Skip to main content
Top
Published in: Cellular Oncology 6/2013

01-12-2013

Macrophages as potential targets for zoledronic acid outside the skeleton—evidence from in vitro and in vivo models

Authors: T. L. Rogers, N. Wind, R. Hughes, F. Nutter, H. K. Brown, I. Vasiliadou, P. D. Ottewell, I. Holen

Published in: Cellular Oncology | Issue 6/2013

Login to get access

Abstract

Purpose

Multiple cell types of the tumour microenvironment, including macrophages, contribute to the response to cancer therapy. The anti-resorptive agent zoledronic acid (ZOL) has anti–tumour effects in vitro and in vivo, but it is not known to what extent macrophages are affected by this agent. We have therefore investigated the effects of ZOL on macrophages using a combination of in vitro and in vivo models.

Methods

J774 macrophages were treated with ZOL in vitro, alone and in combination with doxorubicin (DOX), and the levels of apoptosis and necrosis determined. Uptake of zoledronic acid was assessed by detection of unprenylated Rap1a in J774 macrophages in vitro, in peritoneal macrophages and in macrophage populations isolated from subcutaneously implanted breast cancer xenografts following ZOL treatment in vivo.

Results

Exposure of J774 macrophages to 5 μM ZOL for 24 h caused a significant increase in the levels of uRap1A, and higher doses/longer exposure induced apoptotic cell death. DOX (10 nM/24 h) and ZOL (10 μM/4 h) given in sequence induced significantly increased levels of apoptotic cell death compared to single agents. Peritoneal macrophages and macrophage populations isolated from breast tumour xenografts had detectable levels of uRap1A 24 h following a single, clinically achievable dose of 100 μg/kg ZOL in vivo.

Conclusion

We demonstrate that macrophages are sensitive to sequential administration of DOX and ZOL, and that both peritoneal and breast tumour associated macrophages rapidly take up ZOL in vivo. Our data support that macrophages may contribute to the anti-tumour effect of ZOL.
Literature
1.
go back to reference R. Coleman, M. Gnant, G. Morgan, P. Clezardin, Effects of bone-targeted agents on cancer progression and mortality. J. Natl. Cancer Inst. 104(14), 1059–1067 (2012)PubMedCrossRef R. Coleman, M. Gnant, G. Morgan, P. Clezardin, Effects of bone-targeted agents on cancer progression and mortality. J. Natl. Cancer Inst. 104(14), 1059–1067 (2012)PubMedCrossRef
2.
go back to reference M.J. Rogers, K.M. Chilton, F.P. Coxon, J. Lawry, M.O. Smith, S. Suri et al., Bisphosphonates induce apoptosis in mouse macrophage-like cells in vitro by a nitric oxide-independent mechanism. J. Bone Miner. Res. 11(10), 1482–1491 (1996)PubMedCrossRef M.J. Rogers, K.M. Chilton, F.P. Coxon, J. Lawry, M.O. Smith, S. Suri et al., Bisphosphonates induce apoptosis in mouse macrophage-like cells in vitro by a nitric oxide-independent mechanism. J. Bone Miner. Res. 11(10), 1482–1491 (1996)PubMedCrossRef
3.
go back to reference M.G. Cecchini, R. Felix, H. Fleisch, P.H. Cooper, Effect of bisphosphonates on proliferation and viability of mouse bone marrow-derived macrophages. J. Bone Miner. Res. 2(2), 135–142 (1987)PubMedCrossRef M.G. Cecchini, R. Felix, H. Fleisch, P.H. Cooper, Effect of bisphosphonates on proliferation and viability of mouse bone marrow-derived macrophages. J. Bone Miner. Res. 2(2), 135–142 (1987)PubMedCrossRef
4.
go back to reference M.F. Moreau, C. Guillet, P. Massin, S. Chevalier, H. Gascan, M.F. Baslé et al., Comparative effects of five bisphosphonates on apoptosis of macrophage cells in vitro. Biochem. Pharmacol. 73(5), 718–723 (2007)PubMedCrossRef M.F. Moreau, C. Guillet, P. Massin, S. Chevalier, H. Gascan, M.F. Baslé et al., Comparative effects of five bisphosphonates on apoptosis of macrophage cells in vitro. Biochem. Pharmacol. 73(5), 718–723 (2007)PubMedCrossRef
5.
go back to reference E. Giraudo, M. Inoue, D. Hanahan, An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J. Clin. Invest. 114(5), 623–633 (2004)PubMed E. Giraudo, M. Inoue, D. Hanahan, An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J. Clin. Invest. 114(5), 623–633 (2004)PubMed
6.
go back to reference S.P. Luckman, F.P. Coxon, F.H. Ebetino, R.G.G. Russell, M.J. Rogers, Heterocycle-containing bisphosphonates cause apoptosis and inhibit bone resorption by preventing protein prenylation: evidence from structure-activity relationships in J774 macrophages. J. Bone Miner. Res. 13(11), 1668–1678 (1998)PubMedCrossRef S.P. Luckman, F.P. Coxon, F.H. Ebetino, R.G.G. Russell, M.J. Rogers, Heterocycle-containing bisphosphonates cause apoptosis and inhibit bone resorption by preventing protein prenylation: evidence from structure-activity relationships in J774 macrophages. J. Bone Miner. Res. 13(11), 1668–1678 (1998)PubMedCrossRef
7.
go back to reference J.C. Frith, M.J. Rogers, Antagonistic effects of different classes of bisphosphonates in osteoclasts and macrophages in vitro. J. Bone Miner. Res. 18(2), 204–212 (2003)PubMedCrossRef J.C. Frith, M.J. Rogers, Antagonistic effects of different classes of bisphosphonates in osteoclasts and macrophages in vitro. J. Bone Miner. Res. 18(2), 204–212 (2003)PubMedCrossRef
8.
go back to reference H. Mönkkönen, P.D. Ottewell, J. Kuokkanen, J. Mönkkönen, S. Auriola, I. Holen, Zoledronic acid-indcuced IPP/ApppI production in vivo. Life Sci. 81(13), 1066–1070 (2007)PubMedCrossRef H. Mönkkönen, P.D. Ottewell, J. Kuokkanen, J. Mönkkönen, S. Auriola, I. Holen, Zoledronic acid-indcuced IPP/ApppI production in vivo. Life Sci. 81(13), 1066–1070 (2007)PubMedCrossRef
9.
go back to reference T.L. Rogers, I. Holen, Tumour macrophages as potential targets of bisphosphonates. J. Transl. Med. 9(1), 177 (2011)PubMedCrossRef T.L. Rogers, I. Holen, Tumour macrophages as potential targets of bisphosphonates. J. Transl. Med. 9(1), 177 (2011)PubMedCrossRef
10.
go back to reference J.A. Joyce, J.W. Pollard, Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9(4), 239–252 (2009)PubMedCrossRef J.A. Joyce, J.W. Pollard, Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9(4), 239–252 (2009)PubMedCrossRef
11.
go back to reference S.B. Coffelt, R. Hughes, C.E. Lewis, Tumor-associated macrophages: effectors of angiogenesis and tumor progression. Biochim. Biophys. Acta 1796(1), 11–18 (2009)PubMed S.B. Coffelt, R. Hughes, C.E. Lewis, Tumor-associated macrophages: effectors of angiogenesis and tumor progression. Biochim. Biophys. Acta 1796(1), 11–18 (2009)PubMed
12.
go back to reference S.B. Coffelt, C.E. Lewis, L. Naldini, J.M. Brown, N. Ferrara, M. De Palma, Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. Am. J. Pathol. 176(4), 1564–1576 (2010)PubMedCrossRef S.B. Coffelt, C.E. Lewis, L. Naldini, J.M. Brown, N. Ferrara, M. De Palma, Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. Am. J. Pathol. 176(4), 1564–1576 (2010)PubMedCrossRef
13.
go back to reference R.D. Leek, A.L. Harris, Tumor-associated macrophages in breast cancer. J. Mammary Gland Biol. Neoplasia 7(2), 177–189 (2002)PubMedCrossRef R.D. Leek, A.L. Harris, Tumor-associated macrophages in breast cancer. J. Mammary Gland Biol. Neoplasia 7(2), 177–189 (2002)PubMedCrossRef
14.
go back to reference M. Marra, G. Salzano, C. Leonetti, M. Porru, R. Franco, S. Zappavigna, G. Liguori, G. Botti, P. Chieffi, M. Lamberti, G. Vitale, A. Abbruzzese, M.I. La Rotonda, G. De Rosa, M. Caraglia, New self-assembly nanoparticles and stealth liposomes for the delivery of zoledronic acid: a comparative study. Biotechnol. Adv. 30(1), 302–309 (2012)PubMedCrossRef M. Marra, G. Salzano, C. Leonetti, M. Porru, R. Franco, S. Zappavigna, G. Liguori, G. Botti, P. Chieffi, M. Lamberti, G. Vitale, A. Abbruzzese, M.I. La Rotonda, G. De Rosa, M. Caraglia, New self-assembly nanoparticles and stealth liposomes for the delivery of zoledronic acid: a comparative study. Biotechnol. Adv. 30(1), 302–309 (2012)PubMedCrossRef
15.
go back to reference M. Marra, G. Salzano, C. Leonetti, P. Tassone, M. Scarsella, S. Zappavigna, T. Calimeri, R. Franco, G. Liguori, G. Cigliana, R. Ascani, M.I. La Rotonda, A. Abbruzzese, P. Tagliaferri, M. Caraglia, G. De Rosa, Nanotechnologies to use bisphosphonates as potent anticancer agents: the effects of zoledronic acid encapsulated into liposomes. Nanomedicine 7(6), 955–964 (2011)PubMed M. Marra, G. Salzano, C. Leonetti, P. Tassone, M. Scarsella, S. Zappavigna, T. Calimeri, R. Franco, G. Liguori, G. Cigliana, R. Ascani, M.I. La Rotonda, A. Abbruzzese, P. Tagliaferri, M. Caraglia, G. De Rosa, Nanotechnologies to use bisphosphonates as potent anticancer agents: the effects of zoledronic acid encapsulated into liposomes. Nanomedicine 7(6), 955–964 (2011)PubMed
16.
go back to reference M. Coscia, E. Quaglino, M. Iezzi, C. Curcio, F. Pantaleoni, C. Riganti, I. Holen, H. Mönkkönen, M. Boccadoro, G. Forni, P. Musiani, A. Bosia, F. Cavallo, M. Massaia, Zoledronic acid repolarizes tumor-associated macrophages and inhibits mammary carcinogenesis by targeting the mevalonate pathway. J. Cell. Mol. Med. 4(12), 2803–2815 (2009) M. Coscia, E. Quaglino, M. Iezzi, C. Curcio, F. Pantaleoni, C. Riganti, I. Holen, H. Mönkkönen, M. Boccadoro, G. Forni, P. Musiani, A. Bosia, F. Cavallo, M. Massaia, Zoledronic acid repolarizes tumor-associated macrophages and inhibits mammary carcinogenesis by targeting the mevalonate pathway. J. Cell. Mol. Med. 4(12), 2803–2815 (2009)
17.
go back to reference P.D. Ottewell, D.V. Lefley, S.S. Cross, C.A. Evans, R.E. Coleman, I. Holen, Sustained inhibition of tumour growth and prolonged survival following sequential administration of doxorubicin and zoledronic acid in a breast cancer model. Int. J. Cancer 126(2), 522–532 (2010)PubMedCrossRef P.D. Ottewell, D.V. Lefley, S.S. Cross, C.A. Evans, R.E. Coleman, I. Holen, Sustained inhibition of tumour growth and prolonged survival following sequential administration of doxorubicin and zoledronic acid in a breast cancer model. Int. J. Cancer 126(2), 522–532 (2010)PubMedCrossRef
18.
go back to reference P.D. Ottewell, H. Mönkkönen, M. Jones, D.V. Lefley, R.E. Coleman, I. Holen, Antitumor effects of doxorubicin followed by zoledronic acid in a mouse model of breast cancer. J. Natl. Cancer Inst. 100(16), 1167–1178 (2008)PubMedCrossRef P.D. Ottewell, H. Mönkkönen, M. Jones, D.V. Lefley, R.E. Coleman, I. Holen, Antitumor effects of doxorubicin followed by zoledronic acid in a mouse model of breast cancer. J. Natl. Cancer Inst. 100(16), 1167–1178 (2008)PubMedCrossRef
19.
go back to reference P.D. Ottewell, H.K. Brown, M. Jones, T.L. Rogers, S.S. Cross, N.J. Brown, R.E. Coleman, I. Holen, Combination therapy inhibits development and progression of mammary tumours in immunocompetent mice. Breast Cancer Res. Treat. 133(2), 523–536 (2012)PubMedCrossRef P.D. Ottewell, H.K. Brown, M. Jones, T.L. Rogers, S.S. Cross, N.J. Brown, R.E. Coleman, I. Holen, Combination therapy inhibits development and progression of mammary tumours in immunocompetent mice. Breast Cancer Res. Treat. 133(2), 523–536 (2012)PubMedCrossRef
20.
go back to reference H.L. Neville-Webbe, A. Rostami-Hodjegan, C.A. Evans, R.E. Coleman, I. Holen, Sequence- and schedule-dependent enhancement of zoledronic acid induced apoptosis by doxorubicin in breast and prostate cancer cells. Int. J. Cancer 113(3), 364–371 (2005)PubMedCrossRef H.L. Neville-Webbe, A. Rostami-Hodjegan, C.A. Evans, R.E. Coleman, I. Holen, Sequence- and schedule-dependent enhancement of zoledronic acid induced apoptosis by doxorubicin in breast and prostate cancer cells. Int. J. Cancer 113(3), 364–371 (2005)PubMedCrossRef
21.
go back to reference R.D. Clyburn, P. Reid, C.A. Evans, D.V. Lefley, I. Holen, Increased anti-tumour effects of doxorubicin and zoledronic acid in prostate cancer cells in vitro – supporting the benefits of combination therapy. Chemother. Pharmacol. 65(5), 969–978 (2009)CrossRef R.D. Clyburn, P. Reid, C.A. Evans, D.V. Lefley, I. Holen, Increased anti-tumour effects of doxorubicin and zoledronic acid in prostate cancer cells in vitro – supporting the benefits of combination therapy. Chemother. Pharmacol. 65(5), 969–978 (2009)CrossRef
22.
go back to reference I. Holen, R.E. Coleman, Anti-tumour activity of bisphosphonates in preclinical models of breast cancer. Breast Cancer Res. 12(6), 214 (2010)PubMedCrossRef I. Holen, R.E. Coleman, Anti-tumour activity of bisphosphonates in preclinical models of breast cancer. Breast Cancer Res. 12(6), 214 (2010)PubMedCrossRef
23.
go back to reference S.L. Chinault, J.L. Prior, K.M. Kaltenbronn, A. Penly, K.N. Weilbaecher, D. Piwnica-Worms, K.J. Blumer, Breast cancer cell targeting by prenylation inhibitors elucidated in living animals with a bioluminescence reporter. Clin. Cancer Res. 18(15), 4136–4144 (2012)PubMedCrossRef S.L. Chinault, J.L. Prior, K.M. Kaltenbronn, A. Penly, K.N. Weilbaecher, D. Piwnica-Worms, K.J. Blumer, Breast cancer cell targeting by prenylation inhibitors elucidated in living animals with a bioluminescence reporter. Clin. Cancer Res. 18(15), 4136–4144 (2012)PubMedCrossRef
24.
go back to reference C. Melani, S. Sangaletti, F.M. Barazzetta, Z. Werb, M.P. Colombo, Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res. 67(23), 11438–11446 (2007)PubMedCrossRef C. Melani, S. Sangaletti, F.M. Barazzetta, Z. Werb, M.P. Colombo, Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res. 67(23), 11438–11446 (2007)PubMedCrossRef
25.
go back to reference W. Zhang, X.D. Zhu, H.C. Sun, Y.Q. Xiong, P.Y. Zhuang, H.X. Xu, L.Q. Kong, L. Wang, W.Z. Wu, Z.Y. Tang, Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin. Cancer Res. 16(13), 3420–3430 (2010)PubMedCrossRef W. Zhang, X.D. Zhu, H.C. Sun, Y.Q. Xiong, P.Y. Zhuang, H.X. Xu, L.Q. Kong, L. Wang, W.Z. Wu, Z.Y. Tang, Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin. Cancer Res. 16(13), 3420–3430 (2010)PubMedCrossRef
26.
go back to reference J.D. Veltman, M.E. Lambers, M. van Nimwegen, R.W. Hendriks, H.C. Hoogsteden, J.P. Hegmans, J.G. Aerts, Zoledronic acid impairs myeloid differentiation to tumour-associated macrophages in mesothelioma. Br. J. Cancer 103(5), 629–641 (2010)PubMedCrossRef J.D. Veltman, M.E. Lambers, M. van Nimwegen, R.W. Hendriks, H.C. Hoogsteden, J.P. Hegmans, J.G. Aerts, Zoledronic acid impairs myeloid differentiation to tumour-associated macrophages in mesothelioma. Br. J. Cancer 103(5), 629–641 (2010)PubMedCrossRef
27.
go back to reference R.E. Coleman, H. Marshall, D. Cameron, D. Dodwell, R. Burkinshaw, M. Keane, M. Gil, S.J. Houston, R.J. Grieve, P.J. Barrett-Lee, D. Ritchie, J. Pugh, C. Gaunt, U. Rea, J. Peterson, C. Davies, V. Hiley, W. Gregory, R. Bell, AZURE Investigators, Breast-cancer adjuvant therapy with zoledronic acid. N. Engl. J. Med. 365(15), 1396–1405 (2011)PubMedCrossRef R.E. Coleman, H. Marshall, D. Cameron, D. Dodwell, R. Burkinshaw, M. Keane, M. Gil, S.J. Houston, R.J. Grieve, P.J. Barrett-Lee, D. Ritchie, J. Pugh, C. Gaunt, U. Rea, J. Peterson, C. Davies, V. Hiley, W. Gregory, R. Bell, AZURE Investigators, Breast-cancer adjuvant therapy with zoledronic acid. N. Engl. J. Med. 365(15), 1396–1405 (2011)PubMedCrossRef
Metadata
Title
Macrophages as potential targets for zoledronic acid outside the skeleton—evidence from in vitro and in vivo models
Authors
T. L. Rogers
N. Wind
R. Hughes
F. Nutter
H. K. Brown
I. Vasiliadou
P. D. Ottewell
I. Holen
Publication date
01-12-2013
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 6/2013
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-013-0156-2

Other articles of this Issue 6/2013

Cellular Oncology 6/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine