Skip to main content
Top
Published in: Tumor Biology 8/2016

01-08-2016 | Original Article

Hyperthermotherapy enhances antitumor effect of 5-aminolevulinic acid-mediated sonodynamic therapy with activation of caspase-dependent apoptotic pathway in human glioma

Authors: Donghui Ju, Fumio Yamaguchi, Guangzhi Zhan, Tadashi Higuchi, Takayuki Asakura, Akio Morita, Hideo Orimo, Shaoshan Hu

Published in: Tumor Biology | Issue 8/2016

Login to get access

Abstract

Sonodynamic therapy (SDT) has shown great potential as an approach for cancer treatment, and hyperthermotherapy (HT) is also a promising cancer therapy. Here, we investigate whether HT could improve the efficacy of SDT and to make a preliminary exploration on potential mechanism. Xenograft tumor was established in nude mice model, and SNB19 and U87MG glioma cell lines were utilized for in vitro experiment. Alamar blue assay was performed to assess cell viability. Optical microscope was used to characterize the morphology changes of the glioma cells induced by SDT and HT treatments. Apoptotic rate, mitochondrial membrane potential (MMP), and intracellular production of reactive oxygen species (ROS) were examined by flow cytometer. The cell apoptosis of tumor tissues were detected by TUNEL assay. Furthermore, the expression of apoptosis-related proteins was detected with Western blot in vitro and immunohistochemistry in vivo. SDT plus HT group could significantly reduce the cell viability with circular-cell morphological change, compared with SDT group, and cell viability was decreased depending on raise of 5-ALA concentration, ultrasound exposure time, and temperature. The results also indicate that HT increased a conspicuous apoptosis, ROS production, and a remarkable loss in MMP induced by 5-ALA-SDT in vitro. Meanwhile, our data also demonstrated that the combined treatment could significantly induce apoptosis and delay tumor growth in vivo. Furthermore, in both in vitro and in vivo experiments, SDT plus HT group expressed significantly higher protein levels of Bax and cleaved caspase-3, 8, and 9 compared to SDT, HT, and control groups and significantly lower protein level of bcl-2 than the other three groups, while the expression of these proteins was unchanged between HT and control groups. HT may provide an important promotion on 5-ALA-SDT and further propose that SDT in combination with HT is a new potential application for the treatment of human glioma.
Literature
1.
go back to reference Alifieris C, Trafalis DT. Glioblastoma multiforme: pathogenesis and treatment. Pharmacol Ther. 2015;152:63–82.CrossRefPubMed Alifieris C, Trafalis DT. Glioblastoma multiforme: pathogenesis and treatment. Pharmacol Ther. 2015;152:63–82.CrossRefPubMed
5.
go back to reference Juratli TA, Schackert G, Krex D. Current status of local therapy in malignant gliomas—a clinical review of three selected approaches. Pharmacol Ther. 2013;139(3):341–58.CrossRefPubMed Juratli TA, Schackert G, Krex D. Current status of local therapy in malignant gliomas—a clinical review of three selected approaches. Pharmacol Ther. 2013;139(3):341–58.CrossRefPubMed
6.
go back to reference Arrillaga-Romany I, Reardon DA, Wen PY. Current status of antiangiogenic therapies for glioblastomas. Expert Opin Investig Drugs. 2014;23(2):199–210.CrossRefPubMed Arrillaga-Romany I, Reardon DA, Wen PY. Current status of antiangiogenic therapies for glioblastomas. Expert Opin Investig Drugs. 2014;23(2):199–210.CrossRefPubMed
7.
go back to reference Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.CrossRefPubMed Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.CrossRefPubMed
8.
go back to reference Falk MH, Issels RD. Hyperthermia in oncology. Int J Hyperth. 2001;17(1):1–18.CrossRef Falk MH, Issels RD. Hyperthermia in oncology. Int J Hyperth. 2001;17(1):1–18.CrossRef
9.
go back to reference Yi GQ, Gu B, Chen LK. The safety and efficacy of magnetic nano-iron hyperthermia therapy on rat brain glioma. Tumor Biol. 2014;35(3):2445–9.CrossRef Yi GQ, Gu B, Chen LK. The safety and efficacy of magnetic nano-iron hyperthermia therapy on rat brain glioma. Tumor Biol. 2014;35(3):2445–9.CrossRef
11.
go back to reference Toraya-Brown S, Fiering S. Local tumor hyperthermia as immunotherapy for metastatic cancer. Int J Hyperth. 2014;30(8):531–9.CrossRef Toraya-Brown S, Fiering S. Local tumor hyperthermia as immunotherapy for metastatic cancer. Int J Hyperth. 2014;30(8):531–9.CrossRef
12.
go back to reference Müller S. Magnetic fluid hyperthermia therapy for malignant brain tumors—an ethical discussion. Nanomedicine. 2009;5(4):387–93.CrossRefPubMed Müller S. Magnetic fluid hyperthermia therapy for malignant brain tumors—an ethical discussion. Nanomedicine. 2009;5(4):387–93.CrossRefPubMed
14.
go back to reference Rao W, Deng ZS, Liu J. A review of hyperthermia combined with radiotherapy/chemotherapy on malignant tumors. Crit Rev Biomed Eng. 2010;38(1):101–16.CrossRefPubMed Rao W, Deng ZS, Liu J. A review of hyperthermia combined with radiotherapy/chemotherapy on malignant tumors. Crit Rev Biomed Eng. 2010;38(1):101–16.CrossRefPubMed
15.
go back to reference Inoue H, Kajimoto Y, Shibata MA, Miyoshi N, Ogawa N, Miyatake S, et al. Massive apoptotic cell death of human glioma cells via a mitochondrial pathway following 5-aminolevulinic acid-mediated photodynamic therapy. J Neurooncol. 2007;83(3):223–31.CrossRefPubMed Inoue H, Kajimoto Y, Shibata MA, Miyoshi N, Ogawa N, Miyatake S, et al. Massive apoptotic cell death of human glioma cells via a mitochondrial pathway following 5-aminolevulinic acid-mediated photodynamic therapy. J Neurooncol. 2007;83(3):223–31.CrossRefPubMed
16.
go back to reference Krammer B, Plaetzer K. ALA and its clinical impact, from bench to bedside. Photochem Photobiol Sci. 2008;7(3):283–9.CrossRefPubMed Krammer B, Plaetzer K. ALA and its clinical impact, from bench to bedside. Photochem Photobiol Sci. 2008;7(3):283–9.CrossRefPubMed
17.
go back to reference Gao Z, Zheng J, Yang B, Wang Z, Fan H, Lv Y, et al. Sonodynamic therapy inhibits angiogenesis and tumor growth in a xenograft mouse model. Cancer Lett. 2013;335(1):93–9.CrossRefPubMed Gao Z, Zheng J, Yang B, Wang Z, Fan H, Lv Y, et al. Sonodynamic therapy inhibits angiogenesis and tumor growth in a xenograft mouse model. Cancer Lett. 2013;335(1):93–9.CrossRefPubMed
18.
go back to reference Yamaguchi F, Asakura T, Takahashi H, Kitamura T, Teramoto A. Low frequency ultrasonication induced antitumor effect in 5-Aminolevulinic acid treated malignant glioma. J Cancer Ther. 2013;4(1):170–5.CrossRef Yamaguchi F, Asakura T, Takahashi H, Kitamura T, Teramoto A. Low frequency ultrasonication induced antitumor effect in 5-Aminolevulinic acid treated malignant glioma. J Cancer Ther. 2013;4(1):170–5.CrossRef
19.
go back to reference Umemura S, Yumita N, Nishigaki R, Umemura K. Mechanism of cell damage by ultrasound in combination with hematoporphyrin. Jpn J Cancer Res. 1990;81(9):962–6.CrossRefPubMed Umemura S, Yumita N, Nishigaki R, Umemura K. Mechanism of cell damage by ultrasound in combination with hematoporphyrin. Jpn J Cancer Res. 1990;81(9):962–6.CrossRefPubMed
20.
go back to reference Tsuru H, Shibaguchi H, Kuroki M, Yamashita Y, Kuroki M. Tumor growth inhibition by sonodynamic therapy using a novel sonosensitizer. Free Radic Biol Med. 2012;53(3):464–72.CrossRefPubMed Tsuru H, Shibaguchi H, Kuroki M, Yamashita Y, Kuroki M. Tumor growth inhibition by sonodynamic therapy using a novel sonosensitizer. Free Radic Biol Med. 2012;53(3):464–72.CrossRefPubMed
21.
go back to reference Song W, Cui H, Zhang R, Zheng J, Cao W. Apoptosis of SAS cells induced by sonodynamic therapy using 5-aminolevulinic acid sonosensitizer. Anticancer Res. 2011;31(1):39–45.PubMed Song W, Cui H, Zhang R, Zheng J, Cao W. Apoptosis of SAS cells induced by sonodynamic therapy using 5-aminolevulinic acid sonosensitizer. Anticancer Res. 2011;31(1):39–45.PubMed
22.
go back to reference Wang H, Wang X, Zhang S, Wang P, Zhang K, Liu Q. Sinoporphyrin sodium, a novel sensitizer, triggers mitochondrial-dependent apoptosis in ECA-109 cells via production of reactive oxygen species. Int J Nanomedicine. 2014;9:3077–90.CrossRefPubMedPubMedCentral Wang H, Wang X, Zhang S, Wang P, Zhang K, Liu Q. Sinoporphyrin sodium, a novel sensitizer, triggers mitochondrial-dependent apoptosis in ECA-109 cells via production of reactive oxygen species. Int J Nanomedicine. 2014;9:3077–90.CrossRefPubMedPubMedCentral
23.
go back to reference McEwan C, Owen J, Stride E, Fowley C, Nesbitt H, Cochrane D, et al. Oxygen carrying microbubbles for enhanced sonodynamic therapy of hypoxic tumors. J Control Release. 2015;203:51–6.CrossRefPubMed McEwan C, Owen J, Stride E, Fowley C, Nesbitt H, Cochrane D, et al. Oxygen carrying microbubbles for enhanced sonodynamic therapy of hypoxic tumors. J Control Release. 2015;203:51–6.CrossRefPubMed
24.
go back to reference Gross JL, Behrens DL, Mullins DE, Kornblith PL, Dexter DL. Plasminogen activator and inhibitor activity in human glioma cells and modulation by sodium butyrate. Cancer Res. 1988;48(2):291–6.PubMed Gross JL, Behrens DL, Mullins DE, Kornblith PL, Dexter DL. Plasminogen activator and inhibitor activity in human glioma cells and modulation by sodium butyrate. Cancer Res. 1988;48(2):291–6.PubMed
25.
go back to reference Teng L, Nakada M, Zhao SG, Endo Y, Furuyama N, Nambu E, et al. Silencing of ferrochelatase enhances 5-aminolevulinic acid-based fluorescence and photodynamic therapy efficacy. Br J Cancer. 2011;104(5):798–807.CrossRefPubMedPubMedCentral Teng L, Nakada M, Zhao SG, Endo Y, Furuyama N, Nambu E, et al. Silencing of ferrochelatase enhances 5-aminolevulinic acid-based fluorescence and photodynamic therapy efficacy. Br J Cancer. 2011;104(5):798–807.CrossRefPubMedPubMedCentral
26.
go back to reference Wang X, Jia Y, Su X, Wang P, Zhang K, Feng X, et al. Combination of protoporphyrin IX-mediated sonodynamic treatment with doxorubicin synergistically induced apoptotic cell death of a multidrug-resistant Leukemia K562/DOX cell line. Ultrasound Med Biol. 2015;41(10):2731–9.CrossRefPubMed Wang X, Jia Y, Su X, Wang P, Zhang K, Feng X, et al. Combination of protoporphyrin IX-mediated sonodynamic treatment with doxorubicin synergistically induced apoptotic cell death of a multidrug-resistant Leukemia K562/DOX cell line. Ultrasound Med Biol. 2015;41(10):2731–9.CrossRefPubMed
27.
go back to reference Canaparo R, Varchi G, Ballestri M, Foglietta F, Sotgiu G, Guerrini A, et al. Polymeric nanoparticles enhance the sonodynamic activity of meso-tetrakis (4-sulfonatophenyl) porphyrin in an vitro neuroblastoma model. Int J Nanomedicine. 2013;8:4247–63.PubMedPubMedCentral Canaparo R, Varchi G, Ballestri M, Foglietta F, Sotgiu G, Guerrini A, et al. Polymeric nanoparticles enhance the sonodynamic activity of meso-tetrakis (4-sulfonatophenyl) porphyrin in an vitro neuroblastoma model. Int J Nanomedicine. 2013;8:4247–63.PubMedPubMedCentral
28.
go back to reference Xiang J, Xia X, Jiang Y, Leung AW, Wang X, Xu J, et al. Apoptosis of ovarian cancer cells induced by methylene blue-mediated sonodynamic action. Ultrasonics. 2011;51(3):390–5.CrossRefPubMed Xiang J, Xia X, Jiang Y, Leung AW, Wang X, Xu J, et al. Apoptosis of ovarian cancer cells induced by methylene blue-mediated sonodynamic action. Ultrasonics. 2011;51(3):390–5.CrossRefPubMed
29.
go back to reference Dereski MO, Madigan L, Chopp M. The effect of hypothermia and hyperthermia on photodynamic therapy of normal brain. Neurosurgery. 1995;36(1):141–5.CrossRefPubMed Dereski MO, Madigan L, Chopp M. The effect of hypothermia and hyperthermia on photodynamic therapy of normal brain. Neurosurgery. 1995;36(1):141–5.CrossRefPubMed
30.
go back to reference Chen B, Roskams T, de Witte PA. Enhancing the antitumoral effect of hypericin-mediated photodynamic therapy by hyperthermia. Lasers Surg Med. 2002;31(3):158–63.CrossRefPubMed Chen B, Roskams T, de Witte PA. Enhancing the antitumoral effect of hypericin-mediated photodynamic therapy by hyperthermia. Lasers Surg Med. 2002;31(3):158–63.CrossRefPubMed
32.
go back to reference Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis. 2003;8(2):115–28.CrossRefPubMed Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis. 2003;8(2):115–28.CrossRefPubMed
33.
go back to reference Suski JM, Lebiedzinska M, Bonora M, Pinton P, Duszynski J, Wieckowski MR. Relation between mitochondrial membrane potential and ROS formation. Methods Mol Biol. 2012;810:183–205.CrossRefPubMed Suski JM, Lebiedzinska M, Bonora M, Pinton P, Duszynski J, Wieckowski MR. Relation between mitochondrial membrane potential and ROS formation. Methods Mol Biol. 2012;810:183–205.CrossRefPubMed
34.
go back to reference Gomez-Cabrera MC, Sanchis-Gomar F, Garcia-Valles R, Pareja-Galeano H, Gambini J, Borras C, et al. Mitochondria as sources and targets of damage in cellular aging. Clin Chem Lab Med. 2012;50(8):1287–95.CrossRefPubMed Gomez-Cabrera MC, Sanchis-Gomar F, Garcia-Valles R, Pareja-Galeano H, Gambini J, Borras C, et al. Mitochondria as sources and targets of damage in cellular aging. Clin Chem Lab Med. 2012;50(8):1287–95.CrossRefPubMed
35.
go back to reference Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, et al. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell. 2006;10(3):241–52.CrossRefPubMed Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, et al. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell. 2006;10(3):241–52.CrossRefPubMed
36.
go back to reference Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.CrossRefPubMed Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.CrossRefPubMed
37.
go back to reference Trendowski M. The inherent metastasis of leukaemia and its exploitation by sonodynamic therapy. Crit Rev Oncol Hematol. 2015;94(2):149–63.CrossRefPubMed Trendowski M. The inherent metastasis of leukaemia and its exploitation by sonodynamic therapy. Crit Rev Oncol Hematol. 2015;94(2):149–63.CrossRefPubMed
38.
go back to reference Banerjee Mustafi S, Chakraborty PK, Dey RS, Raha S. Heat stress upregulates chaperone heat shock protein 70 and antioxidant manganese superoxide dismutase through reactive oxygen species (ROS), p38MAPK, and Akt. Cell Stress Chaperones. 2009;14(6):579–89.CrossRefPubMedPubMedCentral Banerjee Mustafi S, Chakraborty PK, Dey RS, Raha S. Heat stress upregulates chaperone heat shock protein 70 and antioxidant manganese superoxide dismutase through reactive oxygen species (ROS), p38MAPK, and Akt. Cell Stress Chaperones. 2009;14(6):579–89.CrossRefPubMedPubMedCentral
39.
go back to reference Zhang HJ, Xu L, Drake VJ, Xie L, Oberley LW, Kregel KC. Heat-induced liver injury in old rats is associated with exaggerated oxidative stress and altered transcription factor activation. FASEB J. 2003;17(15):2293–5.PubMed Zhang HJ, Xu L, Drake VJ, Xie L, Oberley LW, Kregel KC. Heat-induced liver injury in old rats is associated with exaggerated oxidative stress and altered transcription factor activation. FASEB J. 2003;17(15):2293–5.PubMed
40.
go back to reference Pallepati P, Averill-Bates DA. Mild thermotolerance induced at 40°C protects HeLa cells against activation of death receptor-mediated apoptosis by hydrogen peroxide. Free Radic Biol Med. 2011;50(6):667–79.CrossRefPubMed Pallepati P, Averill-Bates DA. Mild thermotolerance induced at 40°C protects HeLa cells against activation of death receptor-mediated apoptosis by hydrogen peroxide. Free Radic Biol Med. 2011;50(6):667–79.CrossRefPubMed
41.
go back to reference Breckenridge DG, Xue D. Regulation of mitochondrial membrane permeabilization by Bcl-2 family proteins and caspases. Curr Opin Cell Biol. 2004;16(6):647–52.CrossRefPubMed Breckenridge DG, Xue D. Regulation of mitochondrial membrane permeabilization by Bcl-2 family proteins and caspases. Curr Opin Cell Biol. 2004;16(6):647–52.CrossRefPubMed
42.
go back to reference Schwarz CS, Evert BO, Seyfried J, Schaupp M, Kunz WS, Vielhaber S, et al. Overexpression of bcl-2 results in reduction of cytochrome c content and inhibition of complex I activity. Biochem Biophys Res Commun. 2001;280(4):1021–7.CrossRefPubMed Schwarz CS, Evert BO, Seyfried J, Schaupp M, Kunz WS, Vielhaber S, et al. Overexpression of bcl-2 results in reduction of cytochrome c content and inhibition of complex I activity. Biochem Biophys Res Commun. 2001;280(4):1021–7.CrossRefPubMed
Metadata
Title
Hyperthermotherapy enhances antitumor effect of 5-aminolevulinic acid-mediated sonodynamic therapy with activation of caspase-dependent apoptotic pathway in human glioma
Authors
Donghui Ju
Fumio Yamaguchi
Guangzhi Zhan
Tadashi Higuchi
Takayuki Asakura
Akio Morita
Hideo Orimo
Shaoshan Hu
Publication date
01-08-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 8/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-4931-3

Other articles of this Issue 8/2016

Tumor Biology 8/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine