurath, R.J. Kurian, A.D. Kaye, N. Vadivelu, Chromosomal aberrations and exon 1 mutation in the AKR1B1 gene in patients with diabetic neuropathy. Ochsner J. 14, 339–342 (2014) R. Saraswathy, S. Anand, S.K. Kunnumpurath, R.J. Kurian, A.D. Kaye, N. Vadivelu, Chromosomal aberrations and exon 1 mutation in the AKR1B1 gene in patients with diabetic neuropathy. Ochsner J. 14, 339–342 (2014)
6.
go back to reference S. Endo, T. Matsunaga, H. Mamiya, C. Ohta, M. Soda, Y. Kitade, K. Tajima, H.T. Zhao, O. El-Kabbani, A. Hara, Kinetic studies of AKR1B10, human aldose reductase-like protein: endogenous substrates and inhibition by steroids. Arch. Biochem. Biophys. 487, 1–9 (2009)CrossRefPubMed S. Endo, T. Matsunaga, H. Mamiya, C. Ohta, M. Soda, Y. Kitade, K. Tajima, H.T. Zhao, O. El-Kabbani, A. Hara, Kinetic studies of AKR1B10, human aldose reductase-like protein: endogenous substrates and inhibition by steroids. Arch. Biochem. Biophys. 487, 1–9 (2009)CrossRefPubMed
8.
go back to reference S.K. Srivastava, U.C.S. Yadav, A.B.M. Reddy, A. Saxena, R. Tammali, M. Shoeb, N.H. Ansari, A. Bhatnagar, M.J. Petrash, S. Srivastava, K.V. Ramana, Aldose reductase inhibition suppresses oxidative stress-induced inflammatory disorders. Chem. Biol. Interact. 191, 330–338 (2011) S.K. Srivastava, U.C.S. Yadav, A.B.M. Reddy, A. Saxena, R. Tammali, M. Shoeb, N.H. Ansari, A. Bhatnagar, M.J. Petrash, S. Srivastava, K.V. Ramana, Aldose reductase inhibition suppresses oxidative stress-induced inflammatory disorders. Chem. Biol. Interact. 191, 330–338 (2011)
9.
go back to reference S.I. Grivennikov, Inflammation and colorectal cancer: colitis-associated neoplasia. Semin. Immunopathol. 35, 229–244 (2013)CrossRefPubMed S.I. Grivennikov, Inflammation and colorectal cancer: colitis-associated neoplasia. Semin. Immunopathol. 35, 229–244 (2013)CrossRefPubMed
10.
go back to reference A. Saxena, M. Shoeb, R. Tammali, K.V. Ramana, S.K. Srivastava, Aldose reductase inhibition suppresses azoxymethane-induced colonic premalignant lesions in C57BL/KsJ-db/db mice. Cancer Lett. 355, 141–147 (2014)CrossRefPubMedPubMedCentral A. Saxena, M. Shoeb, R. Tammali, K.V. Ramana, S.K. Srivastava, Aldose reductase inhibition suppresses azoxymethane-induced colonic premalignant lesions in C57BL/KsJ-db/db mice. Cancer Lett. 355, 141–147 (2014)CrossRefPubMedPubMedCentral
11.
go back to reference R. Tammali, K.V. Ramana, S.S. Singhal, S. Awasthi, S.K. Srivastava, Aldose reductase regulates growth factor-induced cyclooxygenase-2 expression and prostaglandin E2 production in human colon cancer cells. Cancer Res. 66, 9705–9713 (2006)CrossRefPubMed R. Tammali, K.V. Ramana, S.S. Singhal, S. Awasthi, S.K. Srivastava, Aldose reductase regulates growth factor-induced cyclooxygenase-2 expression and prostaglandin E2 production in human colon cancer cells. Cancer Res. 66, 9705–9713 (2006)CrossRefPubMed
12.
go back to reference A. Saxena, R. Tammali, K.V. Ramana, S.K. Srivastava, Aldose reductase inhibition prevents colon cancer growth by restoring phosphatase and tensin homolog through modulation of miR-21 and FOXO3a. Antioxid. Redox. Sign. 18, 1249–1262 (2013)CrossRef A. Saxena, R. Tammali, K.V. Ramana, S.K. Srivastava, Aldose reductase inhibition prevents colon cancer growth by restoring phosphatase and tensin homolog through modulation of miR-21 and FOXO3a. Antioxid. Redox. Sign. 18, 1249–1262 (2013)CrossRef
13.
go back to reference A. Saxena, M. Shoeb, K.V. Ramana, S.K. Srivastava, Aldose reductase inhibition suppresses colon cancer cell viability by modulating microRNA-21 mediated programmed cell death 4 (PDCD4) expression. Eur. J. Cancer 49, 3311–3319 (2013)CrossRefPubMedPubMedCentral A. Saxena, M. Shoeb, K.V. Ramana, S.K. Srivastava, Aldose reductase inhibition suppresses colon cancer cell viability by modulating microRNA-21 mediated programmed cell death 4 (PDCD4) expression. Eur. J. Cancer 49, 3311–3319 (2013)CrossRefPubMedPubMedCentral
14.
go back to reference D. Cao, S.T. Fan, S.S. Chung, Identification and characterization of a novel human aldose reductase-like gene. J. Biol. Chem. 273, 11429–11435 (1998)CrossRefPubMed D. Cao, S.T. Fan, S.S. Chung, Identification and characterization of a novel human aldose reductase-like gene. J. Biol. Chem. 273, 11429–11435 (1998)CrossRefPubMed
15.
go back to reference T. Ohashi, M. Idogawa, Y. Sasaki, H. Suzuki, T. Tokino, AKR1B10, a transcriptional target of p53, is downregulated in colorectal cancers associated with poor prognosis. Mol. Cancer Res. 11, 1554–1563 (2013)CrossRefPubMed T. Ohashi, M. Idogawa, Y. Sasaki, H. Suzuki, T. Tokino, AKR1B10, a transcriptional target of p53, is downregulated in colorectal cancers associated with poor prognosis. Mol. Cancer Res. 11, 1554–1563 (2013)CrossRefPubMed
16.
go back to reference X. Zu, R. Yan, J. Pan, L. Zhong, Y. Cao, J. Ma, C. Cai, D. Huang, J. Liu, F.L. Chung, D.F. Liao, D. Cao, Aldo-keto reductase 1B10 protects human colon cells from DNA damage induced by electrophilic carbonyl compounds. Mol. Carcinog. 56, 118–129 (2017)CrossRefPubMed X. Zu, R. Yan, J. Pan, L. Zhong, Y. Cao, J. Ma, C. Cai, D. Huang, J. Liu, F.L. Chung, D.F. Liao, D. Cao, Aldo-keto reductase 1B10 protects human colon cells from DNA damage induced by electrophilic carbonyl compounds. Mol. Carcinog. 56, 118–129 (2017)CrossRefPubMed
17.
go back to reference M.W. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29(45e) (2001) M.W. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29(45e) (2001)
18.
go back to reference S.A. Bustin, V. Benes, J.A. Garson, J. Hellemans, J. Huggett, M. Kubista, R. Mueller, T. Nolan, M.W. Pfaffl, G.L. Shipley, J. Vandesompele, C.T. Wittwer, The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611 (2009)CrossRefPubMed S.A. Bustin, V. Benes, J.A. Garson, J. Hellemans, J. Huggett, M. Kubista, R. Mueller, T. Nolan, M.W. Pfaffl, G.L. Shipley, J. Vandesompele, C.T. Wittwer, The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611 (2009)CrossRefPubMed
19.
go back to reference N. Iyer, J. Xian, S.-F. Chin, A. Bannister, Y. Daigo, S. Aparicio, T. Kouzarides, C. Caldas, p300 is required for orderly G1/S transition in human cancer cells. Oncogene 26, 21–29 (2007)CrossRefPubMed N. Iyer, J. Xian, S.-F. Chin, A. Bannister, Y. Daigo, S. Aparicio, T. Kouzarides, C. Caldas, p300 is required for orderly G1/S transition in human cancer cells. Oncogene 26, 21–29 (2007)CrossRefPubMed
20.
go back to reference S. Tunçer, S. Tunçay Çağatay, A.G. Keşküş, M. Çolakoğlu, O. Konu, S. Banerjee, Interplay between 15-lipoxygenase-1 and metastasis-associated antigen 1 in the metastatic potential of colorectal cancer. Cell. Prolif. 49, 448–459 (2016)CrossRefPubMed S. Tunçer, S. Tunçay Çağatay, A.G. Keşküş, M. Çolakoğlu, O. Konu, S. Banerjee, Interplay between 15-lipoxygenase-1 and metastasis-associated antigen 1 in the metastatic potential of colorectal cancer. Cell. Prolif. 49, 448–459 (2016)CrossRefPubMed
21.
go back to reference G. Deep, S.C. Gangar, C. Agarwal, R. Agarwal, Role of E-cadherin in antimigratory and antiinvasive efficacy of silibinin in prostate cancer cells. Cancer Prev. Res. 4, 1222 (2011)CrossRef G. Deep, S.C. Gangar, C. Agarwal, R. Agarwal, Role of E-cadherin in antimigratory and antiinvasive efficacy of silibinin in prostate cancer cells. Cancer Prev. Res. 4, 1222 (2011)CrossRef
22.
go back to reference L. Marisa, A. de Reynies, A. Duval, J. Selves, M.P. Gaub, L. Vescovo, M.C. Etienne-Grimaldi, R. Schiappa, D. Guenot, M. Ayadi, S. Kirzin, M. Chazal, J.F. Flejou, D. Benchimol, A. Berger, A. Lagarde, E. Pencreach, F. Piard, D. Elias, Y. Parc, S. Olschwang, G. Milano, P. Laurent-Puig, V. Boige, Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. 10, e1001453 (2013)CrossRefPubMedPubMedCentral L. Marisa, A. de Reynies, A. Duval, J. Selves, M.P. Gaub, L. Vescovo, M.C. Etienne-Grimaldi, R. Schiappa, D. Guenot, M. Ayadi, S. Kirzin, M. Chazal, J.F. Flejou, D. Benchimol, A. Berger, A. Lagarde, E. Pencreach, F. Piard, D. Elias, Y. Parc, S. Olschwang, G. Milano, P. Laurent-Puig, V. Boige, Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. 10, e1001453 (2013)CrossRefPubMedPubMedCentral
23.
go back to reference S. Demirkol, I. Gomceli, M. Isbilen, B.E. Dayanc, M. Tez, E.B. Bostanci, N. Turhan, M. Akoglu, E. Ozyerli, S. Durdu, O. Konu, A. Nissan, M. Gonen, A.O. Gure, A combined ULBP2 and SEMA5A expression signature as a prognostic and predictive biomarker for colon cancer. J. Cancer 8, 1113–1122 (2017) S. Demirkol, I. Gomceli, M. Isbilen, B.E. Dayanc, M. Tez, E.B. Bostanci, N. Turhan, M. Akoglu, E. Ozyerli, S. Durdu, O. Konu, A. Nissan, M. Gonen, A.O. Gure, A combined ULBP2 and SEMA5A expression signature as a prognostic and predictive biomarker for colon cancer. J. Cancer 8, 1113–1122 (2017)
24.
go back to reference A. Subramanian, P. Tamayo, V.K. Mootha, S. Mukherjee, B.L. Ebert, M.A. Gillette, A. Paulovich, S.L. Pomeroy, T.R. Golub, E.S. Lander, J.P. Mesirov, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545–15550 (2005)CrossRefPubMedPubMedCentral A. Subramanian, P. Tamayo, V.K. Mootha, S. Mukherjee, B.L. Ebert, M.A. Gillette, A. Paulovich, S.L. Pomeroy, T.R. Golub, E.S. Lander, J.P. Mesirov, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545–15550 (2005)CrossRefPubMedPubMedCentral
25.
go back to reference J. Li, Y. Lu, R. Akbani, Z. Ju, P.L. Roebuck, W. Liu, J.-Y. Yang, B.M. Broom, R.G.W. Verhaak, D.W. Kane, C. Wakefield, J.N. Weinstein, G.B. Mills, H. Liang, TCPA: a resource for cancer functional proteomics data. Nat. Methods 10, 1046–1047 (2013)CrossRefPubMedPubMedCentral J. Li, Y. Lu, R. Akbani, Z. Ju, P.L. Roebuck, W. Liu, J.-Y. Yang, B.M. Broom, R.G.W. Verhaak, D.W. Kane, C. Wakefield, J.N. Weinstein, G.B. Mills, H. Liang, TCPA: a resource for cancer functional proteomics data. Nat. Methods 10, 1046–1047 (2013)CrossRefPubMedPubMedCentral
26.
go back to reference M.J. Kwon, Emerging roles of claudins in human cancer. Int. J. Mol. Sci. 14, 18148–18180 (2013) M.J. Kwon, Emerging roles of claudins in human cancer. Int. J. Mol. Sci. 14, 18148–18180 (2013)
27.
go back to reference P. Storz, Forkhead homeobox type O transcription factors in the responses to oxidative stress. Antioxid. Redox. Signal. 14, 593–605 (2011) P. Storz, Forkhead homeobox type O transcription factors in the responses to oxidative stress. Antioxid. Redox. Signal. 14, 593–605 (2011)
29.
go back to reference A. Wullaert, M.C. Bonnet, M. Pasparakis, NF-κB in the regulation of epithelial homeostasis and inflammation. Cell. Res. 21, 146–158 (2011)CrossRefPubMed A. Wullaert, M.C. Bonnet, M. Pasparakis, NF-κB in the regulation of epithelial homeostasis and inflammation. Cell. Res. 21, 146–158 (2011)CrossRefPubMed
30.
go back to reference K. Vazquez-Santillan, J. Melendez-Zajgla, L. Jimenez-Hernandez, G. Martinez-Ruiz, V. Maldonado, NF-κB signaling in cancer stem cells: a promising therapeutic target? Cell. Oncol. 38, 327 (2015)CrossRef K. Vazquez-Santillan, J. Melendez-Zajgla, L. Jimenez-Hernandez, G. Martinez-Ruiz, V. Maldonado, NF-κB signaling in cancer stem cells: a promising therapeutic target? Cell. Oncol. 38, 327 (2015)CrossRef
31.
go back to reference Y. Shen, L. Zhong, S. Johnson, D. Cao, Human aldo-keto reductases 1B1 and 1B10: a comparative study on their enzyme activity toward electrophilic carbonyl compounds. Chem. Biol. Interact. 191, 192–198 (2011) Y. Shen, L. Zhong, S. Johnson, D. Cao, Human aldo-keto reductases 1B1 and 1B10: a comparative study on their enzyme activity toward electrophilic carbonyl compounds. Chem. Biol. Interact. 191, 192–198 (2011)
32.
go back to reference I. Cebola, J. Custodio, M. Muñoz, A. Díez-Villanueva, L. Paré, P. Prieto, S. Aussó, L. Coll-Mulet, L. Boscá, V. Moreno, M.A. Peinado, Epigenetics override pro-inflammatory PTGS transcriptomic signature towards selective hyperactivation of PGE2 in colorectal cancer. Clin. Epigenetics 7, 74–84 (2015)CrossRefPubMedPubMedCentral I. Cebola, J. Custodio, M. Muñoz, A. Díez-Villanueva, L. Paré, P. Prieto, S. Aussó, L. Coll-Mulet, L. Boscá, V. Moreno, M.A. Peinado, Epigenetics override pro-inflammatory PTGS transcriptomic signature towards selective hyperactivation of PGE2 in colorectal cancer. Clin. Epigenetics 7, 74–84 (2015)CrossRefPubMedPubMedCentral
33.
go back to reference J.S. De Groot, X. Pan, J. Meeldijk, E. Van Der Wall, P.J. Van Diest, C.B. Moelans, Validation of DNA promoter hypermethylation biomarkers in breast cancer — a short report. Cell. Oncol. 37, 297–303 (2014)CrossRef J.S. De Groot, X. Pan, J. Meeldijk, E. Van Der Wall, P.J. Van Diest, C.B. Moelans, Validation of DNA promoter hypermethylation biomarkers in breast cancer — a short report. Cell. Oncol. 37, 297–303 (2014)CrossRef
34.
go back to reference W. Zhang, H.T. Liu, MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell. Res. 12, 9 (2002)CrossRefPubMed W. Zhang, H.T. Liu, MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell. Res. 12, 9 (2002)CrossRefPubMed
35.
go back to reference K. V Ramana, R. Tammali, and S. K. Srivastava, Inhibition of aldose reductase prevents growth factor-induced G1-S phase transition through the AKT/phosphoinositide 3-kinase/E2F-1 pathway in human colon cancer cells, Mol. Cancer Ther. 9, 813 (2010) K. V Ramana, R. Tammali, and S. K. Srivastava, Inhibition of aldose reductase prevents growth factor-induced G1-S phase transition through the AKT/phosphoinositide 3-kinase/E2F-1 pathway in human colon cancer cells, Mol. Cancer Ther. 9, 813 (2010)
36.
37.
go back to reference R. Tammali, A.B.M. Reddy, A. Saxena, P.G. Rychahou, B.M. Evers, S. Qiu, S. Awasthi, K.V. Ramana, S.K. Srivastava, Inhibition of aldose reductase prevents colon cancer metastasis. Carcinogenesis 32, 1259–1267 (2011)CrossRefPubMedPubMedCentral R. Tammali, A.B.M. Reddy, A. Saxena, P.G. Rychahou, B.M. Evers, S. Qiu, S. Awasthi, K.V. Ramana, S.K. Srivastava, Inhibition of aldose reductase prevents colon cancer metastasis. Carcinogenesis 32, 1259–1267 (2011)CrossRefPubMedPubMedCentral
38.
go back to reference X. Wu, X. Li, Q. Fu, Q. Cao, X. Chen, M. Wang, J. Yu, J. Long, J. Yao, H. Liu, D. Wang, R. Liao, C. Dong, AKR1B1 promotes basal-like breast cancer progression by a positive feedback loop that activates the EMT program. J. Exp. Med. 214, 1065–1079 (2017)CrossRefPubMedPubMedCentral X. Wu, X. Li, Q. Fu, Q. Cao, X. Chen, M. Wang, J. Yu, J. Long, J. Yao, H. Liu, D. Wang, R. Liao, C. Dong, AKR1B1 promotes basal-like breast cancer progression by a positive feedback loop that activates the EMT program. J. Exp. Med. 214, 1065–1079 (2017)CrossRefPubMedPubMedCentral
39.
go back to reference J. Ma, D.-X. Luo, C. Huang, Y. Shen, Y. Bu, S. Markwell, J. Gao, J. Liu, X. Zu, Z. Cao, Z. Gao, F. Lu, D.-F. Liao, D. Cao, AKR1B10 overexpression in breast cancer: association with tumor size, lymph node metastasis and patient survival and its potential as a novel serum marker. Int. J. Cancer 131, E862–E871 (2012)CrossRefPubMed J. Ma, D.-X. Luo, C. Huang, Y. Shen, Y. Bu, S. Markwell, J. Gao, J. Liu, X. Zu, Z. Cao, Z. Gao, F. Lu, D.-F. Liao, D. Cao, AKR1B10 overexpression in breast cancer: association with tumor size, lymph node metastasis and patient survival and its potential as a novel serum marker. Int. J. Cancer 131, E862–E871 (2012)CrossRefPubMed
40.
go back to reference C. Huang, S. Verhulst, Y. Shen, Y. Bu, Y. Cao, Y. He, Y. Wang, D. Huang, C. Cai, K. Rao, D.F. Liao, J. Jin, D. Cao, AKR1B10 promotes breast cancer metastasis through integrin α5/δ-catenin mediated FAK/Src/Rac1 signaling pathway. Oncotarget 7, 43779–43791 (2016)CrossRefPubMedPubMedCentral C. Huang, S. Verhulst, Y. Shen, Y. Bu, Y. Cao, Y. He, Y. Wang, D. Huang, C. Cai, K. Rao, D.F. Liao, J. Jin, D. Cao, AKR1B10 promotes breast cancer metastasis through integrin α5/δ-catenin mediated FAK/Src/Rac1 signaling pathway. Oncotarget 7, 43779–43791 (2016)CrossRefPubMedPubMedCentral
41.
go back to reference Y. Guo, W. Luo, Z. Hu, J. Li, X. Li, H. Cao, J. Li, B. Wen, J. Zhang, H. Cheng, W. Guo, T. Tan, D. Luo, Low expression of Aldo–keto reductase 1B10 is a novel independent prognostic indicator for nasopharyngeal carcinoma. Cell. Biosci. 6, 18 (2016)CrossRefPubMedPubMedCentral Y. Guo, W. Luo, Z. Hu, J. Li, X. Li, H. Cao, J. Li, B. Wen, J. Zhang, H. Cheng, W. Guo, T. Tan, D. Luo, Low expression of Aldo–keto reductase 1B10 is a novel independent prognostic indicator for nasopharyngeal carcinoma. Cell. Biosci. 6, 18 (2016)CrossRefPubMedPubMedCentral
42.
go back to reference X. Tang, T.B. Kuhlenschmidt, Q. Li, S. Ali, S. Lezmi, H. Chen, M. Pires-Alves, W.W. Laegreid, T.A. Saif, M.S. Kuhlenschmidt, A mechanically-induced colon cancer cell population shows increased metastatic potential. Mol. Cancer 13, 131–145 (2014)CrossRefPubMedPubMedCentral X. Tang, T.B. Kuhlenschmidt, Q. Li, S. Ali, S. Lezmi, H. Chen, M. Pires-Alves, W.W. Laegreid, T.A. Saif, M.S. Kuhlenschmidt, A mechanically-induced colon cancer cell population shows increased metastatic potential. Mol. Cancer 13, 131–145 (2014)CrossRefPubMedPubMedCentral
43.
go back to reference B.D. Lehmann, J.A. Bauer, X. Chen, M.E. Sanders, A.B. Chakravarthy, Y. Shyr, J.A. Pietenpol, Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 121, 2750–2767 (2011)CrossRefPubMedPubMedCentral B.D. Lehmann, J.A. Bauer, X. Chen, M.E. Sanders, A.B. Chakravarthy, Y. Shyr, J.A. Pietenpol, Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 121, 2750–2767 (2011)CrossRefPubMedPubMedCentral
44.
go back to reference C. Garlanda, F. Riva, E. Bonavita, A. Mantovani, Negative regulatory receptors of the IL-1 family. Semin. Immunol. 25, 408–415 (2013)CrossRefPubMed C. Garlanda, F. Riva, E. Bonavita, A. Mantovani, Negative regulatory receptors of the IL-1 family. Semin. Immunol. 25, 408–415 (2013)CrossRefPubMed
45.
go back to reference A.K. Reddy, P. Uday Kumar, M. Srinivasulu, B. Triveni, K. Sharada, A. Ismail, G. Bhanuprakash Reddy, Overexpression and enhanced specific activity of aldoketo reductases (AKR1B1 & AKR1B10) in human breast cancers. Breast 31, 137–143 (2017)CrossRefPubMed A.K. Reddy, P. Uday Kumar, M. Srinivasulu, B. Triveni, K. Sharada, A. Ismail, G. Bhanuprakash Reddy, Overexpression and enhanced specific activity of aldoketo reductases (AKR1B1 & AKR1B10) in human breast cancers. Breast 31, 137–143 (2017)CrossRefPubMed
46.
go back to reference J. Jin, W. Liao, W. Yao, R. Zhu, Y. Li, S. He, J. Ferlay, S.F. Altekruse, K.A. McGlynn, M.E. Reichman, D. Cao, S.T. Fan, S.S. Chung, B. Laffin, J.M. Petrash, K.A. Matkowskyj, S. Heringlake, M. Woenckhaus, S. Fukumoto, J. Breton, H.B. Yao, J. Ma, H. Yoshitake, Y.T. Chung, C. Wang, N.J. Pyne, K.J. Schmitz, S.Y. Ha, D.X. Luo, J. Jin, Z. Liu, G.K. Balendiran, H.J. Martin, Y. El-Hawari, E. Maser, S. Sato, J. Jin, Q. Zhu, W. Liao, Aldo-keto reductase family 1 member B 10 mediates liver cancer cell proliferation through sphingosine-1-phosphate. Sci. Rep. 6, 22746 (2016) J. Jin, W. Liao, W. Yao, R. Zhu, Y. Li, S. He, J. Ferlay, S.F. Altekruse, K.A. McGlynn, M.E. Reichman, D. Cao, S.T. Fan, S.S. Chung, B. Laffin, J.M. Petrash, K.A. Matkowskyj, S. Heringlake, M. Woenckhaus, S. Fukumoto, J. Breton, H.B. Yao, J. Ma, H. Yoshitake, Y.T. Chung, C. Wang, N.J. Pyne, K.J. Schmitz, S.Y. Ha, D.X. Luo, J. Jin, Z. Liu, G.K. Balendiran, H.J. Martin, Y. El-Hawari, E. Maser, S. Sato, J. Jin, Q. Zhu, W. Liao, Aldo-keto reductase family 1 member B 10 mediates liver cancer cell proliferation through sphingosine-1-phosphate. Sci. Rep. 6, 22746 (2016)
47.
go back to reference H.B. Yao, Y. Xu, L.G. Chen, T.P. Guan, Y.Y. Ma, X.J. He, Y.J. Xia, H.Q. Tao, Q.S. Shao, AKR1B10, a good prognostic indicator in gastric cancer. Eur. J. Surg. Oncol. 40, 318–324 (2014)CrossRefPubMed H.B. Yao, Y. Xu, L.G. Chen, T.P. Guan, Y.Y. Ma, X.J. He, Y.J. Xia, H.Q. Tao, Q.S. Shao, AKR1B10, a good prognostic indicator in gastric cancer. Eur. J. Surg. Oncol. 40, 318–324 (2014)CrossRefPubMed
48.
go back to reference C. Nakarai, K. Osawa, M. Akiyama, N. Matsubara, H. Ikeuchi, T. Yamano, S. Hirota, N. Tomita, M. Usami, Y. Kido, Expression of AKR1C3 and CNN3 as markers for detection of lymph node metastases in colorectal cancer. Clin. Exp. Med. 15, 333–341 (2014)CrossRefPubMedPubMedCentral C. Nakarai, K. Osawa, M. Akiyama, N. Matsubara, H. Ikeuchi, T. Yamano, S. Hirota, N. Tomita, M. Usami, Y. Kido, Expression of AKR1C3 and CNN3 as markers for detection of lymph node metastases in colorectal cancer. Clin. Exp. Med. 15, 333–341 (2014)CrossRefPubMedPubMedCentral
49.
go back to reference R. Tammali, K.V. Ramana, S.K. Srivastava, Aldose reductase regulates TNF-alpha-induced PGE2 production in human colon cancer cells. Cancer Lett. 252(299–306) (2007) R. Tammali, K.V. Ramana, S.K. Srivastava, Aldose reductase regulates TNF-alpha-induced PGE2 production in human colon cancer cells. Cancer Lett. 252(299–306) (2007)
50.
go back to reference B. Laffin, J.M. Petrash, Expression of the aldo-etoreductases AKR1B1 and AKR1B10 in human cancers. Front. Pharmacol. 3, 104 (2012) B. Laffin, J.M. Petrash, Expression of the aldo-etoreductases AKR1B1 and AKR1B10 in human cancers. Front. Pharmacol. 3, 104 (2012)
51.
go back to reference Y. Wang, L. Qi, J. Zhong, H. Qin, J. Ye, S. Lu, L. Ma, B. Xiang, L. Li, X. You, High expression of AKR1B10 predicts low risk of early tumor recurrence in patients with hepatitis B virus-related hepatocellular carcinoma. Sci. Rep. 7, 42199 (2017)CrossRefPubMedPubMedCentral Y. Wang, L. Qi, J. Zhong, H. Qin, J. Ye, S. Lu, L. Ma, B. Xiang, L. Li, X. You, High expression of AKR1B10 predicts low risk of early tumor recurrence in patients with hepatitis B virus-related hepatocellular carcinoma. Sci. Rep. 7, 42199 (2017)CrossRefPubMedPubMedCentral
Metadata
Title
Opposing roles of the aldo-keto reductases AKR1B1 and AKR1B10 in colorectal cancer
Authors
Betul Taskoparan
Esin Gulce Seza
Secil Demirkol
Sinem Tuncer
Milan Stefek
Ali Osmay Gure
Sreeparna Banerjee
Publication date
01-12-2017
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 6/2017
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-017-0351-7

Other articles of this Issue 6/2017

Cellular Oncology 6/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine