Skip to main content
Top
Published in: Tumor Biology 12/2016

01-12-2016 | Original Article

MicroRNA-638 inhibits cell proliferation by targeting suppress PIM1 expression in human osteosarcoma

Authors: Xiao-xu Wang, Jue Liu, Yi-min Tang, Liang Hong, Zhi Zeng, Guang-hua Tan

Published in: Tumor Biology | Issue 12/2016

Login to get access

Abstract

MicroRNAs (miRNAs) are a type of small noncoding RNAs that often play important roles in carcinogenesis, but the carcinogenic mechanism of miRNAs is still unclear. This study will investigate the functions and the mechanism of miR-638 in osteosarcoma (OS). The expression of miR-638 in OS and the DNA copy number of miR-638 were detected by real-time PCR. The effect of miR-638 on cell proliferation was measured by CCK8 assay. Different assays, including bioinformatics algorithms, luciferase report assay, and Western blotting, were used to identify the target gene proviral integration site for Moloney murine leukemia virus 1 (PIM1) of miR-638 in OS. The expression of PIM1 in clinical OS tissues was also validated by immunohistochemical assay. From this research, we found that miR-638 was downregulated in OS tissues compared with corresponding noncancerous tissues (NCTs), and the DNA copy number of miR-638 was lower in OS than in NCTs, which may induce the corresponding downregulation of miR-638 in OS. Ectopic expression of miR-638 inhibited OS cell growth in vitro. Subsequently, we identified that PIM1 is the downstream target gene of miR-638 in OS cells, and silencing PIM1 expression phenocopied the inhibitory effect of miR-638 on OS cell proliferation. Furthermore, we observed that PIM1 was overexpressed in OS tissues, and high expression of PIM1 in OS predicted poor overall survival. In summary, we revealed that miR-638 functions as a tumor suppressor through inhibiting PIM1 expression in OS.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fazi F, Blandino G. MicroRNAs: non coding pleiotropic factors in development, cancer prevention and treatment. Microrna. 2013;2:81.CrossRefPubMed Fazi F, Blandino G. MicroRNAs: non coding pleiotropic factors in development, cancer prevention and treatment. Microrna. 2013;2:81.CrossRefPubMed
2.
go back to reference Wang ZM, WJ D, Piazza GA, Xi Y. MicroRNAs are involved in the self-renewal and differentiation of cancer stem cells. Acta Pharmacol Sin. 2013;34:1374–80.CrossRefPubMedPubMedCentral Wang ZM, WJ D, Piazza GA, Xi Y. MicroRNAs are involved in the self-renewal and differentiation of cancer stem cells. Acta Pharmacol Sin. 2013;34:1374–80.CrossRefPubMedPubMedCentral
3.
go back to reference Formosa A, Markert EK, Lena AM, Italiano D, Finazzi-Agro' E, Levine, AJ, Bernardini, S, Garabadgiu, AV, Melino, G, Candi, E: MicroRNAs, miR-154, miR-299-5p, miR-376a, miR-376c, miR-377, miR-381, miR-487b, miR-485-3p, miR-495 and miR-654-3p, mapped to the 14q32.31 locus, regulate proliferation, apoptosis, migration and invasion in metastatic prostate cancer cells. Oncogene 2014;33:5173–5182. Formosa A, Markert EK, Lena AM, Italiano D, Finazzi-Agro' E, Levine, AJ, Bernardini, S, Garabadgiu, AV, Melino, G, Candi, E: MicroRNAs, miR-154, miR-299-5p, miR-376a, miR-376c, miR-377, miR-381, miR-487b, miR-485-3p, miR-495 and miR-654-3p, mapped to the 14q32.31 locus, regulate proliferation, apoptosis, migration and invasion in metastatic prostate cancer cells. Oncogene 2014;33:5173–5182.
4.
go back to reference Lulla RR, Costa FF, Bischof JM, Chou PM, de F BM, Vanin EF, Soares MB. Identification of differentially expressed MicroRNAs in osteosarcoma. Sarcoma. 2011;2011:732690.CrossRefPubMedPubMedCentral Lulla RR, Costa FF, Bischof JM, Chou PM, de F BM, Vanin EF, Soares MB. Identification of differentially expressed MicroRNAs in osteosarcoma. Sarcoma. 2011;2011:732690.CrossRefPubMedPubMedCentral
5.
go back to reference Miao J, Wu S, Peng Z, Tania M, Zhang C. MicroRNAs in osteosarcoma: diagnostic and therapeutic aspects. Tumour Biol. 2013;34:2093–8.CrossRefPubMed Miao J, Wu S, Peng Z, Tania M, Zhang C. MicroRNAs in osteosarcoma: diagnostic and therapeutic aspects. Tumour Biol. 2013;34:2093–8.CrossRefPubMed
6.
7.
go back to reference Poletajew S, Fus L, Wasiutynski A. Current concepts on pathogenesis and biology of metastatic osteosarcoma tumors. Ortop Traumatol Rehabil. 2011;13:537–45.CrossRefPubMed Poletajew S, Fus L, Wasiutynski A. Current concepts on pathogenesis and biology of metastatic osteosarcoma tumors. Ortop Traumatol Rehabil. 2011;13:537–45.CrossRefPubMed
8.
go back to reference Sun X, Geng X, Zhang J, Zhao H, Liu Y. MiR-155 promotes the growth of osteosarcoma in a HBP1-dependent mechanism. Mol Cell Biochem. 2015;403:139–47.CrossRefPubMed Sun X, Geng X, Zhang J, Zhao H, Liu Y. MiR-155 promotes the growth of osteosarcoma in a HBP1-dependent mechanism. Mol Cell Biochem. 2015;403:139–47.CrossRefPubMed
9.
go back to reference Hu J, Lv G, Zhou S, Zhou Y, Nie B, Duan H, Zhang Y, Yuan X: The downregulation of MiR-182 is associated with the growth and invasion of osteosarcoma cells through the regulation of TIAM1 expression. PLoS One 2015; 10:e121175. Hu J, Lv G, Zhou S, Zhou Y, Nie B, Duan H, Zhang Y, Yuan X: The downregulation of MiR-182 is associated with the growth and invasion of osteosarcoma cells through the regulation of TIAM1 expression. PLoS One 2015; 10:e121175.
10.
go back to reference Salah Z, Arafeh R, Maximov V, Galasso M, Khawaled S, Abou-Sharieha S, Volinia S, Jones KB, Croce CM, Aqeilan RI. MiR-27a and miR-27a* contribute to metastatic properties of osteosarcoma cells. Oncotarget. 2015;6:4920–35.CrossRefPubMedPubMedCentral Salah Z, Arafeh R, Maximov V, Galasso M, Khawaled S, Abou-Sharieha S, Volinia S, Jones KB, Croce CM, Aqeilan RI. MiR-27a and miR-27a* contribute to metastatic properties of osteosarcoma cells. Oncotarget. 2015;6:4920–35.CrossRefPubMedPubMedCentral
11.
go back to reference Han K, Chen X, Bian N, Ma B, Yang T, Cai C, Fan Q, Zhou Y, Zhao TB. Micro RNA profiling identifies MiR-195 suppresses osteosarcoma cell metastasis by targeting CCND1. Oncotarget. 2015;6:8875–89.CrossRefPubMedPubMedCentral Han K, Chen X, Bian N, Ma B, Yang T, Cai C, Fan Q, Zhou Y, Zhao TB. Micro RNA profiling identifies MiR-195 suppresses osteosarcoma cell metastasis by targeting CCND1. Oncotarget. 2015;6:8875–89.CrossRefPubMedPubMedCentral
12.
go back to reference Zheng Z, Ding M, Ni J, Song D, Huang J, Wang J. MiR-142 acts as a tumor suppressor in osteosarcoma cell lines by targeting Rac1. Oncol Rep. 2015;33:1291–9.PubMed Zheng Z, Ding M, Ni J, Song D, Huang J, Wang J. MiR-142 acts as a tumor suppressor in osteosarcoma cell lines by targeting Rac1. Oncol Rep. 2015;33:1291–9.PubMed
13.
go back to reference Pei H, Jin Z, Chen S, Sun X, Yu J, Guo W. MiR-135b promotes proliferation and invasion of osteosarcoma cells via targeting FOXO1. Mol Cell Biochem. 2015;400:245–52.CrossRefPubMed Pei H, Jin Z, Chen S, Sun X, Yu J, Guo W. MiR-135b promotes proliferation and invasion of osteosarcoma cells via targeting FOXO1. Mol Cell Biochem. 2015;400:245–52.CrossRefPubMed
14.
go back to reference Xu M, Jin H, CX X, Sun B, Song ZG, Bi WZ, Wang Y. MiR-382 inhibits osteosarcoma metastasis and relapse by targeting Y box-binding protein 1. Mol Ther. 2015;23:89–98.CrossRefPubMed Xu M, Jin H, CX X, Sun B, Song ZG, Bi WZ, Wang Y. MiR-382 inhibits osteosarcoma metastasis and relapse by targeting Y box-binding protein 1. Mol Ther. 2015;23:89–98.CrossRefPubMed
15.
go back to reference Chen L, Wang Q, Wang GD, Wang HS, Huang Y, Liu XM, Cai XH. MiR-16 inhibits cell proliferation by targeting IGF1R and the Raf1-MEK1/2-ERK1/2 pathway in osteosarcoma. FEBS Lett. 2013;587:1366–72.CrossRefPubMed Chen L, Wang Q, Wang GD, Wang HS, Huang Y, Liu XM, Cai XH. MiR-16 inhibits cell proliferation by targeting IGF1R and the Raf1-MEK1/2-ERK1/2 pathway in osteosarcoma. FEBS Lett. 2013;587:1366–72.CrossRefPubMed
16.
go back to reference He C, Xiong J, Xu X, Lu W, Liu L, Xiao D, Wang D. Functional elucidation of MiR-34 in osteosarcoma cells and primary tumor samples. Biochem Biophys Res Commun. 2009;388:35–40.CrossRefPubMed He C, Xiong J, Xu X, Lu W, Liu L, Xiao D, Wang D. Functional elucidation of MiR-34 in osteosarcoma cells and primary tumor samples. Biochem Biophys Res Commun. 2009;388:35–40.CrossRefPubMed
17.
go back to reference Li D, Wang Q, Liu C, Duan H, Zeng X, Zhang B, Li X, Zhao J, Tang S, Li Z, Xing X, Yang P, Chen L, Zeng J, Zhu X, Zhang S, Zhang Z, Ma L, He Z, Wang E, Xiao Y, Zheng Y, Chen W. Aberrant expression of miR-638 contributes to benzo(a)pyrene-induced human cell transformation. Toxicol Sci. 2012;125:382–91.CrossRefPubMed Li D, Wang Q, Liu C, Duan H, Zeng X, Zhang B, Li X, Zhao J, Tang S, Li Z, Xing X, Yang P, Chen L, Zeng J, Zhu X, Zhang S, Zhang Z, Ma L, He Z, Wang E, Xiao Y, Zheng Y, Chen W. Aberrant expression of miR-638 contributes to benzo(a)pyrene-induced human cell transformation. Toxicol Sci. 2012;125:382–91.CrossRefPubMed
18.
go back to reference Wang F, Lou JF, Cao Y, Shi XH, Wang P, Xu J, Xie EF, Xu T, Sun RH, Rao JY, Huang PW, Pan SY, Wang H: MiR-638 is a new biomarker for outcome prediction of non-small cell lung cancer patients receiving chemotherapy. Exp Mol Med 2015; 47:e162. Wang F, Lou JF, Cao Y, Shi XH, Wang P, Xu J, Xie EF, Xu T, Sun RH, Rao JY, Huang PW, Pan SY, Wang H: MiR-638 is a new biomarker for outcome prediction of non-small cell lung cancer patients receiving chemotherapy. Exp Mol Med 2015; 47:e162.
19.
go back to reference Bhattacharya A, Schmitz U, Raatz Y, Schonherr M, Kottek T, Schauer M, Franz S, Saalbach A, Anderegg U, Wolkenhauer O, Schadendorf D, Simon JC, Magin T, Vera J, Kunz M. MiR-638 promotes melanoma metastasis and protects melanoma cells from apoptosis and autophagy. Oncotarget. 2015;6:2966–80.CrossRefPubMed Bhattacharya A, Schmitz U, Raatz Y, Schonherr M, Kottek T, Schauer M, Franz S, Saalbach A, Anderegg U, Wolkenhauer O, Schadendorf D, Simon JC, Magin T, Vera J, Kunz M. MiR-638 promotes melanoma metastasis and protects melanoma cells from apoptosis and autophagy. Oncotarget. 2015;6:2966–80.CrossRefPubMed
20.
go back to reference Tan X, Peng J, Fu Y, An S, Rezaei K, Tabbara S, Teal CB, Man YG, Brem RF, Fu SW. MiR-638 mediated regulation of BRCA1 affects DNA repair and sensitivity to UV and cisplatin in triple-negative breast cancer. Breast Cancer Res. 2014;16:–435. Tan X, Peng J, Fu Y, An S, Rezaei K, Tabbara S, Teal CB, Man YG, Brem RF, Fu SW. MiR-638 mediated regulation of BRCA1 affects DNA repair and sensitivity to UV and cisplatin in triple-negative breast cancer. Breast Cancer Res. 2014;16:–435.
21.
go back to reference Ma K, Pan X, Fan P, He Y, Gu J, Wang W, Zhang T, Li Z, Luo X. Loss of miR-638 in vitro promotes cell invasion and a mesenchymal-like transition by influencing SOX2 expression in colorectal carcinoma cells. Mol Cancer. 2014;13:118.CrossRefPubMedPubMedCentral Ma K, Pan X, Fan P, He Y, Gu J, Wang W, Zhang T, Li Z, Luo X. Loss of miR-638 in vitro promotes cell invasion and a mesenchymal-like transition by influencing SOX2 expression in colorectal carcinoma cells. Mol Cancer. 2014;13:118.CrossRefPubMedPubMedCentral
22.
go back to reference Xia Y, Wu Y, Liu B, Wang P, Chen Y. Downregulation of miR-638 promotes invasion and proliferation by regulating SOX2 and induces EMT in NSCLC. FEBS Lett. 2014;588:2238–45.CrossRefPubMed Xia Y, Wu Y, Liu B, Wang P, Chen Y. Downregulation of miR-638 promotes invasion and proliferation by regulating SOX2 and induces EMT in NSCLC. FEBS Lett. 2014;588:2238–45.CrossRefPubMed
23.
go back to reference Zhao LY, Yao Y, Han J, Yang J, Wang XF, Tong DD, Song TS, Huang C, Shao Y. MiR-638 suppresses cell proliferation in gastric cancer by targeting Sp2. Dig Dis Sci. 2014;59:1743–53.CrossRefPubMed Zhao LY, Yao Y, Han J, Yang J, Wang XF, Tong DD, Song TS, Huang C, Shao Y. MiR-638 suppresses cell proliferation in gastric cancer by targeting Sp2. Dig Dis Sci. 2014;59:1743–53.CrossRefPubMed
24.
go back to reference Lin Y, Li D, Liang Q, Liu S, Zuo X, Li L, Sun X, Li W, Guo M, Huang Z. MiR-638 regulates differentiation and proliferation in leukemic cells by targeting cyclin-dependent kinase 2. J Biol Chem. 2015;290:1818–28.CrossRefPubMed Lin Y, Li D, Liang Q, Liu S, Zuo X, Li L, Sun X, Li W, Guo M, Huang Z. MiR-638 regulates differentiation and proliferation in leukemic cells by targeting cyclin-dependent kinase 2. J Biol Chem. 2015;290:1818–28.CrossRefPubMed
25.
go back to reference Dweep H, Georgiou GD, Gretz N, Deltas C, Voskarides K, Felekkis K: CNVs-microRNAs interactions demonstrate unique characteristics in the human genome. An interspecies in silico analysis. PLoS One 2013; 8:e81204. Dweep H, Georgiou GD, Gretz N, Deltas C, Voskarides K, Felekkis K: CNVs-microRNAs interactions demonstrate unique characteristics in the human genome. An interspecies in silico analysis. PLoS One 2013; 8:e81204.
26.
go back to reference Warnica W, Merico D, Costain G, Alfred SE, Wei J, Marshall CR, Scherer SW, Bassett AS. Copy number variable microRNAs in schizophrenia and their neurodevelopmental gene targets. Biol Psychiatry. 2015;77:158–66.CrossRefPubMed Warnica W, Merico D, Costain G, Alfred SE, Wei J, Marshall CR, Scherer SW, Bassett AS. Copy number variable microRNAs in schizophrenia and their neurodevelopmental gene targets. Biol Psychiatry. 2015;77:158–66.CrossRefPubMed
27.
go back to reference Holder SL, Abdulkadir SA. PIM1 kinase as a target in prostate cancer: roles in tumorigenesis, castration resistance, and docetaxel resistance. Curr Cancer Drug Targets. 2014;14:105–14.CrossRefPubMed Holder SL, Abdulkadir SA. PIM1 kinase as a target in prostate cancer: roles in tumorigenesis, castration resistance, and docetaxel resistance. Curr Cancer Drug Targets. 2014;14:105–14.CrossRefPubMed
28.
go back to reference Merkel AL, Meggers E, Ocker M. PIM1 kinase as a target for cancer therapy. Expert Opin Investig Drugs. 2012;21:425–36.CrossRefPubMed Merkel AL, Meggers E, Ocker M. PIM1 kinase as a target for cancer therapy. Expert Opin Investig Drugs. 2012;21:425–36.CrossRefPubMed
29.
go back to reference Kim W, Youn H, Seong KM, Yang HJ, Yun YJ, Kwon T, Kim YH, Lee JY, Jin YW, Youn B. PIM1-activated PRAS40 regulates radioresistance in non-small cell lung cancer cells through interplay with FOXO3a, 14-3-3 and protein phosphatases. Radiat Res. 2011;176:539–52.CrossRefPubMed Kim W, Youn H, Seong KM, Yang HJ, Yun YJ, Kwon T, Kim YH, Lee JY, Jin YW, Youn B. PIM1-activated PRAS40 regulates radioresistance in non-small cell lung cancer cells through interplay with FOXO3a, 14-3-3 and protein phosphatases. Radiat Res. 2011;176:539–52.CrossRefPubMed
30.
go back to reference Yan B, Yau EX, Samanta S, Ong CW, Yong KJ, Ng LK, Bhattacharya B, Lim KH, Soong R, Yeoh KG, Deng N, Tan P, Lam Y, Salto-Tellez M. Clinical and therapeutic relevance of PIM1 kinase in gastric cancer. Gastric Cancer. 2012;15:188–97.CrossRefPubMed Yan B, Yau EX, Samanta S, Ong CW, Yong KJ, Ng LK, Bhattacharya B, Lim KH, Soong R, Yeoh KG, Deng N, Tan P, Lam Y, Salto-Tellez M. Clinical and therapeutic relevance of PIM1 kinase in gastric cancer. Gastric Cancer. 2012;15:188–97.CrossRefPubMed
31.
go back to reference Kim W, Youn H, Kwon T, Kang J, Kim E, Son B, Yang HJ, Jung Y, Youn B. PIM1 kinase inhibitors induce radiosensitization in non-small cell lung cancer cells. Pharmacol Res. 2013;70:90–101.CrossRefPubMed Kim W, Youn H, Kwon T, Kang J, Kim E, Son B, Yang HJ, Jung Y, Youn B. PIM1 kinase inhibitors induce radiosensitization in non-small cell lung cancer cells. Pharmacol Res. 2013;70:90–101.CrossRefPubMed
32.
go back to reference Zemskova M, Sahakian E, Bashkirova S, Lilly M. The PIM1 kinase is a critical component of a survival pathway activated by docetaxel and promotes survival of docetaxel-treated prostate cancer cells. J Biol Chem. 2008;283:20635–44.CrossRefPubMedPubMedCentral Zemskova M, Sahakian E, Bashkirova S, Lilly M. The PIM1 kinase is a critical component of a survival pathway activated by docetaxel and promotes survival of docetaxel-treated prostate cancer cells. J Biol Chem. 2008;283:20635–44.CrossRefPubMedPubMedCentral
33.
go back to reference Li J, Loveland BE, Xing PX. Anti-Pim-1 mAb inhibits activation and proliferation of T lymphocytes and prolongs mouse skin allograft survival. Cell Immunol. 2011;272:87–93.CrossRefPubMed Li J, Loveland BE, Xing PX. Anti-Pim-1 mAb inhibits activation and proliferation of T lymphocytes and prolongs mouse skin allograft survival. Cell Immunol. 2011;272:87–93.CrossRefPubMed
34.
go back to reference Aho TL, Sandholm J, Peltola KJ, Mankonen HP, Lilly M, Koskinen PJ. Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEBS Lett. 2004;571:43–9.CrossRefPubMed Aho TL, Sandholm J, Peltola KJ, Mankonen HP, Lilly M, Koskinen PJ. Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEBS Lett. 2004;571:43–9.CrossRefPubMed
35.
go back to reference Santio NM, Eerola SK, Paatero I, Yli-Kauhaluoma J, Anizon F, Moreau P, Tuomela J, Harkonen P, Koskinen PJ: Pim kinases promote migration and metastatic growth of prostate cancer xenografts. PLoS One 2015; 10:e130340. Santio NM, Eerola SK, Paatero I, Yli-Kauhaluoma J, Anizon F, Moreau P, Tuomela J, Harkonen P, Koskinen PJ: Pim kinases promote migration and metastatic growth of prostate cancer xenografts. PLoS One 2015; 10:e130340.
36.
go back to reference Xu J, Zhang T, Wang T, You L, Zhao Y. PIM kinases: an overview in tumors and recent advances in pancreatic cancer. Future Oncol. 2014;10:865–76.CrossRefPubMed Xu J, Zhang T, Wang T, You L, Zhao Y. PIM kinases: an overview in tumors and recent advances in pancreatic cancer. Future Oncol. 2014;10:865–76.CrossRefPubMed
37.
go back to reference Hsi ED, Jung SH, Lai R, Johnson JL, Cook JR, Jones D, Devos S, Cheson BD, Damon LE, Said J. Ki67 and PIM1 expression predict outcome in mantle cell lymphoma treated with high dose therapy, stem cell transplantation and rituximab: a Cancer and Leukemia Group B 59909 correlative science study. Leuk Lymphoma. 2008;49:2081–90.CrossRefPubMedPubMedCentral Hsi ED, Jung SH, Lai R, Johnson JL, Cook JR, Jones D, Devos S, Cheson BD, Damon LE, Said J. Ki67 and PIM1 expression predict outcome in mantle cell lymphoma treated with high dose therapy, stem cell transplantation and rituximab: a Cancer and Leukemia Group B 59909 correlative science study. Leuk Lymphoma. 2008;49:2081–90.CrossRefPubMedPubMedCentral
38.
go back to reference Wang J, Anderson PD, Luo W, Gius D, Roh M, Abdulkadir SA. Pim1 kinase is required to maintain tumorigenicity in MYC-expressing prostate cancer cells. Oncogene. 2012;31:1794–803.CrossRefPubMed Wang J, Anderson PD, Luo W, Gius D, Roh M, Abdulkadir SA. Pim1 kinase is required to maintain tumorigenicity in MYC-expressing prostate cancer cells. Oncogene. 2012;31:1794–803.CrossRefPubMed
39.
go back to reference Shah N, Pang B, Yeoh KG, Thorn S, Chen CS, Lilly MB, Salto-Tellez M. Potential roles for the PIM1 kinase in human cancer—a molecular and therapeutic appraisal. Eur J Cancer. 2008;44:2144–51.CrossRefPubMed Shah N, Pang B, Yeoh KG, Thorn S, Chen CS, Lilly MB, Salto-Tellez M. Potential roles for the PIM1 kinase in human cancer—a molecular and therapeutic appraisal. Eur J Cancer. 2008;44:2144–51.CrossRefPubMed
Metadata
Title
MicroRNA-638 inhibits cell proliferation by targeting suppress PIM1 expression in human osteosarcoma
Authors
Xiao-xu Wang
Jue Liu
Yi-min Tang
Liang Hong
Zhi Zeng
Guang-hua Tan
Publication date
01-12-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 12/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-5379-1

Other articles of this Issue 12/2016

Tumor Biology 12/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine