Skip to main content
Top
Published in: Tumor Biology 11/2016

01-11-2016 | Original Article

The mitochondrion interfering compound NPC-26 exerts potent anti-pancreatic cancer cell activity in vitro and in vivo

Authors: Yang-Yang Dong, Yi-Huang Zhuang, Wen-Jie Cai, Yan Liu, Wen-Bing Zou

Published in: Tumor Biology | Issue 11/2016

Login to get access

Abstract

The development of novel anti-pancreatic cancer agents is extremely important. Here, we investigated the anti-pancreatic cancer activity by NPC-26, a novel mitochondrion interfering compound. We showed that NPC-26 was anti-proliferative and cytotoxic to human pancreatic cancer cells, possibly via inducing caspase-9-dependent cell apoptosis. Pharmacological inhibition or shRNA-mediated silence of caspase-9 attenuated NPC-26-induced pancreatic cancer cell death and apoptosis. Further, NPC-26 treatment led to mitochondrial permeability transition pore (mPTP) opening in the cancer cells, which was evidenced by mitochondrial depolarization, ANT-1(adenine nucleotide translocator-1)-Cyp-D (cyclophilin-D) association and oxidative phosphorylation disturbance. mPTP blockers (cyclosporin and sanglifehrin A) or shRNA-mediated knockdown of key mPTP components (Cyp-D and ANT-1) dramatically attenuated NPC-26-induced pancreatic cancer cell apoptosis. Importantly, we showed that NPC-26, at a low concentration, potentiated gemcitabine-induced mPTP opening and subsequent pancreatic cancer cell apoptosis. In vivo, NPC-26 intraperitoneal injection significantly suppressed the growth of PANC-1 xenograft tumors in nude mice. Meanwhile, NPC-26 sensitized gemcitabine-mediated anti-pancreatic cancer activity in vivo. In summary, the results of this study suggest that NPC-26, alone or together with gemcitabine, potently inhibits pancreatic cancer cells possibly via disrupting mitochondrion.
Appendix
Available only for authorised users
Literature
1.
go back to reference Costello E, Neoptolemos JP. Pancreatic cancer in 2010: new insights for early intervention and detection. Nat Rev Gastroenterol Hepatol. 2011;8:71–3.CrossRefPubMed Costello E, Neoptolemos JP. Pancreatic cancer in 2010: new insights for early intervention and detection. Nat Rev Gastroenterol Hepatol. 2011;8:71–3.CrossRefPubMed
3.
go back to reference Ducreux M, Boige V, Malka D. Treatment of advanced pancreatic cancer. Semin Oncol. 2007;34:S25–30.CrossRefPubMed Ducreux M, Boige V, Malka D. Treatment of advanced pancreatic cancer. Semin Oncol. 2007;34:S25–30.CrossRefPubMed
4.
go back to reference Oettle H, Post S, Neuhaus P, Gellert K, Langrehr J, Ridwelski K, Schramm H, Fahlke J, Zuelke C, Burkart C, Gutberlet K, Kettner E, Schmalenberg H, Weigang-Koehler K, Bechstein WO, Niedergethmann M, Schmidt-Wolf I, Roll L, Doerken B, Riess H. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA. 2007;297:267–77.CrossRefPubMed Oettle H, Post S, Neuhaus P, Gellert K, Langrehr J, Ridwelski K, Schramm H, Fahlke J, Zuelke C, Burkart C, Gutberlet K, Kettner E, Schmalenberg H, Weigang-Koehler K, Bechstein WO, Niedergethmann M, Schmidt-Wolf I, Roll L, Doerken B, Riess H. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA. 2007;297:267–77.CrossRefPubMed
5.
go back to reference Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, Harris M, Reni M, Dowden S, Laheru D, Bahary N, Ramanathan RK, Tabernero J, Hidalgo M, Goldstein D, Van Cutsem E, Wei X, Iglesias J, Renschler MF. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.CrossRefPubMedPubMedCentral Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, Harris M, Reni M, Dowden S, Laheru D, Bahary N, Ramanathan RK, Tabernero J, Hidalgo M, Goldstein D, Van Cutsem E, Wei X, Iglesias J, Renschler MF. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.CrossRefPubMedPubMedCentral
6.
go back to reference Blaszkowsky L. Treatment of advanced and metastatic pancreatic cancer. Front Biosci. 1998;3:E214–25.CrossRefPubMed Blaszkowsky L. Treatment of advanced and metastatic pancreatic cancer. Front Biosci. 1998;3:E214–25.CrossRefPubMed
7.
go back to reference Yang Y, Karakhanova S, Hartwig W, D’Haese JG, Philippov PP, Werner J, Bazhin AV (2016) Mitochondria and mitochondrial ros in cancer: Novel targets for anticancer therapy. J Cell Physiol Yang Y, Karakhanova S, Hartwig W, D’Haese JG, Philippov PP, Werner J, Bazhin AV (2016) Mitochondria and mitochondrial ros in cancer: Novel targets for anticancer therapy. J Cell Physiol
8.
go back to reference Costantini P, Jacotot E, Decaudin D, Kroemer G. Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst. 2000;92:1042–53.CrossRefPubMed Costantini P, Jacotot E, Decaudin D, Kroemer G. Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst. 2000;92:1042–53.CrossRefPubMed
9.
go back to reference Halestrap AP, McStay GP, Clarke SJ. The permeability transition pore complex: another view. Biochimie. 2002;84:153–66.CrossRefPubMed Halestrap AP, McStay GP, Clarke SJ. The permeability transition pore complex: another view. Biochimie. 2002;84:153–66.CrossRefPubMed
10.
go back to reference Tsujimoto Y, Shimizu S. Role of the mitochondrial membrane permeability transition in cell death. Apoptosis. 2007;12:835–40.CrossRefPubMed Tsujimoto Y, Shimizu S. Role of the mitochondrial membrane permeability transition in cell death. Apoptosis. 2007;12:835–40.CrossRefPubMed
11.
go back to reference Javadov S, Kuznetsov A. Mitochondrial permeability transition and cell death: the role of cyclophilin d. Front Physiol. 2013;4:76.PubMedPubMedCentral Javadov S, Kuznetsov A. Mitochondrial permeability transition and cell death: the role of cyclophilin d. Front Physiol. 2013;4:76.PubMedPubMedCentral
13.
go back to reference Lu JH, Shi ZF, Xu H. The mitochondrial cyclophilin d/p53 complexation mediates doxorubicin-induced non-apoptotic death of a549 lung cancer cells. Mol Cell Biochem. 2014;389:17–24.CrossRefPubMed Lu JH, Shi ZF, Xu H. The mitochondrial cyclophilin d/p53 complexation mediates doxorubicin-induced non-apoptotic death of a549 lung cancer cells. Mol Cell Biochem. 2014;389:17–24.CrossRefPubMed
14.
go back to reference Zhang LY, Wu YL, Gao XH, Guo F. Mitochondrial protein cyclophilin-d-mediated programmed necrosis attributes to berberine-induced cytotoxicity in cultured prostate cancer cells. Biochem Biophys Res Commun. 2014;450:697–703.CrossRefPubMed Zhang LY, Wu YL, Gao XH, Guo F. Mitochondrial protein cyclophilin-d-mediated programmed necrosis attributes to berberine-induced cytotoxicity in cultured prostate cancer cells. Biochem Biophys Res Commun. 2014;450:697–703.CrossRefPubMed
15.
go back to reference Minjie S, Defei H, Zhimin H, Weiding W, Yuhua Z. Targeting pancreatic cancer cells by a novel hydroxamate-based histone deacetylase (hdac) inhibitor st-3595. Tumour Biol. 2015;36:9015–22.CrossRefPubMed Minjie S, Defei H, Zhimin H, Weiding W, Yuhua Z. Targeting pancreatic cancer cells by a novel hydroxamate-based histone deacetylase (hdac) inhibitor st-3595. Tumour Biol. 2015;36:9015–22.CrossRefPubMed
16.
go back to reference Chen MB, Jiang Q, Liu YY, Zhang Y, He BS, Wei MX, JW L, Ji Y, PH L. C6 ceramide dramatically increases vincristine sensitivity both in vivo and in vitro, involving amp-activated protein kinase-p53 signaling. Carcinogenesis. 2015;36:1061–70.CrossRefPubMed Chen MB, Jiang Q, Liu YY, Zhang Y, He BS, Wei MX, JW L, Ji Y, PH L. C6 ceramide dramatically increases vincristine sensitivity both in vivo and in vitro, involving amp-activated protein kinase-p53 signaling. Carcinogenesis. 2015;36:1061–70.CrossRefPubMed
17.
go back to reference Wolpaw AJ, Shimada K, Skouta R, Welsch ME, Akavia UD, Pe'er D, Shaik F, JC B, BR S. Modulatory profiling identifies mechanisms of small molecule-induced cell death. Proc Natl Acad Sci U S A. 2011;108:E771–80.CrossRefPubMedPubMedCentral Wolpaw AJ, Shimada K, Skouta R, Welsch ME, Akavia UD, Pe'er D, Shaik F, JC B, BR S. Modulatory profiling identifies mechanisms of small molecule-induced cell death. Proc Natl Acad Sci U S A. 2011;108:E771–80.CrossRefPubMedPubMedCentral
18.
go back to reference Bu HQ, Liu DL, Wei WT, Chen L, Huang H, Li Y, Cui JH. Oridonin induces apoptosis in sw1990 pancreatic cancer cells via p53- and caspase-dependent induction of p38 mapk. Oncol Rep. 2014;31:975–82.PubMed Bu HQ, Liu DL, Wei WT, Chen L, Huang H, Li Y, Cui JH. Oridonin induces apoptosis in sw1990 pancreatic cancer cells via p53- and caspase-dependent induction of p38 mapk. Oncol Rep. 2014;31:975–82.PubMed
19.
go back to reference Chen B, Xu M, Zhang H, Xu MZ, Wang XJ, Tang QH, Tang JY. The antipancreatic cancer activity of osi-027, a potent and selective inhibitor of mtorc1 and mtorc2. DNA Cell Biol. 2015;34:610–7.CrossRefPubMedPubMedCentral Chen B, Xu M, Zhang H, Xu MZ, Wang XJ, Tang QH, Tang JY. The antipancreatic cancer activity of osi-027, a potent and selective inhibitor of mtorc1 and mtorc2. DNA Cell Biol. 2015;34:610–7.CrossRefPubMedPubMedCentral
20.
go back to reference Min H, Xu M, Chen ZR, Zhou JD, Huang M, Zheng K, Zou XP. Bortezomib induces protective autophagy through amp-activated protein kinase activation in cultured pancreatic and colorectal cancer cells. Cancer Chemother Pharmacol. 2014;74:167–76.CrossRefPubMed Min H, Xu M, Chen ZR, Zhou JD, Huang M, Zheng K, Zou XP. Bortezomib induces protective autophagy through amp-activated protein kinase activation in cultured pancreatic and colorectal cancer cells. Cancer Chemother Pharmacol. 2014;74:167–76.CrossRefPubMed
21.
go back to reference Huo HZ, Wang B, Qin J, Guo SY, Liu WY, Gu Y. Amp-activated protein kinase (ampk)/ulk1-dependent autophagic pathway contributes to c6 ceramide-induced cytotoxic effects in cultured colorectal cancer ht-29 cells. Mol Cell Biochem. 2013;378:171–81.CrossRefPubMed Huo HZ, Wang B, Qin J, Guo SY, Liu WY, Gu Y. Amp-activated protein kinase (ampk)/ulk1-dependent autophagic pathway contributes to c6 ceramide-induced cytotoxic effects in cultured colorectal cancer ht-29 cells. Mol Cell Biochem. 2013;378:171–81.CrossRefPubMed
22.
go back to reference Zhen YF, Wang GD, Zhu LQ, Tan SP, Zhang FY, Zhou XZ, Wang XD. P53 dependent mitochondrial permeability transition pore opening is required for dexamethasone-induced death of osteoblasts. J Cell Physiol. 2014;229:1475–83.CrossRefPubMed Zhen YF, Wang GD, Zhu LQ, Tan SP, Zhang FY, Zhou XZ, Wang XD. P53 dependent mitochondrial permeability transition pore opening is required for dexamethasone-induced death of osteoblasts. J Cell Physiol. 2014;229:1475–83.CrossRefPubMed
23.
go back to reference Chang CC, Liao YS, Lin YL, Chen RM. Nitric oxide protects osteoblasts from oxidative stress-induced apoptotic insults via a mitochondria-dependent mechanism. J Orthop Res. 2006;24:1917–25.CrossRefPubMed Chang CC, Liao YS, Lin YL, Chen RM. Nitric oxide protects osteoblasts from oxidative stress-induced apoptotic insults via a mitochondria-dependent mechanism. J Orthop Res. 2006;24:1917–25.CrossRefPubMed
24.
go back to reference Meeran SM, Katiyar S, Katiyar SK. Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation. Toxicol Appl Pharmacol. 2008;229:33–43.CrossRefPubMed Meeran SM, Katiyar S, Katiyar SK. Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation. Toxicol Appl Pharmacol. 2008;229:33–43.CrossRefPubMed
25.
go back to reference Qiu Y, Yu T, Wang W, Pan K, Shi D, Sun H. Curcumin-induced melanoma cell death is associated with mitochondrial permeability transition pore (mptp) opening. Biochem Biophys Res Commun. 2014;448:15–21.CrossRefPubMed Qiu Y, Yu T, Wang W, Pan K, Shi D, Sun H. Curcumin-induced melanoma cell death is associated with mitochondrial permeability transition pore (mptp) opening. Biochem Biophys Res Commun. 2014;448:15–21.CrossRefPubMed
26.
go back to reference Zhang CL, Wu LJ, Tashiro S, Onodera S, Ikejima T. Oridonin induced a375-s2 cell apoptosis via bax-regulated caspase pathway activation, dependent on the cytochrome c/caspase-9 apoptosome. J Asian Nat Prod Res. 2004;6:127–38.CrossRefPubMed Zhang CL, Wu LJ, Tashiro S, Onodera S, Ikejima T. Oridonin induced a375-s2 cell apoptosis via bax-regulated caspase pathway activation, dependent on the cytochrome c/caspase-9 apoptosome. J Asian Nat Prod Res. 2004;6:127–38.CrossRefPubMed
27.
go back to reference Sullivan PG, Thompson MB, Scheff SW. Cyclosporin a attenuates acute mitochondrial dysfunction following traumatic brain injury. Exp Neurol. 1999;160:226–34.CrossRefPubMed Sullivan PG, Thompson MB, Scheff SW. Cyclosporin a attenuates acute mitochondrial dysfunction following traumatic brain injury. Exp Neurol. 1999;160:226–34.CrossRefPubMed
28.
go back to reference Clarke SJ, McStay GP, Halestrap AP. Sanglifehrin a acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-d at a different site from cyclosporin a. J Biol Chem. 2002;277:34793–9.CrossRefPubMed Clarke SJ, McStay GP, Halestrap AP. Sanglifehrin a acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-d at a different site from cyclosporin a. J Biol Chem. 2002;277:34793–9.CrossRefPubMed
29.
go back to reference Zhou C, Chen Z, Lu X, Wu H, Yang Q, Xu D 2015 Icaritin activates jnk-dependent mptp necrosis pathway in colorectal cancer cells. Tumour Biol Zhou C, Chen Z, Lu X, Wu H, Yang Q, Xu D 2015 Icaritin activates jnk-dependent mptp necrosis pathway in colorectal cancer cells. Tumour Biol
30.
go back to reference Ying L, Chunxia Y, Wei L. Inhibition of ovarian cancer cell growth by a novel tak1 inhibitor lytak1. Cancer Chemother Pharmacol. 2015;76:641–50.CrossRefPubMed Ying L, Chunxia Y, Wei L. Inhibition of ovarian cancer cell growth by a novel tak1 inhibitor lytak1. Cancer Chemother Pharmacol. 2015;76:641–50.CrossRefPubMed
31.
go back to reference Kai S, Lu JH, Hui PP, Zhao H. Pre-clinical evaluation of cinobufotalin as a potential anti-lung cancer agent. Biochem Biophys Res Commun. 2014;452:768–74.CrossRefPubMed Kai S, Lu JH, Hui PP, Zhao H. Pre-clinical evaluation of cinobufotalin as a potential anti-lung cancer agent. Biochem Biophys Res Commun. 2014;452:768–74.CrossRefPubMed
32.
go back to reference Sotgia F, Whitaker-Menezes D, Martinez-Outschoorn UE, Salem AF, Tsirigos A, Lamb R, Sneddon S, Hulit J, Howell A, Lisanti MP. Mitochondria "fuel" breast cancer metabolism: fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells. Cell Cycle. 2012;11:4390–401.CrossRefPubMedPubMedCentral Sotgia F, Whitaker-Menezes D, Martinez-Outschoorn UE, Salem AF, Tsirigos A, Lamb R, Sneddon S, Hulit J, Howell A, Lisanti MP. Mitochondria "fuel" breast cancer metabolism: fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells. Cell Cycle. 2012;11:4390–401.CrossRefPubMedPubMedCentral
33.
go back to reference Shoshan-Barmatz V, Ben-Hail D, Admoni L, Krelin Y, Tripathi SS. The mitochondrial voltage-dependent anion channel 1 in tumor cells. Biochim Biophys Acta. 2015;1848:2547–75.CrossRefPubMed Shoshan-Barmatz V, Ben-Hail D, Admoni L, Krelin Y, Tripathi SS. The mitochondrial voltage-dependent anion channel 1 in tumor cells. Biochim Biophys Acta. 2015;1848:2547–75.CrossRefPubMed
34.
go back to reference Gesto DS, Cerqueira NM, Fernandes PA, Ramos MJ. Gemcitabine: a critical nucleoside for cancer therapy. Curr Med Chem. 2012;19:1076–87.CrossRefPubMed Gesto DS, Cerqueira NM, Fernandes PA, Ramos MJ. Gemcitabine: a critical nucleoside for cancer therapy. Curr Med Chem. 2012;19:1076–87.CrossRefPubMed
35.
go back to reference Plunkett W, Huang P, YZ X, Heinemann V, Grunewald R, Gandhi V. Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin Oncol. 1995;22:3–10.PubMed Plunkett W, Huang P, YZ X, Heinemann V, Grunewald R, Gandhi V. Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin Oncol. 1995;22:3–10.PubMed
36.
go back to reference Chen SH, Li DL, Yang F, Wu Z, Zhao YY, Jiang Y. Gemcitabine-induced pancreatic cancer cell death is associated with mst1/cyclophilin d mitochondrial complexation. Biochimie. 2014;103:71–9.CrossRefPubMed Chen SH, Li DL, Yang F, Wu Z, Zhao YY, Jiang Y. Gemcitabine-induced pancreatic cancer cell death is associated with mst1/cyclophilin d mitochondrial complexation. Biochimie. 2014;103:71–9.CrossRefPubMed
Metadata
Title
The mitochondrion interfering compound NPC-26 exerts potent anti-pancreatic cancer cell activity in vitro and in vivo
Authors
Yang-Yang Dong
Yi-Huang Zhuang
Wen-Jie Cai
Yan Liu
Wen-Bing Zou
Publication date
01-11-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 11/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-5403-5

Other articles of this Issue 11/2016

Tumor Biology 11/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine