Skip to main content
Top
Published in: Tumor Biology 11/2016

01-11-2016 | Original Article

Impact of point mutation P29S in RAC1 on tumorigenesis

Authors: Vidya Rajendran, Chandrasekhar Gopalakrishnan, Rituraj Purohit

Published in: Tumor Biology | Issue 11/2016

Login to get access

Abstract

A point mutation (P29S) in the RAS-related C3 botulinum toxin substrate 1 (RAC1) was considered to be a trigger for melanoma, a form of skin cancer with highest mortality rate. In this study, we have investigated the pathogenic role of P29S based on the conformational behavior of RAC1 protein toward guanosine triphosphate (GTP). Molecular interaction, molecular dynamics trajectory analysis (RMSD, RMSF, Rg, SASA, DSSP, and PCA), and shape analysis of binding pocket were performed to analyze the interaction energy and the dynamic behavior of native and mutant RAC1 at the atomic level. Due to this mutation, the RAC1 switch I region acquired more flexibility and, to compensate it, the switch II region becomes rigid in their conformational space, as a result of which the interaction energy of the protein for GTP increased. The overall results strongly implied that the changes in atomic conformation of the switch I and II regions in mutant RAC1 protein were a significant reason for its malignant transformation and tumorigenesis. We raised the opportunity for researchers to design possible therapeutic molecule by considering our findings.
Literature
1.
go back to reference Davis MJ, Ha BH, Holman EC, Halaban R, Schlessinger J, et al. RAC1P29S is a spontaneously activating cancer-associated GTPase. Proc Natl Acad Sci U S A. 2013;110:912–7.CrossRefPubMedPubMedCentral Davis MJ, Ha BH, Holman EC, Halaban R, Schlessinger J, et al. RAC1P29S is a spontaneously activating cancer-associated GTPase. Proc Natl Acad Sci U S A. 2013;110:912–7.CrossRefPubMedPubMedCentral
2.
go back to reference Whitehead IP, Campbell S, Rossman KL, Der CJ. Dbl family proteins. Biochim Biophys Acta. 1997;1332(1):F1–F23.PubMed Whitehead IP, Campbell S, Rossman KL, Der CJ. Dbl family proteins. Biochim Biophys Acta. 1997;1332(1):F1–F23.PubMed
3.
5.
go back to reference D’Souza-Schorey C, Boshans RL, McDonough M, Stahl PD, et al. A role for POR1, a Rac1-interacting protein, in ARF6-mediated cytoskeletal rearrangements. EMBO J. 1997;16:5445–54.CrossRefPubMedPubMedCentral D’Souza-Schorey C, Boshans RL, McDonough M, Stahl PD, et al. A role for POR1, a Rac1-interacting protein, in ARF6-mediated cytoskeletal rearrangements. EMBO J. 1997;16:5445–54.CrossRefPubMedPubMedCentral
6.
go back to reference Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6:1122–8.CrossRefPubMed Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6:1122–8.CrossRefPubMed
7.
go back to reference Cheng G, Diebold BA, Hughes Y, Lambeth JD. Nox1-dependent reactive oxygen generation is regulated by Rac1. J Biol Chem. 2006;281:17718–26.CrossRefPubMed Cheng G, Diebold BA, Hughes Y, Lambeth JD. Nox1-dependent reactive oxygen generation is regulated by Rac1. J Biol Chem. 2006;281:17718–26.CrossRefPubMed
8.
go back to reference Utsugi M, Dobashi K, Ishizuka T, Kawata T, Hisada T, et al. Rac1 negatively regulates lipopolysaccharideinduced IL-23 p19 expression in human macrophages and dendritic cells and NF-kappaB p65 trans activation plays a novel role. J Immunol. 2006;177:4550–7.CrossRefPubMed Utsugi M, Dobashi K, Ishizuka T, Kawata T, Hisada T, et al. Rac1 negatively regulates lipopolysaccharideinduced IL-23 p19 expression in human macrophages and dendritic cells and NF-kappaB p65 trans activation plays a novel role. J Immunol. 2006;177:4550–7.CrossRefPubMed
9.
go back to reference Li A, Ma Y, Yu X, Mort RL, Lindsay C, Stevenson D, et al. Rac1 drives melanoblast organization during mouse development by orchestrating pseudopod-driven motility and cell-cycle progression. Dev Cell. 2011;21:722–34.CrossRefPubMedPubMedCentral Li A, Ma Y, Yu X, Mort RL, Lindsay C, Stevenson D, et al. Rac1 drives melanoblast organization during mouse development by orchestrating pseudopod-driven motility and cell-cycle progression. Dev Cell. 2011;21:722–34.CrossRefPubMedPubMedCentral
10.
go back to reference Bustelo XR, Sauzeau V, Berenjeno IM. GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. BioEssays. 2007;29(4):356–70.CrossRefPubMedPubMedCentral Bustelo XR, Sauzeau V, Berenjeno IM. GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. BioEssays. 2007;29(4):356–70.CrossRefPubMedPubMedCentral
11.
go back to reference Valencia A, Chardin P, Wittinghofer A, Sander C. The Ras protein family: evolutionary tree and role of conserved amino acids. Biochemistry. 1991;30:4637–48.CrossRefPubMed Valencia A, Chardin P, Wittinghofer A, Sander C. The Ras protein family: evolutionary tree and role of conserved amino acids. Biochemistry. 1991;30:4637–48.CrossRefPubMed
12.
go back to reference Hakoshima T, Shimizu T, Maesaki R. Structural basis of the Rho GTPase signaling. J Biochem. 2003;134:327–31.CrossRefPubMed Hakoshima T, Shimizu T, Maesaki R. Structural basis of the Rho GTPase signaling. J Biochem. 2003;134:327–31.CrossRefPubMed
13.
14.
15.
go back to reference Kumar A, Rajendran V, Sethumadhavan R, Shukla P, Tiwari S. Computational SNP analysis: current approaches and future prospects. Cell Biochem Biophys. 2013;68(2):233–9.CrossRef Kumar A, Rajendran V, Sethumadhavan R, Shukla P, Tiwari S. Computational SNP analysis: current approaches and future prospects. Cell Biochem Biophys. 2013;68(2):233–9.CrossRef
16.
go back to reference Kumar A, Rajendran V, Sethumadhavan R, Purohit R. Molecular dynamic simulation reveals damaging impact of RAC1 F28L mutation in the switch I region. PLoS One. 2013;8(10):e77453.CrossRefPubMedPubMedCentral Kumar A, Rajendran V, Sethumadhavan R, Purohit R. Molecular dynamic simulation reveals damaging impact of RAC1 F28L mutation in the switch I region. PLoS One. 2013;8(10):e77453.CrossRefPubMedPubMedCentral
17.
18.
go back to reference Porto WF, Franco OL, Alencar SA. Computational analyses and prediction of guanylin deleterious SNPs. Peptides. 2015;69:92–102.CrossRefPubMed Porto WF, Franco OL, Alencar SA. Computational analyses and prediction of guanylin deleterious SNPs. Peptides. 2015;69:92–102.CrossRefPubMed
19.
go back to reference Liu M, Wang L, Sun X, Zhao X. Investigating the impact of Asp181 point mutations on interactions between PTP1B and phosphotyrosine substrate. Sci Rep. 2014;4:5095.PubMedPubMedCentral Liu M, Wang L, Sun X, Zhao X. Investigating the impact of Asp181 point mutations on interactions between PTP1B and phosphotyrosine substrate. Sci Rep. 2014;4:5095.PubMedPubMedCentral
20.
go back to reference Padhi AK, Jayaram B, Gomes J. Prediction of functional loss of human angiogenin mutants associated with ALS by molecular dynamics simulations. Sci Rep. 2013;3:1225.CrossRefPubMedPubMedCentral Padhi AK, Jayaram B, Gomes J. Prediction of functional loss of human angiogenin mutants associated with ALS by molecular dynamics simulations. Sci Rep. 2013;3:1225.CrossRefPubMedPubMedCentral
21.
go back to reference Purohit R. Role of ELA region in auto-activation of mutant KIT receptor: a molecular dynamics simulation insight. J Biomol Struct Dyn. 2014;32(7):1033–46.CrossRefPubMed Purohit R. Role of ELA region in auto-activation of mutant KIT receptor: a molecular dynamics simulation insight. J Biomol Struct Dyn. 2014;32(7):1033–46.CrossRefPubMed
22.
go back to reference Jia M, Yang B, Li Z, Shen H, Song X, Gu W. Computational analysis of functional single nucleotide polymorphisms associated with the CYP11B2 gene. PLoS One. 2014;9(8):e104311.CrossRefPubMedPubMedCentral Jia M, Yang B, Li Z, Shen H, Song X, Gu W. Computational analysis of functional single nucleotide polymorphisms associated with the CYP11B2 gene. PLoS One. 2014;9(8):e104311.CrossRefPubMedPubMedCentral
23.
go back to reference Rajendran V, Purohit R, Sethumadhavan R. In silico investigation of molecular mechanism of laminopathy caused by a point mutation (R482W) in lamin A/C protein. Amino Acids. 2012;43(2):603–15.CrossRefPubMed Rajendran V, Purohit R, Sethumadhavan R. In silico investigation of molecular mechanism of laminopathy caused by a point mutation (R482W) in lamin A/C protein. Amino Acids. 2012;43(2):603–15.CrossRefPubMed
24.
go back to reference Chitrala KN, Yeguvapalli S. Prediction and analysis of ligands against estrogen related receptor alpha. Asian Pac J Cancer Prev. 2013;14(4):2371–5.CrossRefPubMed Chitrala KN, Yeguvapalli S. Prediction and analysis of ligands against estrogen related receptor alpha. Asian Pac J Cancer Prev. 2013;14(4):2371–5.CrossRefPubMed
25.
go back to reference Kamaraj B, Rajendran V, Sethumadhavan R, Kumar CV, Purohit R. Mutational analysis of FUS gene and its structural and functional role in amyotrophic lateral sclerosis 6. J Biomol Struct Dyn. 2015;33(4):834–44.CrossRefPubMed Kamaraj B, Rajendran V, Sethumadhavan R, Kumar CV, Purohit R. Mutational analysis of FUS gene and its structural and functional role in amyotrophic lateral sclerosis 6. J Biomol Struct Dyn. 2015;33(4):834–44.CrossRefPubMed
26.
go back to reference Rajendran V. Structural analysis of oncogenic mutation of isocitrate dehydrogenase. Mol BioSyst. 2016;12(7):2276–87.CrossRefPubMed Rajendran V. Structural analysis of oncogenic mutation of isocitrate dehydrogenase. Mol BioSyst. 2016;12(7):2276–87.CrossRefPubMed
27.
go back to reference Rajendran V, Sethumadhavan R. Drug resistance mechanism of PncA in Mycobacterium tuberculosis. J Biomol Struct Dyn. 2014;32(2):209–21.CrossRefPubMed Rajendran V, Sethumadhavan R. Drug resistance mechanism of PncA in Mycobacterium tuberculosis. J Biomol Struct Dyn. 2014;32(2):209–21.CrossRefPubMed
29.
go back to reference Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91.CrossRefPubMedPubMedCentral Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91.CrossRefPubMedPubMedCentral
30.
go back to reference Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: algorithms for highly efficient, loadbalanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4:435–47.CrossRefPubMed Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: algorithms for highly efficient, loadbalanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4:435–47.CrossRefPubMed
31.
go back to reference Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26:1701–18.CrossRef Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26:1701–18.CrossRef
32.
go back to reference Berendsen HJC, Postma JPM, Gunsteren WFV, Hermans J. Interaction models for water in relation to protein hydration. Intermolecular Forces. The Jerusalem Symposia on Quantum Chemistry and Biochemistry. 1981; 14:331–42. Berendsen HJC, Postma JPM, Gunsteren WFV, Hermans J. Interaction models for water in relation to protein hydration. Intermolecular Forces. The Jerusalem Symposia on Quantum Chemistry and Biochemistry. 1981; 14:331–42.
33.
go back to reference Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;8:3684–90.CrossRef Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;8:3684–90.CrossRef
34.
go back to reference Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. J Chem Phys. 1995;103:8577–93.CrossRef Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. J Chem Phys. 1995;103:8577–93.CrossRef
35.
go back to reference Amadei A, Linssen AB, Berendsen HJ. Essential dynamics of proteins. Proteins Struct Funct Bioinf. 1994;17:412–25.CrossRef Amadei A, Linssen AB, Berendsen HJ. Essential dynamics of proteins. Proteins Struct Funct Bioinf. 1994;17:412–25.CrossRef
36.
go back to reference Coleman RG, Sharp KA. Travel depth, a new shape descriptor for macromolecules: application to ligand binding. J Mol Biol. 2006;362:441–58.CrossRefPubMed Coleman RG, Sharp KA. Travel depth, a new shape descriptor for macromolecules: application to ligand binding. J Mol Biol. 2006;362:441–58.CrossRefPubMed
37.
go back to reference Nayal M, Honig B. On the nature of cavities on protein surfaces: application to the identification of drug binding sites. Proteins Struct Funct Bioformat. 2006;63:892–906.CrossRef Nayal M, Honig B. On the nature of cavities on protein surfaces: application to the identification of drug binding sites. Proteins Struct Funct Bioformat. 2006;63:892–906.CrossRef
38.
go back to reference Coleman RG, Burr MA, Sourvaine DL, Cheng AC. An intuitive approach to measuring protein surface curvature. Proteins Struct Funct Bioformat. 2005;61:1068–74.CrossRef Coleman RG, Burr MA, Sourvaine DL, Cheng AC. An intuitive approach to measuring protein surface curvature. Proteins Struct Funct Bioformat. 2005;61:1068–74.CrossRef
39.
go back to reference Agarwal PK, Edelsbrunner H, Harer J, Wang Y. Extreme elevation on a 2-manifold. Symp Comp Geo. 2004;20:357–65. Agarwal PK, Edelsbrunner H, Harer J, Wang Y. Extreme elevation on a 2-manifold. Symp Comp Geo. 2004;20:357–65.
40.
go back to reference Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 2006;34:116–8.CrossRef Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 2006;34:116–8.CrossRef
Metadata
Title
Impact of point mutation P29S in RAC1 on tumorigenesis
Authors
Vidya Rajendran
Chandrasekhar Gopalakrishnan
Rituraj Purohit
Publication date
01-11-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 11/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-5329-y

Other articles of this Issue 11/2016

Tumor Biology 11/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine