Skip to main content
Top
Published in: Cellular Oncology 4/2014

01-08-2014

Translational suppression of HIF-1α by miconazole through the mTOR signaling pathway

Authors: Jee-Young Park, Hui-Jung Jung, Incheol Seo, Bijay Kumar Jha, Seong-Il Suh, Min-Ho Suh, Won-Ki Baek

Published in: Cellular Oncology | Issue 4/2014

Login to get access

Abstract

Background

Miconazole is an imidazole antifungal agent that has amply been used in the treatment of superficial mycosis. Preliminary data indicate that miconazole may also induce anticancer effects. As yet, however, little is known about the therapeutic efficacy of miconazole on cancer and the putative mechanism(s) involved. Here, we show that miconazole suppresses hypoxia inducible factor-1α (HIF-1α) protein translation in different cancer-derived cells.

Methods

The effect of miconazole on HIF-1α expression was examined by Western blotting and reverse transcriptase polymerase chain reaction assays in human U87MG and MCF-7 glioma and breast cancer-derived cell lines, respectively. The transcriptional activity of the HIF-1 complex was confirmed using a luciferase assay. To assess whether angiogenic factors are increased under hypoxic conditions in these cells, vascular endothelial growth factor (VEGF) levels were measured by ELISA. Metabolic labeling was performed to examine HIF-1α protein translation and global protein synthesis. The role of the mammalian target of rapamycin (mTOR) signaling pathway was examined to determine translation regulation of HIF-1α after miconazole treatment.

Results

Miconazole was found to suppress HIF-1α protein expression through post-transcriptional regulation in U87MG and MCF-7 cells. The suppressive effect of HIF-1α protein synthesis was found to be due to inhibition of mTOR. Miconazole significantly inhibited the transcriptional activity of the HIF-1 complex and the expression of its target VEGF. Moreover, miconazole was found to suppress global protein synthesis by inducing phosphorylation of the translation initiation factor 2α (eIF2α).

Conclusion

Our data indicate that miconazole plays a role in translational suppression of HIF-1α. We suggest that miconazole may represent a novel therapeutic option for the treatment of cancer.
Literature
1.
go back to reference J.J. Lou, Y.L. Chua, E.H. Chew, J. Gao, M. Bushell, T. Hagen, Inhibition of hypoxia-inducible factor-1 alpha (HIF-1alpha) protein synthesis by DNA damage inducing agents. PLoS One 5, e10522 (2010)PubMedCentralPubMedCrossRef J.J. Lou, Y.L. Chua, E.H. Chew, J. Gao, M. Bushell, T. Hagen, Inhibition of hypoxia-inducible factor-1 alpha (HIF-1alpha) protein synthesis by DNA damage inducing agents. PLoS One 5, e10522 (2010)PubMedCentralPubMedCrossRef
4.
go back to reference W.G. Kaelin Jr., The von Hippel-Lindau tumour suppressor protein: O2sensing and cancer. Nat. Rev. Cancer 8, 865–873 (2008)PubMedCrossRef W.G. Kaelin Jr., The von Hippel-Lindau tumour suppressor protein: O2sensing and cancer. Nat. Rev. Cancer 8, 865–873 (2008)PubMedCrossRef
5.
go back to reference N. Masson, C. Willam, P.H. Maxwell, C.W. Pugh, P.J. Ratcliffe, Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J. 20, 5197–5206 (2001)PubMedCentralPubMedCrossRef N. Masson, C. Willam, P.H. Maxwell, C.W. Pugh, P.J. Ratcliffe, Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J. 20, 5197–5206 (2001)PubMedCentralPubMedCrossRef
6.
go back to reference D.J. Manalo, A. Rowan, T. Lavoie, L. Natarajan, B.D. Kelly, S.Q. Ye, J.G. Garcia, G.L. Semenza, Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105, 659–669 (2005)PubMedCrossRef D.J. Manalo, A. Rowan, T. Lavoie, L. Natarajan, B.D. Kelly, S.Q. Ye, J.G. Garcia, G.L. Semenza, Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105, 659–669 (2005)PubMedCrossRef
7.
go back to reference C.D. Young, A.S. Lewis, M.C. Rudolph, M.D. Ruehle, M.R. Jackman, U.J. Yun, O. Ilkun, R. Pereira, E.D. Abel, S.M. Anderson, Modulation of glucose transporter 1 (GLUT1) expression levels alters mouse mammary tumor cell growth in vitro and in vivo. PLoS One 6, e23205 (2011)PubMedCentralPubMedCrossRef C.D. Young, A.S. Lewis, M.C. Rudolph, M.D. Ruehle, M.R. Jackman, U.J. Yun, O. Ilkun, R. Pereira, E.D. Abel, S.M. Anderson, Modulation of glucose transporter 1 (GLUT1) expression levels alters mouse mammary tumor cell growth in vitro and in vivo. PLoS One 6, e23205 (2011)PubMedCentralPubMedCrossRef
8.
go back to reference N. Shaida, R. Launchbury, J.L. Boddy, C. Jones, L. Campo, H. Turley, S. Kanga, A.H. Banham, P.R. Malone, A.L. Harris, S.B. Fox, Expression of BNIP3 correlates with hypoxia-inducible factor (HIF)-1alpha, HIF-2alpha and the androgen receptor in prostate cancer and is regulated directly by hypoxia but not androgens in cell lines. Prostate 68, 336–343 (2008)PubMedCrossRef N. Shaida, R. Launchbury, J.L. Boddy, C. Jones, L. Campo, H. Turley, S. Kanga, A.H. Banham, P.R. Malone, A.L. Harris, S.B. Fox, Expression of BNIP3 correlates with hypoxia-inducible factor (HIF)-1alpha, HIF-2alpha and the androgen receptor in prostate cancer and is regulated directly by hypoxia but not androgens in cell lines. Prostate 68, 336–343 (2008)PubMedCrossRef
9.
go back to reference H. Bando, T. Atsumi, T. Nishio, H. Niwa, S. Mishima, C. Shimizu, N. Yoshioka, R. Bucala, T. Koike, Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Clin. Cancer Res. 11, 5784–5792 (2005)PubMedCrossRef H. Bando, T. Atsumi, T. Nishio, H. Niwa, S. Mishima, C. Shimizu, N. Yoshioka, R. Bucala, T. Koike, Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Clin. Cancer Res. 11, 5784–5792 (2005)PubMedCrossRef
10.
go back to reference G.E. Piérard, T. Hermanns-Lê, P. Delvenne, C. Piérard-Franchimont, Miconazole, a pharmacological barrier to skin fungal infections. Expert. Opin. Pharmacother. 13, 1187–1194 (2012)PubMedCrossRef G.E. Piérard, T. Hermanns-Lê, P. Delvenne, C. Piérard-Franchimont, Miconazole, a pharmacological barrier to skin fungal infections. Expert. Opin. Pharmacother. 13, 1187–1194 (2012)PubMedCrossRef
11.
go back to reference H.T. Chang, W.C. Chen, J.S. Chen, Y.C. Lu, S.S. Hsu, J.L. Wang, H.H. Cheng, J.S. Cheng, B.P. Jiann, A.J. Chiang, J.K. Huang, C.R. Jan, Effect of miconazole on intracellular Ca2+ levels and proliferation in human osteosarcoma cells. Life Sci. 76, 2091–2101 (2005)PubMedCrossRef H.T. Chang, W.C. Chen, J.S. Chen, Y.C. Lu, S.S. Hsu, J.L. Wang, H.H. Cheng, J.S. Cheng, B.P. Jiann, A.J. Chiang, J.K. Huang, C.R. Jan, Effect of miconazole on intracellular Ca2+ levels and proliferation in human osteosarcoma cells. Life Sci. 76, 2091–2101 (2005)PubMedCrossRef
12.
go back to reference D. Zagorac, D. Jakovcevic, D. Gebremedhin, D.R. Harder, Antiangiogenic effect of inhibitors of cytochrome P450 on rats with glioblastoma multiforme. J. Cereb. Blood Flow Metab. 28, 1431–1439 (2008)PubMedCentralPubMedCrossRef D. Zagorac, D. Jakovcevic, D. Gebremedhin, D.R. Harder, Antiangiogenic effect of inhibitors of cytochrome P450 on rats with glioblastoma multiforme. J. Cereb. Blood Flow Metab. 28, 1431–1439 (2008)PubMedCentralPubMedCrossRef
13.
go back to reference C.H. Wu, J.H. Jeng, Y.J. Wang, C.J. Tseng, Y.C. Liang, C.H. Chen, H.M. Lee, J.K. Lin, C.H. Lin, S.Y. Lin, C.P. Li, Y.S. Ho, Antitumor effects of miconazole on human colon carcinoma xenografts in nude mice through induction of apoptosis and G0/G1 cell cycle arrest. Toxicol. Appl. Pharmacol. 180, 22–35 (2002)PubMedCrossRef C.H. Wu, J.H. Jeng, Y.J. Wang, C.J. Tseng, Y.C. Liang, C.H. Chen, H.M. Lee, J.K. Lin, C.H. Lin, S.Y. Lin, C.P. Li, Y.S. Ho, Antitumor effects of miconazole on human colon carcinoma xenografts in nude mice through induction of apoptosis and G0/G1 cell cycle arrest. Toxicol. Appl. Pharmacol. 180, 22–35 (2002)PubMedCrossRef
14.
go back to reference M. Bi, C. Naczki, M. Koritzinsky, D. Fels, J. Blais, N. Hu, H. Harding, I. Novoa, M. Varia, J. Raleigh, D. Scheuner, R.J. Kaufman, J. Bell, D. Ron, B.G. Wouters, C. Koumenis, ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J. 24, 3470–3481 (2005)PubMedCentralPubMedCrossRef M. Bi, C. Naczki, M. Koritzinsky, D. Fels, J. Blais, N. Hu, H. Harding, I. Novoa, M. Varia, J. Raleigh, D. Scheuner, R.J. Kaufman, J. Bell, D. Ron, B.G. Wouters, C. Koumenis, ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J. 24, 3470–3481 (2005)PubMedCentralPubMedCrossRef
15.
go back to reference H.J. Jung, S.I. Suh, M.H. Suh, W.K. Baek, J.W. Park, Pentamidine reduces expression of hypoxia-inducible factor-1α in DU145 and MDA-MB-231 cancer cells. Cancer Lett. 303, 39–46 (2011)PubMedCrossRef H.J. Jung, S.I. Suh, M.H. Suh, W.K. Baek, J.W. Park, Pentamidine reduces expression of hypoxia-inducible factor-1α in DU145 and MDA-MB-231 cancer cells. Cancer Lett. 303, 39–46 (2011)PubMedCrossRef
16.
go back to reference A. Rapisarda, B. Uranchimeg, D.A. Scudiero, M. Selby, E.A. Sausville, R.H. Shoemaker, G. Melillo, Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res. 62, 4316–4324 (2002)PubMed A. Rapisarda, B. Uranchimeg, D.A. Scudiero, M. Selby, E.A. Sausville, R.H. Shoemaker, G. Melillo, Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res. 62, 4316–4324 (2002)PubMed
17.
go back to reference K.L. Talks, H. Turley, K.C. Gatter, P.H. Maxwell, C.W. Pugh, P.J. Ratcliffe, A.L. Harris, The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am. J. Pathol. 157, 411–421 (2000)PubMedCentralPubMedCrossRef K.L. Talks, H. Turley, K.C. Gatter, P.H. Maxwell, C.W. Pugh, P.J. Ratcliffe, A.L. Harris, The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am. J. Pathol. 157, 411–421 (2000)PubMedCentralPubMedCrossRef
18.
go back to reference J. Du, R. Xu, Z. Hu, Y. Tian, Y. Zhu, L. Gu, L. Zhou, PI3K and ERK-induced Rac1 activation mediates hypoxia-induced HIF-1α expression in MCF-7 breast cancer cells. PLoS One 6, e25213 (2011)PubMedCentralPubMedCrossRef J. Du, R. Xu, Z. Hu, Y. Tian, Y. Zhu, L. Gu, L. Zhou, PI3K and ERK-induced Rac1 activation mediates hypoxia-induced HIF-1α expression in MCF-7 breast cancer cells. PLoS One 6, e25213 (2011)PubMedCentralPubMedCrossRef
19.
go back to reference C. Ercan, J.F. Vermeulen, L. Hoefnagel, P. Bult, P. van der Groep, E. van der Wall, P.J. van Diest, HIF-1α and NOTCH signaling in ductal and lobular carcinomas of the breast. Cell. Oncol. 35, 435–442 (2012)CrossRef C. Ercan, J.F. Vermeulen, L. Hoefnagel, P. Bult, P. van der Groep, E. van der Wall, P.J. van Diest, HIF-1α and NOTCH signaling in ductal and lobular carcinomas of the breast. Cell. Oncol. 35, 435–442 (2012)CrossRef
20.
go back to reference M. Yee Koh, T.R. Spivak-Kroizman, G. Powis, HIF-1 regulation: not so easy come, easy go. Trends Biochem. Sci. 33, 526–534 (2008)PubMedCrossRef M. Yee Koh, T.R. Spivak-Kroizman, G. Powis, HIF-1 regulation: not so easy come, easy go. Trends Biochem. Sci. 33, 526–534 (2008)PubMedCrossRef
21.
go back to reference D.B. Shackelford, D.S. Vasquez, J. Corbeil, S. Wu, M. Leblanc, C.L. Wu, D.R. Vera, R.J. Shaw, mTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome. Proc. Natl. Acad. Sci. U. S. A. 106, 11137–11142 (2009)PubMedCentralPubMedCrossRef D.B. Shackelford, D.S. Vasquez, J. Corbeil, S. Wu, M. Leblanc, C.L. Wu, D.R. Vera, R.J. Shaw, mTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome. Proc. Natl. Acad. Sci. U. S. A. 106, 11137–11142 (2009)PubMedCentralPubMedCrossRef
22.
go back to reference D.C. Fingar, C.J. Richardson, A.R. Tee, L. Cheatham, C. Tsou, J. Blenis, mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol. Cell. Biol. 24, 200–216 (2004)PubMedCentralPubMedCrossRef D.C. Fingar, C.J. Richardson, A.R. Tee, L. Cheatham, C. Tsou, J. Blenis, mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol. Cell. Biol. 24, 200–216 (2004)PubMedCentralPubMedCrossRef
23.
go back to reference F.H. Pham, P.H. Sugden, A. Clerk, Regulation of protein kinase B and 4E-BP1 by oxidative stress in cardiac myocytes. Circ. Res. 86, 1252–1258 (2000)PubMedCrossRef F.H. Pham, P.H. Sugden, A. Clerk, Regulation of protein kinase B and 4E-BP1 by oxidative stress in cardiac myocytes. Circ. Res. 86, 1252–1258 (2000)PubMedCrossRef
24.
go back to reference R.C. Wek, H.Y. Jiang, T.G. Anthony, Coping with stress: eIF2 kinases and translational control. Biochem. Soc. Trans. 34, 7–11 (2006)PubMedCrossRef R.C. Wek, H.Y. Jiang, T.G. Anthony, Coping with stress: eIF2 kinases and translational control. Biochem. Soc. Trans. 34, 7–11 (2006)PubMedCrossRef
25.
go back to reference A.D. Rodrigues, D.F. Lewis, C. Ioannides, D.V. Parke, Spectral and kinetic studies of the interaction of imidazole anti-fungal agents with microsomal cytochromes P-450. Xenobiotica 17, 1315–1327 (1987)PubMedCrossRef A.D. Rodrigues, D.F. Lewis, C. Ioannides, D.V. Parke, Spectral and kinetic studies of the interaction of imidazole anti-fungal agents with microsomal cytochromes P-450. Xenobiotica 17, 1315–1327 (1987)PubMedCrossRef
26.
go back to reference M.R. Moody, V.M. Young, M.J. Morris, S.C. Schimpff, In vitro activities of miconazole, miconazole nitrate, and ketoconazole alone and combined with rifampin against Candida spp. and Torulopsis glabrata recovered from cancer patients. Antimicrob. Agents Chemother. 17, 871–875 (1980)PubMedCentralPubMedCrossRef M.R. Moody, V.M. Young, M.J. Morris, S.C. Schimpff, In vitro activities of miconazole, miconazole nitrate, and ketoconazole alone and combined with rifampin against Candida spp. and Torulopsis glabrata recovered from cancer patients. Antimicrob. Agents Chemother. 17, 871–875 (1980)PubMedCentralPubMedCrossRef
27.
go back to reference W.M. Jordan, G.P. Bodey, V. Rodriguez, S.J. Ketchel, J. Henney, Miconazole therapy for treatment of fungal infections in cancer patients. Antimicrob. Agents Chemother. 16, 792–797 (1979)PubMedCentralPubMedCrossRef W.M. Jordan, G.P. Bodey, V. Rodriguez, S.J. Ketchel, J. Henney, Miconazole therapy for treatment of fungal infections in cancer patients. Antimicrob. Agents Chemother. 16, 792–797 (1979)PubMedCentralPubMedCrossRef
28.
go back to reference F. Meunier-Carpentier, M. Cruciani, J. Klastersky, Oral prophylaxis with miconazole or ketoconazole of invasive fungal disease in neutropenic cancer patients. Eur. J. Cancer Clin. Oncol. 19, 43–48 (1983)PubMedCrossRef F. Meunier-Carpentier, M. Cruciani, J. Klastersky, Oral prophylaxis with miconazole or ketoconazole of invasive fungal disease in neutropenic cancer patients. Eur. J. Cancer Clin. Oncol. 19, 43–48 (1983)PubMedCrossRef
29.
go back to reference R.A. Lubet, V.E. Steele, I. Eto, M.M. Juliana, G.J. Kelloff, C.J. Grubbs, Chemopreventive efficacy of anethole trithione, N-acetyl-L-cysteine, miconazole and phenethylisothiocyanate in the DMBA-induced rat mammary cancer model. Int. J. Cancer 72, 95–101 (1997)PubMedCrossRef R.A. Lubet, V.E. Steele, I. Eto, M.M. Juliana, G.J. Kelloff, C.J. Grubbs, Chemopreventive efficacy of anethole trithione, N-acetyl-L-cysteine, miconazole and phenethylisothiocyanate in the DMBA-induced rat mammary cancer model. Int. J. Cancer 72, 95–101 (1997)PubMedCrossRef
30.
go back to reference H. Zhong, A.M. De Marzo, E. Laughner, M. Lim, D.A. Hilton, D. Zagzag, P. Buechler, W.B. Isaacs, G.L. Semenza, J.W. Simons, Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 59, 5830–5835 (1999)PubMed H. Zhong, A.M. De Marzo, E. Laughner, M. Lim, D.A. Hilton, D. Zagzag, P. Buechler, W.B. Isaacs, G.L. Semenza, J.W. Simons, Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 59, 5830–5835 (1999)PubMed
31.
go back to reference T. Shibaji, M. Nagao, N. Ikeda, H. Kanehiro, M. Hisanaga, S. Ko, A. Fukumoto, Y. Nakajima, Prognostic significance of HIF-1 alpha overexpression in human pancreatic cancer. Anticancer Res. 23, 4721–4727 (2003)PubMed T. Shibaji, M. Nagao, N. Ikeda, H. Kanehiro, M. Hisanaga, S. Ko, A. Fukumoto, Y. Nakajima, Prognostic significance of HIF-1 alpha overexpression in human pancreatic cancer. Anticancer Res. 23, 4721–4727 (2003)PubMed
32.
go back to reference B. Bachtiary, M. Schindl, R. Potter, B. Dreier, T.H. Knocke, J.A. Hainfellner, R. Horvat, P. Birner, Overexpression of hypoxia-inducible factor 1alpha indicates diminished response to radiotherapy and unfavorable prognosis in patients receiving radical radiotherapy for cervical cancer. Clin. Cancer Res. 9, 2234–2240 (2003)PubMed B. Bachtiary, M. Schindl, R. Potter, B. Dreier, T.H. Knocke, J.A. Hainfellner, R. Horvat, P. Birner, Overexpression of hypoxia-inducible factor 1alpha indicates diminished response to radiotherapy and unfavorable prognosis in patients receiving radical radiotherapy for cervical cancer. Clin. Cancer Res. 9, 2234–2240 (2003)PubMed
33.
go back to reference R. Bos, P. van der Groep, A.E. Greijer, A. Shvarts, S. Meijer, H.M. Pinedo, G.L. Semenza, P.J. van Diest, E. van der Wall, Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer 97, 1573–1581 (2003)PubMedCrossRef R. Bos, P. van der Groep, A.E. Greijer, A. Shvarts, S. Meijer, H.M. Pinedo, G.L. Semenza, P.J. van Diest, E. van der Wall, Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer 97, 1573–1581 (2003)PubMedCrossRef
34.
go back to reference G. Powis, L. Kirkpatrick, Hypoxia inducible factor-1alpha as a cancer drug target. Mol. Cancer Ther. 3, 647–654 (2004)PubMed G. Powis, L. Kirkpatrick, Hypoxia inducible factor-1alpha as a cancer drug target. Mol. Cancer Ther. 3, 647–654 (2004)PubMed
35.
go back to reference M. Malecki, P. Kolsut, R. Proczka, Angiogenic and antiangiogenic gene therapy. Gene Ther. 12(Suppl 1), S159–S169 (2005)PubMedCrossRef M. Malecki, P. Kolsut, R. Proczka, Angiogenic and antiangiogenic gene therapy. Gene Ther. 12(Suppl 1), S159–S169 (2005)PubMedCrossRef
37.
go back to reference J.E. Rundhaug, Matrix metalloproteinases, angiogenesis, and cancer. Clin. Cancer Res. 9, 551–554 (2003)PubMed J.E. Rundhaug, Matrix metalloproteinases, angiogenesis, and cancer. Clin. Cancer Res. 9, 551–554 (2003)PubMed
38.
go back to reference M. Medhora, J. Daniels, K. Mundey, B. Fisslthaler, R. Busse, E.R. Jacobs, D.R. Harder, Epoxygenase-driven angiogenesis in human lung microvascular endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 284, H215–H224 (2003)PubMed M. Medhora, J. Daniels, K. Mundey, B. Fisslthaler, R. Busse, E.R. Jacobs, D.R. Harder, Epoxygenase-driven angiogenesis in human lung microvascular endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 284, H215–H224 (2003)PubMed
39.
go back to reference C. Zhang, D.R. Harder, Cerebral capillary endothelial cell mitogenesis and morphogenesis induced by astrocytic epoxyeicosatrienoic acid. Stroke 33, 2957–2964 (2002)PubMedCrossRef C. Zhang, D.R. Harder, Cerebral capillary endothelial cell mitogenesis and morphogenesis induced by astrocytic epoxyeicosatrienoic acid. Stroke 33, 2957–2964 (2002)PubMedCrossRef
40.
go back to reference D.H. Munzenmaier, D.R. Harder, Cerebral microvascular endothelial cell tube formation: role of astrocytic epoxyeicosatrienoic acid release. Am. J. Physiol. Heart Circ. Physiol. 278, H1163–H1167 (2000)PubMed D.H. Munzenmaier, D.R. Harder, Cerebral microvascular endothelial cell tube formation: role of astrocytic epoxyeicosatrienoic acid release. Am. J. Physiol. Heart Circ. Physiol. 278, H1163–H1167 (2000)PubMed
41.
go back to reference R.J. Shaw, L.C. Cantley, Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441, 424–430 (2006)PubMedCrossRef R.J. Shaw, L.C. Cantley, Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441, 424–430 (2006)PubMedCrossRef
42.
go back to reference A. Rapisarda, G. Melillo, UVC inhibits HIF-1alpha protein translation by a DNA damage- and topoisomerase I-independent pathway. Oncogene 26, 6875–6884 (2007)PubMedCrossRef A. Rapisarda, G. Melillo, UVC inhibits HIF-1alpha protein translation by a DNA damage- and topoisomerase I-independent pathway. Oncogene 26, 6875–6884 (2007)PubMedCrossRef
43.
go back to reference E. Connolly, S. Braunstein, S. Formenti, R.J. Schneider, Hypoxia inhibits protein synthesis through a 4E-BP1 and elongation factor 2 kinase pathway controlled by mTOR and uncoupled in breast cancer cells. Mol. Cell. Biol. 26, 3955–3965 (2006)PubMedCentralPubMedCrossRef E. Connolly, S. Braunstein, S. Formenti, R.J. Schneider, Hypoxia inhibits protein synthesis through a 4E-BP1 and elongation factor 2 kinase pathway controlled by mTOR and uncoupled in breast cancer cells. Mol. Cell. Biol. 26, 3955–3965 (2006)PubMedCentralPubMedCrossRef
44.
go back to reference C.X. Bian, Z. Shi, Q. Meng, Y. Jiang, L.Z. Liu, B.H. Jiang, P70S6K 1 regulation of angiogenesis through VEGF and HIF-1alpha expression. Biochem. Biophys. Res. Commun. 398, 395–399 (2010)PubMedCentralPubMedCrossRef C.X. Bian, Z. Shi, Q. Meng, Y. Jiang, L.Z. Liu, B.H. Jiang, P70S6K 1 regulation of angiogenesis through VEGF and HIF-1alpha expression. Biochem. Biophys. Res. Commun. 398, 395–399 (2010)PubMedCentralPubMedCrossRef
45.
46.
go back to reference K.X. Knaup, K. Jozefowski, R. Schmidt, W.M. Bernhardt, A. Weidemann, J.S. Juergensen, C. Warnecke, K.U. Eckardt, M.S. Wiesener, Mutual regulation of hypoxia-inducible factor and mammalian target of rapamycin as a function of oxygen availability. Mol. Cancer Res. 7, 88–98 (2009)PubMedCrossRef K.X. Knaup, K. Jozefowski, R. Schmidt, W.M. Bernhardt, A. Weidemann, J.S. Juergensen, C. Warnecke, K.U. Eckardt, M.S. Wiesener, Mutual regulation of hypoxia-inducible factor and mammalian target of rapamycin as a function of oxygen availability. Mol. Cancer Res. 7, 88–98 (2009)PubMedCrossRef
47.
go back to reference K. Zhu, W. Chan, J. Heymach, M. Wilkinson, D.J. McConkey, Control of HIF-1alpha expression by eIF2 alpha phosphorylation-mediated translational repression. Cancer Res. 69, 1836–1843 (2009)PubMedCrossRef K. Zhu, W. Chan, J. Heymach, M. Wilkinson, D.J. McConkey, Control of HIF-1alpha expression by eIF2 alpha phosphorylation-mediated translational repression. Cancer Res. 69, 1836–1843 (2009)PubMedCrossRef
48.
go back to reference C. Koumenis, C. Naczki, M. Koritzinsky, S. Rastani, A. Diehl, N. Sonenberg, A. Koromilas, B.G. Wouters, Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol. Cell. Biol. 22, 7405–7416 (2002)PubMedCentralPubMedCrossRef C. Koumenis, C. Naczki, M. Koritzinsky, S. Rastani, A. Diehl, N. Sonenberg, A. Koromilas, B.G. Wouters, Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol. Cell. Biol. 22, 7405–7416 (2002)PubMedCentralPubMedCrossRef
Metadata
Title
Translational suppression of HIF-1α by miconazole through the mTOR signaling pathway
Authors
Jee-Young Park
Hui-Jung Jung
Incheol Seo
Bijay Kumar Jha
Seong-Il Suh
Min-Ho Suh
Won-Ki Baek
Publication date
01-08-2014
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 4/2014
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-014-0182-8

Other articles of this Issue 4/2014

Cellular Oncology 4/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine