Skip to main content
Top
Published in: Neurotherapeutics 2/2013

01-04-2013 | Review

Challenges of Bringing Next Generation Sequencing Technologies to Clinical Molecular Diagnostic Laboratories

Author: Lee-Jun C. Wong

Published in: Neurotherapeutics | Issue 2/2013

Login to get access

Abstract

Molecular diagnosis of complex dual genome mitochondrial disorders is a challenge. It requires the identification of deleterious mutations in one of the ~1,500 nuclear genes and the mitochondrial genome. If the molecular defect is in the mitochondrial genome, quantification of degree of mutation load (heteroplasmy) in affected tissues is important. Due to the extreme clinical and genetic heterogeneity, conventional sequence analysis of the candidate genes one-by-one is impractical, if not impossible. The newly developed massively parallel next generation sequencing (NGS) technique, that allows simultaneous sequence analysis of multiple target genes, when appropriately validated with deep coverage and proper quality controls, can be used as an effective comprehensive diagnostic approach in CLIA certified clinical laboratories.
Appendix
Available only for authorised users
Literature
1.
go back to reference Calvo S, et al. Systematic identification of human mitochondrial disease genes through integrative genomics. Nat Genet 2006;38(5):576–582.PubMedCrossRef Calvo S, et al. Systematic identification of human mitochondrial disease genes through integrative genomics. Nat Genet 2006;38(5):576–582.PubMedCrossRef
2.
go back to reference Scharfe C, et al. Mapping gene associations in human mitochondria using clinical disease phenotypes. PLoS Comput Biol 2009;5(4):e1000374.PubMedCrossRef Scharfe C, et al. Mapping gene associations in human mitochondria using clinical disease phenotypes. PLoS Comput Biol 2009;5(4):e1000374.PubMedCrossRef
3.
go back to reference Dimmock D, et al. A quantitative evaluation of the mitochondrial DNA depletion syndrome. Clin Chem 2010;56(7):1119–27.PubMedCrossRef Dimmock D, et al. A quantitative evaluation of the mitochondrial DNA depletion syndrome. Clin Chem 2010;56(7):1119–27.PubMedCrossRef
4.
go back to reference Shanske S, Wong LJ. Molecular analysis for mitochondrial DNA disorders. Mitochondrion 2004;4(5–6):403–15.PubMedCrossRef Shanske S, Wong LJ. Molecular analysis for mitochondrial DNA disorders. Mitochondrion 2004;4(5–6):403–15.PubMedCrossRef
5.
go back to reference Wong LJ, Boles RG. Mitochondrial DNA analysis in clinical laboratory diagnostics. Clin Chim Acta 2005;354(1–2):1–20.PubMedCrossRef Wong LJ, Boles RG. Mitochondrial DNA analysis in clinical laboratory diagnostics. Clin Chim Acta 2005;354(1–2):1–20.PubMedCrossRef
6.
go back to reference Wong L-JC. Molecular genetics of mitochondrial disorders. Dev Disabil Res Rev 2010;16(2):154–162.PubMedCrossRef Wong L-JC. Molecular genetics of mitochondrial disorders. Dev Disabil Res Rev 2010;16(2):154–162.PubMedCrossRef
7.
go back to reference Koopman WJ, Willems PH, Smeitink JA. Monogenic mitochondrial disorders. N Engl J Med 2012;366(12):1132–41.PubMedCrossRef Koopman WJ, Willems PH, Smeitink JA. Monogenic mitochondrial disorders. N Engl J Med 2012;366(12):1132–41.PubMedCrossRef
8.
go back to reference Smeitink J, van den Heuvel L, DiMauro S. The genetics and pathology of oxidative phosphorylation. Nat Rev Genet 2001;2(5):342–52.PubMedCrossRef Smeitink J, van den Heuvel L, DiMauro S. The genetics and pathology of oxidative phosphorylation. Nat Rev Genet 2001;2(5):342–52.PubMedCrossRef
9.
go back to reference Calvo SE, et al. Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. Sci Transl Med 2012;4(118):118ra10.PubMedCrossRef Calvo SE, et al. Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. Sci Transl Med 2012;4(118):118ra10.PubMedCrossRef
10.
go back to reference Casey JP, et al. Identification of a mutation in LARS as a novel cause of infantile hepatopathy. Mol Genet Metab 2012;106(3):351–8.PubMedCrossRef Casey JP, et al. Identification of a mutation in LARS as a novel cause of infantile hepatopathy. Mol Genet Metab 2012;106(3):351–8.PubMedCrossRef
11.
go back to reference Galmiche L, et al. Exome sequencing identifies MRPL3 mutation in mitochondrial cardiomyopathy. Hum Mutat 2011;32(11):1225–31.PubMedCrossRef Galmiche L, et al. Exome sequencing identifies MRPL3 mutation in mitochondrial cardiomyopathy. Hum Mutat 2011;32(11):1225–31.PubMedCrossRef
12.
go back to reference Gandre-Babbe S, van der Bliek AM. The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 2008;19(6):2402–12.PubMedCrossRef Gandre-Babbe S, van der Bliek AM. The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 2008;19(6):2402–12.PubMedCrossRef
13.
go back to reference Gerards M, et al. Riboflavin-responsive oxidative phosphorylation complex I deficiency caused by defective ACAD9: new function for an old gene. Brain 2011;134(Pt 1):210–9.PubMedCrossRef Gerards M, et al. Riboflavin-responsive oxidative phosphorylation complex I deficiency caused by defective ACAD9: new function for an old gene. Brain 2011;134(Pt 1):210–9.PubMedCrossRef
14.
go back to reference Ghezzi D, et al. Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. Am J Hum Genet 2012;90(6):1079–87.PubMedCrossRef Ghezzi D, et al. Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. Am J Hum Genet 2012;90(6):1079–87.PubMedCrossRef
15.
go back to reference Glazov EA, et al. Whole-exome re-sequencing in a family quartet identifies POP1 mutations as the cause of a novel skeletal dysplasia. PLoS Genet 2011;7(3):e1002027.PubMedCrossRef Glazov EA, et al. Whole-exome re-sequencing in a family quartet identifies POP1 mutations as the cause of a novel skeletal dysplasia. PLoS Genet 2011;7(3):e1002027.PubMedCrossRef
16.
go back to reference Gotz A, et al. Exome sequencing identifies mitochondrial alanyl-tRNA synthetase mutations in infantile mitochondrial cardiomyopathy. Am J Hum Genet 2011;88(5):635–42.PubMedCrossRef Gotz A, et al. Exome sequencing identifies mitochondrial alanyl-tRNA synthetase mutations in infantile mitochondrial cardiomyopathy. Am J Hum Genet 2011;88(5):635–42.PubMedCrossRef
17.
go back to reference Haack TB, et al. Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat Genet 2010;42(12):1131–4.PubMedCrossRef Haack TB, et al. Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat Genet 2010;42(12):1131–4.PubMedCrossRef
18.
go back to reference Majczenko K, et al. Dominant mutation of CCDC78 in a unique congenital myopathy with prominent internal nuclei and atypical cores. Am J Hum Genet 2012;91(2):365–71.PubMedCrossRef Majczenko K, et al. Dominant mutation of CCDC78 in a unique congenital myopathy with prominent internal nuclei and atypical cores. Am J Hum Genet 2012;91(2):365–71.PubMedCrossRef
19.
go back to reference Mayr JA, et al. Lack of the mitochondrial protein acylglycerol kinase causes Sengers syndrome. Am J Hum Genet 2012;90(2):314–20.PubMedCrossRef Mayr JA, et al. Lack of the mitochondrial protein acylglycerol kinase causes Sengers syndrome. Am J Hum Genet 2012;90(2):314–20.PubMedCrossRef
20.
go back to reference Pierce SB, et al. Mutations in mitochondrial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome. Proc Natl Acad Sci USA 2011;108(16):6543–8.PubMedCrossRef Pierce SB, et al. Mutations in mitochondrial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome. Proc Natl Acad Sci USA 2011;108(16):6543–8.PubMedCrossRef
21.
go back to reference Rotig A. Human diseases with impaired mitochondrial protein synthesis. Biochim Biophys Acta 2011;1807(9):1198–205.PubMedCrossRef Rotig A. Human diseases with impaired mitochondrial protein synthesis. Biochim Biophys Acta 2011;1807(9):1198–205.PubMedCrossRef
22.
go back to reference Sloan JL, et al. Exome sequencing identifies ACSF3 as a cause of combined malonic and methylmalonic aciduria. Nat Genet 2011;43(9):883–6.PubMedCrossRef Sloan JL, et al. Exome sequencing identifies ACSF3 as a cause of combined malonic and methylmalonic aciduria. Nat Genet 2011;43(9):883–6.PubMedCrossRef
23.
go back to reference Spiegel R et al. Infantile cerebellar-retinal degeneration associated with a mutation in mitochondrial aconitase, ACO2. Am J Hum Genet 2012;90(3):518–23.PubMedCrossRef Spiegel R et al. Infantile cerebellar-retinal degeneration associated with a mutation in mitochondrial aconitase, ACO2. Am J Hum Genet 2012;90(3):518–23.PubMedCrossRef
24.
go back to reference Steenweg ME et al. Leukoencephalopathy with thalamus and brainstem involvement and high lactate 'LTBL' caused by EARS2 mutations. Brain 2012;135(Pt 5):1387–94.PubMedCrossRef Steenweg ME et al. Leukoencephalopathy with thalamus and brainstem involvement and high lactate 'LTBL' caused by EARS2 mutations. Brain 2012;135(Pt 5):1387–94.PubMedCrossRef
25.
go back to reference Tucker EJ, et al. Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation. Cell Metab 2011;14(3):428–34.PubMedCrossRef Tucker EJ, et al. Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation. Cell Metab 2011;14(3):428–34.PubMedCrossRef
26.
go back to reference Watkins D, et al. Novel inborn error of folate metabolism: identification by exome capture and sequencing of mutations in the MTHFD1 gene in a single proband. J Med Genet 2011;48(9):590–2.PubMedCrossRef Watkins D, et al. Novel inborn error of folate metabolism: identification by exome capture and sequencing of mutations in the MTHFD1 gene in a single proband. J Med Genet 2011;48(9):590–2.PubMedCrossRef
27.
go back to reference Wortmann SB, et al. Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness. Nat Genet 2012;44(7):797–802.PubMedCrossRef Wortmann SB, et al. Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness. Nat Genet 2012;44(7):797–802.PubMedCrossRef
28.
go back to reference Schrijver I, et al. Opportunities and challenges associated with clinical diagnostic genome sequencing: a report of the association for molecular pathology. J Mol Diagn 2012;14(6):525–40.PubMedCrossRef Schrijver I, et al. Opportunities and challenges associated with clinical diagnostic genome sequencing: a report of the association for molecular pathology. J Mol Diagn 2012;14(6):525–40.PubMedCrossRef
29.
go back to reference Zhang W, Cui H, Wong LJ. Application of Next Generation Sequencing to Molecular Diagnosis of Inherited Diseases. Top Curr Chem, 2012 PMID 22576358. Zhang W, Cui H, Wong LJ. Application of Next Generation Sequencing to Molecular Diagnosis of Inherited Diseases. Top Curr Chem, 2012 PMID 22576358.
30.
go back to reference Zhang W, Cui H, Wong LJ. Comprehensive 1-step molecular analyses of mitochondrial genome by massively parallel sequencing. Clin Chem 2012;58:1322–31.PubMedCrossRef Zhang W, Cui H, Wong LJ. Comprehensive 1-step molecular analyses of mitochondrial genome by massively parallel sequencing. Clin Chem 2012;58:1322–31.PubMedCrossRef
31.
go back to reference Gargis AS, et al. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat Biotechnol 2012;30(11):1033–6.PubMedCrossRef Gargis AS, et al. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat Biotechnol 2012;30(11):1033–6.PubMedCrossRef
32.
go back to reference Tang S, et al. Analysis of common mitochondrial DNA mutations by allele-specific oligonucleotide and Southern blot hybridization. Methods Mol Biol 2012;837:259–79.PubMedCrossRef Tang S, et al. Analysis of common mitochondrial DNA mutations by allele-specific oligonucleotide and Southern blot hybridization. Methods Mol Biol 2012;837:259–79.PubMedCrossRef
33.
go back to reference Bai RK, Wong LJ. Detection and quantification of heteroplasmic mutant mitochondrial DNA by real-time amplification refractory mutation system quantitative PCR analysis: a single-step approach. Clin Chem 2004;50(6):996–1001.PubMedCrossRef Bai RK, Wong LJ. Detection and quantification of heteroplasmic mutant mitochondrial DNA by real-time amplification refractory mutation system quantitative PCR analysis: a single-step approach. Clin Chem 2004;50(6):996–1001.PubMedCrossRef
34.
go back to reference Venegas V, Halberg MC. Quantification of mtDNA mutation heteroplasmy (ARMS qPCR). Methods Mol Biol 2012;837:313–26.PubMedCrossRef Venegas V, Halberg MC. Quantification of mtDNA mutation heteroplasmy (ARMS qPCR). Methods Mol Biol 2012;837:313–26.PubMedCrossRef
35.
go back to reference Chinault AC, et al. Application of dual-genome oligonucleotide array-based comparative genomic hybridization to the molecular diagnosis of mitochondrial DNA deletion and depletion syndromes. Genet Med 2009;11(7):518–26.PubMedCrossRef Chinault AC, et al. Application of dual-genome oligonucleotide array-based comparative genomic hybridization to the molecular diagnosis of mitochondrial DNA deletion and depletion syndromes. Genet Med 2009;11(7):518–26.PubMedCrossRef
36.
go back to reference Wang J, et al. Targeted array CGH as a valuable molecular diagnostic approach: experience in the diagnosis of mitochondrial and metabolic disorders. Mol Genet Metab 2012;106(2):221–30.PubMedCrossRef Wang J, et al. Targeted array CGH as a valuable molecular diagnostic approach: experience in the diagnosis of mitochondrial and metabolic disorders. Mol Genet Metab 2012;106(2):221–30.PubMedCrossRef
37.
go back to reference Wong LJ, et al. Utility of oligonucleotide array-based comparative genomic hybridization for detection of target gene deletions. Clin Chem 2008;54(7):1141–8.PubMedCrossRef Wong LJ, et al. Utility of oligonucleotide array-based comparative genomic hybridization for detection of target gene deletions. Clin Chem 2008;54(7):1141–8.PubMedCrossRef
38.
go back to reference Landsverk ML, Cornwell ME, Palculict ME. Sequence analysis of the whole mitochondrial genome and nuclear genes causing mitochondrial disorders. Methods Mol Biol 2012;837:281–300.PubMedCrossRef Landsverk ML, Cornwell ME, Palculict ME. Sequence analysis of the whole mitochondrial genome and nuclear genes causing mitochondrial disorders. Methods Mol Biol 2012;837:281–300.PubMedCrossRef
39.
go back to reference Ware SM, et al. Infantile cardiomyopathy caused by a mutation in the overlapping region of mitochondrial ATPase 6 and 8 genes. J Med Genet 2009;46(5):308–14.PubMedCrossRef Ware SM, et al. Infantile cardiomyopathy caused by a mutation in the overlapping region of mitochondrial ATPase 6 and 8 genes. J Med Genet 2009;46(5):308–14.PubMedCrossRef
40.
go back to reference Lacbawan F, et al. Clinical heterogeneity in mitochondrial DNA deletion disorders: a diagnostic challenge of Pearson syndrome. Am J Med Genet 2000;95(3):266–8.PubMedCrossRef Lacbawan F, et al. Clinical heterogeneity in mitochondrial DNA deletion disorders: a diagnostic challenge of Pearson syndrome. Am J Med Genet 2000;95(3):266–8.PubMedCrossRef
41.
go back to reference Brautbar A, et al. The mitochondrial 13513G>A mutation is associated with Leigh disease phenotypes independent of complex I deficiency in muscle. Mol Genet Metab 2008;94(4):485–90.PubMedCrossRef Brautbar A, et al. The mitochondrial 13513G>A mutation is associated with Leigh disease phenotypes independent of complex I deficiency in muscle. Mol Genet Metab 2008;94(4):485–90.PubMedCrossRef
42.
go back to reference Wang J, et al. Two mtDNA mutations 14487T>C (M63V, ND6) and 12297T>C (tRNA Leu) in a Leigh syndrome family. Mol Genet Metab 2009;96(2):59–65.PubMedCrossRef Wang J, et al. Two mtDNA mutations 14487T>C (M63V, ND6) and 12297T>C (tRNA Leu) in a Leigh syndrome family. Mol Genet Metab 2009;96(2):59–65.PubMedCrossRef
43.
go back to reference Kara B, et al. Whole mitochondrial genome analysis of a family with NARP/MILS caused by m.8993T>C mutation in the MT-ATP6 gene. Mol Genet Metab, 2012;107:389–93. Kara B, et al. Whole mitochondrial genome analysis of a family with NARP/MILS caused by m.8993T>C mutation in the MT-ATP6 gene. Mol Genet Metab, 2012;107:389–93.
44.
go back to reference Zaragoza MV, et al. Mitochondrial DNA variant discovery and evaluation in human cardiomyopathies through next-generation sequencing. PLoS One 2010;5(8):e12295.PubMedCrossRef Zaragoza MV, et al. Mitochondrial DNA variant discovery and evaluation in human cardiomyopathies through next-generation sequencing. PLoS One 2010;5(8):e12295.PubMedCrossRef
45.
go back to reference Cui H, et al. Comprehensive next generation sequence analyses of the entire mitochondrial genome reveal new insights into the molecular diagnosis of mitochondrial DNA disorders. Genetics in Medicine, 2012. (in press) Cui H, et al. Comprehensive next generation sequence analyses of the entire mitochondrial genome reveal new insights into the molecular diagnosis of mitochondrial DNA disorders. Genetics in Medicine, 2012. (in press)
46.
go back to reference Gnirke A, et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 2009;27(2):182–9.PubMedCrossRef Gnirke A, et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 2009;27(2):182–9.PubMedCrossRef
47.
go back to reference Hirano M, et al. Apparent mtDNA heteroplasmy in Alzheimer's disease patients and in normals due to PCR amplification of nucleus-embedded mtDNA pseudogenes. Proc Natl Acad Sci USA 1997;94(26):14894–9.PubMedCrossRef Hirano M, et al. Apparent mtDNA heteroplasmy in Alzheimer's disease patients and in normals due to PCR amplification of nucleus-embedded mtDNA pseudogenes. Proc Natl Acad Sci USA 1997;94(26):14894–9.PubMedCrossRef
48.
go back to reference Parfait B, et al. Co-amplification of nuclear pseudogenes and assessment of heteroplasmy of mitochondrial DNA mutations. Biochem Biophys Res Commun 1998;247(1):57–9.PubMedCrossRef Parfait B, et al. Co-amplification of nuclear pseudogenes and assessment of heteroplasmy of mitochondrial DNA mutations. Biochem Biophys Res Commun 1998;247(1):57–9.PubMedCrossRef
49.
50.
go back to reference Margulies M, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005;437(7057):376–380.PubMed Margulies M, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005;437(7057):376–380.PubMed
51.
go back to reference Rothberg JM, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011;475(7356):348–352.PubMedCrossRef Rothberg JM, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011;475(7356):348–352.PubMedCrossRef
52.
go back to reference Shendure J, et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 2005;309(5741):1728–1732.PubMedCrossRef Shendure J, et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 2005;309(5741):1728–1732.PubMedCrossRef
53.
go back to reference Haas RH, et al. Mitochondrial disease: a practical approach for primary care physicians. Pediatrics 2007;120(6):1326–33.PubMedCrossRef Haas RH, et al. Mitochondrial disease: a practical approach for primary care physicians. Pediatrics 2007;120(6):1326–33.PubMedCrossRef
54.
go back to reference Haas RH, et al. The in-depth evaluation of suspected mitochondrial disease. Mol Genet Metab 2008;94(1):16–37.PubMedCrossRef Haas RH, et al. The in-depth evaluation of suspected mitochondrial disease. Mol Genet Metab 2008;94(1):16–37.PubMedCrossRef
55.
go back to reference Wong L-JC, et al. Current molecular diagnostic algorithm for mitochondrial disorders. Mol Genet Metab 2010;100(2):111–117.PubMedCrossRef Wong L-JC, et al. Current molecular diagnostic algorithm for mitochondrial disorders. Mol Genet Metab 2010;100(2):111–117.PubMedCrossRef
56.
go back to reference Wang J, et al. An integrated approach for classifying mitochondrial DNA variants: one clinical diagnostic laboratory's experience. Genet Med 2012;14(6):620–6.PubMedCrossRef Wang J, et al. An integrated approach for classifying mitochondrial DNA variants: one clinical diagnostic laboratory's experience. Genet Med 2012;14(6):620–6.PubMedCrossRef
57.
go back to reference Zhang VW, Wang J. Determination of the clinical significance of an unclassified variant. Methods Mol Biol 2012;837:337–48.PubMedCrossRef Zhang VW, Wang J. Determination of the clinical significance of an unclassified variant. Methods Mol Biol 2012;837:337–48.PubMedCrossRef
58.
go back to reference Tang S, et al. Left ventricular noncompaction is associated with mutations in the mitochondrial genome. Mitochondrion 2010;10(4):350–7.PubMedCrossRef Tang S, et al. Left ventricular noncompaction is associated with mutations in the mitochondrial genome. Mitochondrion 2010;10(4):350–7.PubMedCrossRef
59.
go back to reference Goto H, et al. Dynamics of mitochondrial heteroplasmy in three families investigated via a repeatable re-sequencing study. Genome Biol 2011;12(6):R59.PubMedCrossRef Goto H, et al. Dynamics of mitochondrial heteroplasmy in three families investigated via a repeatable re-sequencing study. Genome Biol 2011;12(6):R59.PubMedCrossRef
60.
go back to reference He Y, et al. Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 2010;464(7288):610–4.PubMedCrossRef He Y, et al. Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 2010;464(7288):610–4.PubMedCrossRef
61.
go back to reference Li M, et al. Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am J Hum Genet 2010;87(2):237–49.PubMedCrossRef Li M, et al. Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am J Hum Genet 2010;87(2):237–49.PubMedCrossRef
62.
go back to reference Schonberg A, et al. High-throughput sequencing of complete human mtDNA genomes from the Caucasus and West Asia: high diversity and demographic inferences. Eur J Hum Genet 2011;19(9):988–94.PubMedCrossRef Schonberg A, et al. High-throughput sequencing of complete human mtDNA genomes from the Caucasus and West Asia: high diversity and demographic inferences. Eur J Hum Genet 2011;19(9):988–94.PubMedCrossRef
63.
go back to reference Calvo SE, et al. High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat Genet 2010;42(10):851–8.PubMedCrossRef Calvo SE, et al. High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat Genet 2010;42(10):851–8.PubMedCrossRef
64.
go back to reference Vasta V, et al. Next-generation sequencing for mitochondrial diseases: A wide diagnostic spectrum. Pediatr Int 2012;54(5):585–601.PubMedCrossRef Vasta V, et al. Next-generation sequencing for mitochondrial diseases: A wide diagnostic spectrum. Pediatr Int 2012;54(5):585–601.PubMedCrossRef
65.
go back to reference Tucker EJ, et al. Next-generation sequencing in molecular diagnosis: NUBPL mutations highlight the challenges of variant detection and interpretation. Hum Mutat 2012;33(2):411–8.PubMedCrossRef Tucker EJ, et al. Next-generation sequencing in molecular diagnosis: NUBPL mutations highlight the challenges of variant detection and interpretation. Hum Mutat 2012;33(2):411–8.PubMedCrossRef
66.
go back to reference Richards CS, et al. ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet Med 2008;10(4):294–300.PubMedCrossRef Richards CS, et al. ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet Med 2008;10(4):294–300.PubMedCrossRef
67.
go back to reference MacArthur DG, et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science 2012;335(6070):823–8.PubMedCrossRef MacArthur DG, et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science 2012;335(6070):823–8.PubMedCrossRef
68.
69.
go back to reference Milone M, Benarroch EE, Wong LJ. POLG-related disorders: defects of the nuclear and mitochondrial genome interaction. Neurology 2011;77(20):1847–52.PubMedCrossRef Milone M, Benarroch EE, Wong LJ. POLG-related disorders: defects of the nuclear and mitochondrial genome interaction. Neurology 2011;77(20):1847–52.PubMedCrossRef
70.
go back to reference Tang S., et al. Mitochondrial DNA polymerase gamma mutations: an ever expanding molecular and clinical spectrum. J Med Genet 2011;48(10):669–81.PubMedCrossRef Tang S., et al. Mitochondrial DNA polymerase gamma mutations: an ever expanding molecular and clinical spectrum. J Med Genet 2011;48(10):669–81.PubMedCrossRef
71.
go back to reference Milone M, et al. Novel POLG splice site mutation and optic atrophy. Arch Neurol 2011; 68(6):806–11.PubMedCrossRef Milone M, et al. Novel POLG splice site mutation and optic atrophy. Arch Neurol 2011; 68(6):806–11.PubMedCrossRef
72.
go back to reference Milone M, et al. Mitochondrial disorder with OPA1 mutation lacking optic atrophy. Mitochondrion 2009;9(4):279–81.PubMedCrossRef Milone M, et al. Mitochondrial disorder with OPA1 mutation lacking optic atrophy. Mitochondrion 2009;9(4):279–81.PubMedCrossRef
73.
go back to reference Milone M, et al. Sensory ataxic neuropathy with ophthalmoparesis caused by POLG mutations. Neuromuscul Disord 2008;18(8):626–32.PubMedCrossRef Milone M, et al. Sensory ataxic neuropathy with ophthalmoparesis caused by POLG mutations. Neuromuscul Disord 2008;18(8):626–32.PubMedCrossRef
74.
go back to reference Yarham JW, et al. A comparative analysis approach to determining the pathogenicity of mitochondrial tRNA mutations. Hum Mutat 2011;32(11):1319–25.PubMedCrossRef Yarham JW, et al. A comparative analysis approach to determining the pathogenicity of mitochondrial tRNA mutations. Hum Mutat 2011;32(11):1319–25.PubMedCrossRef
Metadata
Title
Challenges of Bringing Next Generation Sequencing Technologies to Clinical Molecular Diagnostic Laboratories
Author
Lee-Jun C. Wong
Publication date
01-04-2013
Publisher
Springer-Verlag
Published in
Neurotherapeutics / Issue 2/2013
Print ISSN: 1933-7213
Electronic ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-012-0170-5

Other articles of this Issue 2/2013

Neurotherapeutics 2/2013 Go to the issue