Skip to main content
Top
Published in: Tumor Biology 5/2016

01-05-2016 | Review

Missing link between microRNA and prostate cancer

Published in: Tumor Biology | Issue 5/2016

Login to get access

Abstract

MicroRNAs are the non-coding RNAs which regulate endogenous gene expression in animal and plant cells. Alterations in the level of micro-ribonucleic acids (miRNAs) involving the deletions, overexpression, mutations, epigenetic silencing, or dysregulation of transcription factors that target specific miRNAs may culminate in various diseases including cancer. Recent findings demonstrate the role of miRNAs in prostate cancer. Numerous discoveries of miRNAs have marked the research and development surrounding prostate cancer management, diagnosis, and therapy which has made prediction easy, but the effective treatment strategy remains a mystery. This review seeks to draw a link between miRNA and prostate cancer through an understanding of the numerous signaling pathways that these miRNAs control, which may prove to be helpful in identifying therapeutically interesting molecular targets.
Literature
2.
go back to reference Anand SS, Gill BS. Breakthroughs in epigenetics. PharmaTutor. 2015;3(7):16–24. Anand SS, Gill BS. Breakthroughs in epigenetics. PharmaTutor. 2015;3(7):16–24.
3.
5.
6.
go back to reference Coppola V, De Maria R, Bonci D. MicroRNAs and prostate cancer. Endocr Relat Cancer. 2010;17(1):F1–F17.PubMedCrossRef Coppola V, De Maria R, Bonci D. MicroRNAs and prostate cancer. Endocr Relat Cancer. 2010;17(1):F1–F17.PubMedCrossRef
7.
go back to reference Bartels CL, Tsongalis GJ. MicroRNAs: novel biomarkers for human cancer. Clin Chem. 2009;55(4):623–31.PubMedCrossRef Bartels CL, Tsongalis GJ. MicroRNAs: novel biomarkers for human cancer. Clin Chem. 2009;55(4):623–31.PubMedCrossRef
8.
go back to reference Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J, et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell. 2009;138(2):245–56.PubMedPubMedCentralCrossRef Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J, et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell. 2009;138(2):245–56.PubMedPubMedCentralCrossRef
10.
go back to reference Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci. 2008;105(30):10513–8.PubMedPubMedCentralCrossRef Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci. 2008;105(30):10513–8.PubMedPubMedCentralCrossRef
12.
go back to reference Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′ UTR evolution. Cell. 2005;123(6):1133–46.PubMedCrossRef Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′ UTR evolution. Cell. 2005;123(6):1133–46.PubMedCrossRef
13.
go back to reference Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol. 1999;216(2):671–80.PubMedCrossRef Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol. 1999;216(2):671–80.PubMedCrossRef
14.
go back to reference Catto JW, Alcaraz A, Bjartell AS, De Vere White R, Evans CP, Fussel S, et al. MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur Urol. 2011;59(5):671–81.PubMedCrossRef Catto JW, Alcaraz A, Bjartell AS, De Vere White R, Evans CP, Fussel S, et al. MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur Urol. 2011;59(5):671–81.PubMedCrossRef
15.
go back to reference Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8(8):467–77.PubMedPubMedCentralCrossRef Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8(8):467–77.PubMedPubMedCentralCrossRef
16.
go back to reference Sita-Lumsden A, Dart DA, Waxman J, Bevan C. Circulating microRNAs as potential new biomarkers for prostate cancer. Br J Cancer. 2013;108(10):1925–30.PubMedPubMedCentralCrossRef Sita-Lumsden A, Dart DA, Waxman J, Bevan C. Circulating microRNAs as potential new biomarkers for prostate cancer. Br J Cancer. 2013;108(10):1925–30.PubMedPubMedCentralCrossRef
18.
go back to reference Sekeres MA, Peterson B, Dodge RK, Mayer RJ, Moore JO, Lee EJ, et al. Differences in prognostic factors and outcomes in African Americans and whites with acute myeloid leukemia. Blood. 2004;103(11):4036–42.PubMedCrossRef Sekeres MA, Peterson B, Dodge RK, Mayer RJ, Moore JO, Lee EJ, et al. Differences in prognostic factors and outcomes in African Americans and whites with acute myeloid leukemia. Blood. 2004;103(11):4036–42.PubMedCrossRef
19.
go back to reference Zovoilis A, Agbemenyah HY, Agis‐Balboa RC, Stilling RM, Edbauer D, Rao P, et al. microRNA‐34c is a novel target to treat dementias. EMBO J. 2011;30(20):4299–308.PubMedPubMedCentralCrossRef Zovoilis A, Agbemenyah HY, Agis‐Balboa RC, Stilling RM, Edbauer D, Rao P, et al. microRNA‐34c is a novel target to treat dementias. EMBO J. 2011;30(20):4299–308.PubMedPubMedCentralCrossRef
20.
go back to reference Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport. 2007;18(3):297–300.PubMedCrossRef Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport. 2007;18(3):297–300.PubMedCrossRef
21.
go back to reference Hébert SS, Horré K, Nicolaï L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/β-secretase expression. Proc Natl Acad Sci. 2008;105(17):6415–20.PubMedPubMedCentralCrossRef Hébert SS, Horré K, Nicolaï L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/β-secretase expression. Proc Natl Acad Sci. 2008;105(17):6415–20.PubMedPubMedCentralCrossRef
22.
go back to reference Miñones-Moyano E, Porta S, Escaramís G, Rabionet R, Iraola S, Kagerbauer B, et al. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet. 2011;20(15):3067–78.PubMedCrossRef Miñones-Moyano E, Porta S, Escaramís G, Rabionet R, Iraola S, Kagerbauer B, et al. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet. 2011;20(15):3067–78.PubMedCrossRef
23.
go back to reference Schröder FH, Roobol MJ. Defining the optimal prostate-specific antigen threshold for the diagnosis of prostate cancer. Curr Opin Urol. 2009;19(3):227–31.PubMedCrossRef Schröder FH, Roobol MJ. Defining the optimal prostate-specific antigen threshold for the diagnosis of prostate cancer. Curr Opin Urol. 2009;19(3):227–31.PubMedCrossRef
24.
go back to reference Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci. 2002;99(24):15524–9.PubMedPubMedCentralCrossRef Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci. 2002;99(24):15524–9.PubMedPubMedCentralCrossRef
25.
go back to reference Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T. MicroRNA expression profiling in prostate cancer. Cancer Res. 2007;67(13):6130–5.PubMedCrossRef Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T. MicroRNA expression profiling in prostate cancer. Cancer Res. 2007;67(13):6130–5.PubMedCrossRef
26.
go back to reference Wei J-J, Wu X, Peng Y, Shi G, Olca B, Yang X, et al. Regulation of HMGA1 expression by microRNA-296 affects prostate cancer growth and invasion. Clin Cancer Res. 2011;17(6):1297–305.PubMedCrossRef Wei J-J, Wu X, Peng Y, Shi G, Olca B, Yang X, et al. Regulation of HMGA1 expression by microRNA-296 affects prostate cancer growth and invasion. Clin Cancer Res. 2011;17(6):1297–305.PubMedCrossRef
27.
go back to reference Hudson RS, Yi M, Esposito D, Watkins SK, Hurwitz AA, Yfantis HG, et al. MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer. Nucleic Acids Res. 2011:gkr1222. Hudson RS, Yi M, Esposito D, Watkins SK, Hurwitz AA, Yfantis HG, et al. MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer. Nucleic Acids Res. 2011:gkr1222.
28.
go back to reference Xu L, Zhang Y, Wang H, Zhang G, Ding Y, Zhao L. Tumor suppressor miR-1 restrains epithelial-mesenchymal transition and metastasis of colorectal carcinoma via the MAPK and PI3K/AKT pathway. J Transl Med. 2014;12(1):244.PubMedPubMedCentralCrossRef Xu L, Zhang Y, Wang H, Zhang G, Ding Y, Zhao L. Tumor suppressor miR-1 restrains epithelial-mesenchymal transition and metastasis of colorectal carcinoma via the MAPK and PI3K/AKT pathway. J Transl Med. 2014;12(1):244.PubMedPubMedCentralCrossRef
29.
go back to reference Gaur S, Gallick G. Tumor suppressive miRNA-145 inhibits IGF-1 and cell viability in prostate cancer cells. Cancer Res. 2014;74(19 Supplement):4356.CrossRef Gaur S, Gallick G. Tumor suppressive miRNA-145 inhibits IGF-1 and cell viability in prostate cancer cells. Cancer Res. 2014;74(19 Supplement):4356.CrossRef
30.
go back to reference Lee K-H, Chen Y-L, Yeh S, Hsiao M, Lin J, Goan Y, et al. MicroRNA-330 acts as tumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation. Oncogene. 2009;28(38):3360–70.PubMedCrossRef Lee K-H, Chen Y-L, Yeh S, Hsiao M, Lin J, Goan Y, et al. MicroRNA-330 acts as tumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation. Oncogene. 2009;28(38):3360–70.PubMedCrossRef
31.
go back to reference Xu B, Wang N, Wang X, Tong N, Shao N, Tao J, et al. MiR‐146a suppresses tumor growth and progression by targeting EGFR pathway and in ap‐ERK‐dependent manner in castration‐resistant prostate cancer. Prostate. 2012;72(11):1171–8.PubMedCrossRef Xu B, Wang N, Wang X, Tong N, Shao N, Tao J, et al. MiR‐146a suppresses tumor growth and progression by targeting EGFR pathway and in ap‐ERK‐dependent manner in castration‐resistant prostate cancer. Prostate. 2012;72(11):1171–8.PubMedCrossRef
32.
go back to reference Jurkin J, Schichl YM, Koeffel R, Bauer T, Richter S, Konradi S, et al. miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. J Immunol. 2010;184(9):4955–65.PubMedCrossRef Jurkin J, Schichl YM, Koeffel R, Bauer T, Richter S, Konradi S, et al. miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. J Immunol. 2010;184(9):4955–65.PubMedCrossRef
33.
go back to reference Varambally S, Cao Q, Mani R-S, Shankar S, Wang X, Ateeq B, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 2008;322(5908):1695–9.PubMedPubMedCentralCrossRef Varambally S, Cao Q, Mani R-S, Shankar S, Wang X, Ateeq B, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 2008;322(5908):1695–9.PubMedPubMedCentralCrossRef
34.
go back to reference Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, et al. The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med. 2008;14(11):1271–7.PubMedCrossRef Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, et al. The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med. 2008;14(11):1271–7.PubMedCrossRef
35.
go back to reference Voulgari A, Pintzas A. Epithelial–mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. BBA Rev Cancer. 2009;1796(2):75–90. Voulgari A, Pintzas A. Epithelial–mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. BBA Rev Cancer. 2009;1796(2):75–90.
36.
go back to reference Fuse M, Nohata N, Kojima S, Sakamoto S, Chiyomaru T, Kawakami K, et al. Restoration of miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1. Int J Oncol. 2011;38(4):1093.PubMed Fuse M, Nohata N, Kojima S, Sakamoto S, Chiyomaru T, Kawakami K, et al. Restoration of miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1. Int J Oncol. 2011;38(4):1093.PubMed
37.
go back to reference Gandellini P, Giannoni E, Casamichele A, Taddei ML, Callari M, Valdagni R, et al. MiR-205 puts the brakes on the malignant interplay between prostate cancer cells and associated fibroblasts. Cancer Res. 2013;73(3 Supplement):B18-B.CrossRef Gandellini P, Giannoni E, Casamichele A, Taddei ML, Callari M, Valdagni R, et al. MiR-205 puts the brakes on the malignant interplay between prostate cancer cells and associated fibroblasts. Cancer Res. 2013;73(3 Supplement):B18-B.CrossRef
38.
go back to reference Epis MR, Giles KM, Barker A, Kendrick TS, Leedman PJ. miR-331-3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer. J Biol Chem. 2009;284(37):24696–704.PubMedPubMedCentralCrossRef Epis MR, Giles KM, Barker A, Kendrick TS, Leedman PJ. miR-331-3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer. J Biol Chem. 2009;284(37):24696–704.PubMedPubMedCentralCrossRef
39.
go back to reference Noonan E, Place R, Pookot D, Basak S, Whitson J, Hirata H, et al. miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene. 2009;28(14):1714–24.PubMedCrossRef Noonan E, Place R, Pookot D, Basak S, Whitson J, Hirata H, et al. miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene. 2009;28(14):1714–24.PubMedCrossRef
40.
go back to reference Noonan EJ, Place RF, Basak S, Pookot D, Li L-C. miR-449a causes Rb-dependent cell cycle arrest and senescence in prostate cancer cells. Oncotarget. 2010;1(5):349.PubMedPubMedCentral Noonan EJ, Place RF, Basak S, Pookot D, Li L-C. miR-449a causes Rb-dependent cell cycle arrest and senescence in prostate cancer cells. Oncotarget. 2010;1(5):349.PubMedPubMedCentral
42.
go back to reference Zhang H, Qi S, Zhang T, Wang A, Liu R, Guo J, et al. miR-188-5p inhibits tumour growth and metastasis in prostate cancer by repressing LAPTM4B expression. Oncotarget. 2015;6(8):6092–104. Zhang H, Qi S, Zhang T, Wang A, Liu R, Guo J, et al. miR-188-5p inhibits tumour growth and metastasis in prostate cancer by repressing LAPTM4B expression. Oncotarget. 2015;6(8):6092–104.
43.
go back to reference Kojima S, Chiyomaru T, Kawakami K, Yoshino H, Enokida H, Nohata N, et al. Tumour suppressors miR-1 and miR-133a target the oncogenic function of purine nucleoside phosphorylase (PNP) in prostate cancer. Br J Cancer. 2012;106(2):405–13.PubMedCrossRef Kojima S, Chiyomaru T, Kawakami K, Yoshino H, Enokida H, Nohata N, et al. Tumour suppressors miR-1 and miR-133a target the oncogenic function of purine nucleoside phosphorylase (PNP) in prostate cancer. Br J Cancer. 2012;106(2):405–13.PubMedCrossRef
44.
go back to reference Ru P, Steele R, Newhall P, Phillips NJ, Toth K, Ray RB. miRNA-29b suppresses prostate cancer metastasis by regulating epithelial–mesenchymal transition signaling. Mol Cancer Ther. 2012;11(5):1166–73.PubMedCrossRef Ru P, Steele R, Newhall P, Phillips NJ, Toth K, Ray RB. miRNA-29b suppresses prostate cancer metastasis by regulating epithelial–mesenchymal transition signaling. Mol Cancer Ther. 2012;11(5):1166–73.PubMedCrossRef
45.
go back to reference Steele R, Mott JL, Ray RB. MBP-1 upregulates miR-29b, which represses Mcl-1, collagens, and matrix metalloproteinase-2 in prostate cancer cells. Genes Cancer. 2010;1(4):381–7.PubMedPubMedCentralCrossRef Steele R, Mott JL, Ray RB. MBP-1 upregulates miR-29b, which represses Mcl-1, collagens, and matrix metalloproteinase-2 in prostate cancer cells. Genes Cancer. 2010;1(4):381–7.PubMedPubMedCentralCrossRef
47.
go back to reference Li X, Chen Y-T, Josson S, Mukhopadhyay NK, Kim J, Freeman MR, et al. MicroRNA-185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the SREBP metabolic pathway in prostate cancer cells. PLoS One. 2013;8(8):e70987.PubMedPubMedCentralCrossRef Li X, Chen Y-T, Josson S, Mukhopadhyay NK, Kim J, Freeman MR, et al. MicroRNA-185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the SREBP metabolic pathway in prostate cancer cells. PLoS One. 2013;8(8):e70987.PubMedPubMedCentralCrossRef
48.
go back to reference Zhang Q. Epigenetic regulation of miR-31 and miR-205 of apoptosis in prostate cancer. Cancer Res. 2014;74(19 Supplement):3535.CrossRef Zhang Q. Epigenetic regulation of miR-31 and miR-205 of apoptosis in prostate cancer. Cancer Res. 2014;74(19 Supplement):3535.CrossRef
49.
go back to reference Nadiminty N, Tummala R, Lou W, Zhu Y, Zhang J, Chen X, et al. MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells. J Biol Chem. 2012;287(2):1527–37.PubMedCrossRef Nadiminty N, Tummala R, Lou W, Zhu Y, Zhang J, Chen X, et al. MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells. J Biol Chem. 2012;287(2):1527–37.PubMedCrossRef
50.
go back to reference Zhang Y, Fan K-J, Sun Q, Chen A-Z, Shen W-L, Zhao Z-H, et al. Functional screening for miRNAs targeting Smad4 identified miR-199a as a negative regulator of TGF-β signalling pathway. Nucleic Acids Res. 2012;40(18):9286–97.PubMedPubMedCentralCrossRef Zhang Y, Fan K-J, Sun Q, Chen A-Z, Shen W-L, Zhao Z-H, et al. Functional screening for miRNAs targeting Smad4 identified miR-199a as a negative regulator of TGF-β signalling pathway. Nucleic Acids Res. 2012;40(18):9286–97.PubMedPubMedCentralCrossRef
51.
go back to reference Zhang J, Zhang D, Wu G-Q, Feng Z-Y, Zhu S-M. Propofol inhibits the adhesion of hepatocellular carcinoma cells by upregulating microRNA-199a and downregulating MMP-9 expression. Hepatobiliary Pancreat Dis Int. 2013;12(3):305–9.PubMedCrossRef Zhang J, Zhang D, Wu G-Q, Feng Z-Y, Zhu S-M. Propofol inhibits the adhesion of hepatocellular carcinoma cells by upregulating microRNA-199a and downregulating MMP-9 expression. Hepatobiliary Pancreat Dis Int. 2013;12(3):305–9.PubMedCrossRef
52.
go back to reference Maugeri-Saccà M, Coppola V, Bonci D, De Maria R. MicroRNAs and prostate cancer: from preclinical research to translational oncology. Cancer J. 2012;18(3):253–61.PubMedCrossRef Maugeri-Saccà M, Coppola V, Bonci D, De Maria R. MicroRNAs and prostate cancer: from preclinical research to translational oncology. Cancer J. 2012;18(3):253–61.PubMedCrossRef
53.
go back to reference Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H, et al. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell–cell junctions. Nucleic Acids Res. 2005;33(20):6566–78.PubMedPubMedCentralCrossRef Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H, et al. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell–cell junctions. Nucleic Acids Res. 2005;33(20):6566–78.PubMedPubMedCentralCrossRef
54.
go back to reference Ding X, Park SI, McCauley LK, Wang C-Y. Signaling between transforming growth factor β (TGF-β) and transcription factor SNAI2 represses expression of microRNA miR-203 to promote epithelial-mesenchymal transition and tumor metastasis. J Biol Chem. 2013;288(15):10241–53.PubMedPubMedCentralCrossRef Ding X, Park SI, McCauley LK, Wang C-Y. Signaling between transforming growth factor β (TGF-β) and transcription factor SNAI2 represses expression of microRNA miR-203 to promote epithelial-mesenchymal transition and tumor metastasis. J Biol Chem. 2013;288(15):10241–53.PubMedPubMedCentralCrossRef
55.
go back to reference Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601.PubMedCrossRef Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601.PubMedCrossRef
56.
go back to reference Rajendiran B. Post-transcriptional and epigenetic regulation of MIEN1 in prostate cancer. 2014. Rajendiran B. Post-transcriptional and epigenetic regulation of MIEN1 in prostate cancer. 2014.
57.
go back to reference Formosa A, Lena A, Markert E, Cortelli S, Miano R, Mauriello A, et al. DNA methylation silences miR-132 in prostate cancer. Oncogene. 2013;32(1):127–34.PubMedCrossRef Formosa A, Lena A, Markert E, Cortelli S, Miano R, Mauriello A, et al. DNA methylation silences miR-132 in prostate cancer. Oncogene. 2013;32(1):127–34.PubMedCrossRef
58.
go back to reference Liu H, Yin J, Wang H, Jiang G, Deng M, Zhang G, et al. FOXO3a modulates WNT/β-catenin signaling and suppresses epithelial-to-mesenchymal transition in prostate cancer cells. Cell Signal. 2015;27(3):510–18. Liu H, Yin J, Wang H, Jiang G, Deng M, Zhang G, et al. FOXO3a modulates WNT/β-catenin signaling and suppresses epithelial-to-mesenchymal transition in prostate cancer cells. Cell Signal. 2015;27(3):510–18.
59.
go back to reference Guo Y, Ying L, Tian Y, Yang P, Zhu Y, Wang Z, et al. miR‐144 downregulation increases bladder cancer cell proliferation by targeting EZH2 and regulating Wnt signaling. FEBS J. 2013;280(18):4531–8.PubMedCrossRef Guo Y, Ying L, Tian Y, Yang P, Zhu Y, Wang Z, et al. miR‐144 downregulation increases bladder cancer cell proliferation by targeting EZH2 and regulating Wnt signaling. FEBS J. 2013;280(18):4531–8.PubMedCrossRef
60.
go back to reference Zhang L-Y, Lee VH-F, Wong AMG, Kwong DL-W, Zhu Y-H, Dong S-S, et al. MicroRNA-144 promotes cell proliferation, migration and invasion in nasopharyngeal carcinoma through repression of PTEN. Carcinogenesis. Zhang L-Y, Lee VH-F, Wong AMG, Kwong DL-W, Zhu Y-H, Dong S-S, et al. MicroRNA-144 promotes cell proliferation, migration and invasion in nasopharyngeal carcinoma through repression of PTEN. Carcinogenesis.
61.
62.
go back to reference Lal A, Pan Y, Navarro F, Dykxhoorn DM, Moreau L, Meire E, et al. miR-24–mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat Struct Mol Biol. 2009;16(5):492–8.PubMedPubMedCentralCrossRef Lal A, Pan Y, Navarro F, Dykxhoorn DM, Moreau L, Meire E, et al. miR-24–mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat Struct Mol Biol. 2009;16(5):492–8.PubMedPubMedCentralCrossRef
63.
64.
go back to reference Grosso S, Doyen J, Parks S, Bertero T, Paye A, Cardinaud B, et al. MiR-210 promotes a hypoxic phenotype and increases radioresistance in human lung cancer cell lines. Cell Death Dis. 2013;4(3):e544.PubMedPubMedCentralCrossRef Grosso S, Doyen J, Parks S, Bertero T, Paye A, Cardinaud B, et al. MiR-210 promotes a hypoxic phenotype and increases radioresistance in human lung cancer cell lines. Cell Death Dis. 2013;4(3):e544.PubMedPubMedCentralCrossRef
65.
go back to reference Jin M, Zhang T, Liu C. MicroRNA-128 suppresses prostate cancer by inhibiting BMI-1. Cancer Res. 2014;74(15):4183–95. Jin M, Zhang T, Liu C. MicroRNA-128 suppresses prostate cancer by inhibiting BMI-1. Cancer Res. 2014;74(15):4183–95.
66.
go back to reference Xue G, Ren Z, Chen Y, Zhu J, Du Y, Pan D, et al. A feedback regulation between miR-145 and DNA methyltransferase 3b in prostate cancer cell and their responses to irradiation. Cancer Lett. 2015. doi:10.1016/j.canlet.2015.02.046. Xue G, Ren Z, Chen Y, Zhu J, Du Y, Pan D, et al. A feedback regulation between miR-145 and DNA methyltransferase 3b in prostate cancer cell and their responses to irradiation. Cancer Lett. 2015. doi:10.​1016/​j.​canlet.​2015.​02.​046.
67.
go back to reference Li T, Li D, Sha J, Sun P, Huang Y. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun. 2009;383(3):280–5.PubMedCrossRef Li T, Li D, Sha J, Sun P, Huang Y. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun. 2009;383(3):280–5.PubMedCrossRef
68.
go back to reference Liu L-Z, Li C, Chen Q, Jing Y, Carpenter R, Jiang Y, et al. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLoS One. 2011;6(4):e19139.PubMedPubMedCentralCrossRef Liu L-Z, Li C, Chen Q, Jing Y, Carpenter R, Jiang Y, et al. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLoS One. 2011;6(4):e19139.PubMedPubMedCentralCrossRef
69.
go back to reference Amir S, Ma A-H, Shi X-B, Xue L, Kung H-J, de Vere White RW. Oncomir miR-125b suppresses p14ARF to modulate p53-dependent and p53-independent apoptosis in prostate cancer. PLoS One. 2013;8(4):e61064.PubMedPubMedCentralCrossRef Amir S, Ma A-H, Shi X-B, Xue L, Kung H-J, de Vere White RW. Oncomir miR-125b suppresses p14ARF to modulate p53-dependent and p53-independent apoptosis in prostate cancer. PLoS One. 2013;8(4):e61064.PubMedPubMedCentralCrossRef
70.
go back to reference Scaravilli M, Porkka KP, Brofeldt A, Annala M, Tammela TL, Jenster GW, et al. MiR-1247-5p is overexpressed in castration resistant prostate cancer and targets MYCBP2. Prostate. 2015. doi:10.1002/pros.22961.PubMed Scaravilli M, Porkka KP, Brofeldt A, Annala M, Tammela TL, Jenster GW, et al. MiR-1247-5p is overexpressed in castration resistant prostate cancer and targets MYCBP2. Prostate. 2015. doi:10.​1002/​pros.​22961.PubMed
71.
go back to reference Wang C, Tao W, Ni S, Chen Q, Zhao Z, Ma L, et al. Tumor-suppressive microRNA-145 induces growth arrest by targeting SENP1 in human prostate cancer cells. Cancer Sci. 2015. doi:10.1111/cas.12626. Wang C, Tao W, Ni S, Chen Q, Zhao Z, Ma L, et al. Tumor-suppressive microRNA-145 induces growth arrest by targeting SENP1 in human prostate cancer cells. Cancer Sci. 2015. doi:10.​1111/​cas.​12626.
72.
go back to reference Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F, et al. An E2F/miR-20a autoregulatory feedback loop. J Biol Chem. 2007;282(4):2135–43.PubMedCrossRef Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F, et al. An E2F/miR-20a autoregulatory feedback loop. J Biol Chem. 2007;282(4):2135–43.PubMedCrossRef
73.
go back to reference Qin W, Shi Y, Zhao B, Yao C, Jin L, Ma J, et al. miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS One. 2010;5(2):e9429.PubMedPubMedCentralCrossRef Qin W, Shi Y, Zhao B, Yao C, Jin L, Ma J, et al. miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS One. 2010;5(2):e9429.PubMedPubMedCentralCrossRef
74.
go back to reference Jalava S, Urbanucci A, Latonen L, Waltering K, Sahu B, Jänne O, et al. Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer. Oncogene. 2012;31(41):4460–71.PubMedCrossRef Jalava S, Urbanucci A, Latonen L, Waltering K, Sahu B, Jänne O, et al. Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer. Oncogene. 2012;31(41):4460–71.PubMedCrossRef
75.
go back to reference Emmrich S, Rasche M, Schöning J, Reimer C, Keihani S, Maroz A, et al. miR-99a/100∼125b tricistrons regulate hematopoietic stem and progenitor cell homeostasis by shifting the balance between TGFβ and Wnt signaling. Genes Dev. 2014;28(8):858–74.PubMedPubMedCentralCrossRef Emmrich S, Rasche M, Schöning J, Reimer C, Keihani S, Maroz A, et al. miR-99a/100∼125b tricistrons regulate hematopoietic stem and progenitor cell homeostasis by shifting the balance between TGFβ and Wnt signaling. Genes Dev. 2014;28(8):858–74.PubMedPubMedCentralCrossRef
76.
go back to reference Ishteiwy RA, Ward TM, Dykxhoorn DM, Burnstein KL. The microRNA-23b/-27b cluster suppresses the metastatic phenotype of castration-resistant prostate cancer cells. PLoS One. 2012;7(12):e52106.PubMedPubMedCentralCrossRef Ishteiwy RA, Ward TM, Dykxhoorn DM, Burnstein KL. The microRNA-23b/-27b cluster suppresses the metastatic phenotype of castration-resistant prostate cancer cells. PLoS One. 2012;7(12):e52106.PubMedPubMedCentralCrossRef
77.
go back to reference Aghaee-Bakhtiari SH, Arefian E, Naderi M, Noorbakhsh F, Nodouzi V, Asgari M, et al. MAPK and JAK/STAT pathways targeted by miR-23a and miR-23b in prostate cancer: computational and in vitro approaches. Tumor Biol. 2015;36(6):4203–12. Aghaee-Bakhtiari SH, Arefian E, Naderi M, Noorbakhsh F, Nodouzi V, Asgari M, et al. MAPK and JAK/STAT pathways targeted by miR-23a and miR-23b in prostate cancer: computational and in vitro approaches. Tumor Biol. 2015;36(6):4203–12.
78.
go back to reference Wu Z, He B, He J, Mao X. Upregulation of miR‐153 promotes cell proliferation via downregulation of the PTEN tumor suppressor gene in human prostate cancer. Prostate. 2013;73(6):596–604.PubMedCrossRef Wu Z, He B, He J, Mao X. Upregulation of miR‐153 promotes cell proliferation via downregulation of the PTEN tumor suppressor gene in human prostate cancer. Prostate. 2013;73(6):596–604.PubMedCrossRef
79.
go back to reference Xu J, Liao X, Wong C. Downregulations of B‐cell lymphoma 2 and myeloid cell leukemia sequence 1 by microRNA 153 induce apoptosis in a glioblastoma cell line DBTRG‐05MG. Int J Cancer. 2010;126(4):1029–35.PubMed Xu J, Liao X, Wong C. Downregulations of B‐cell lymphoma 2 and myeloid cell leukemia sequence 1 by microRNA 153 induce apoptosis in a glioblastoma cell line DBTRG‐05MG. Int J Cancer. 2010;126(4):1029–35.PubMed
81.
go back to reference Biunno I, Cattaneo M, Orlandi R, Canton C, Biagiotti L, Ferrero S, et al. SEL1L a multifaceted protein playing a role in tumor progression. J Cell Physiol. 2006;208(1):23–38.PubMedCrossRef Biunno I, Cattaneo M, Orlandi R, Canton C, Biagiotti L, Ferrero S, et al. SEL1L a multifaceted protein playing a role in tumor progression. J Cell Physiol. 2006;208(1):23–38.PubMedCrossRef
83.
go back to reference Gebert LF, Rebhan MA, Crivelli SE, Denzler R, Stoffel M, Hall J. Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res. 2014;42(1):609–21.PubMedCrossRef Gebert LF, Rebhan MA, Crivelli SE, Denzler R, Stoffel M, Hall J. Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res. 2014;42(1):609–21.PubMedCrossRef
84.
go back to reference Leite KR, Reis ST, Viana N, Morais DR, Moura CM, Silva IA, et al. Controlling RECK miR21 promotes tumor cell invasion and is related to biochemical recurrence in prostate cancer. J Cancer. 2015;6(3):292–301.PubMedPubMedCentralCrossRef Leite KR, Reis ST, Viana N, Morais DR, Moura CM, Silva IA, et al. Controlling RECK miR21 promotes tumor cell invasion and is related to biochemical recurrence in prostate cancer. J Cancer. 2015;6(3):292–301.PubMedPubMedCentralCrossRef
85.
go back to reference Majid S, Dar AA, Saini S, Arora S, Shahryari V, Zaman MS, et al. miR-23b represses proto-oncogene Src kinase and functions as methylation-silenced tumor suppressor with diagnostic and prognostic significance in prostate cancer. Cancer Res. 2012;72(24):6435–46.PubMedPubMedCentralCrossRef Majid S, Dar AA, Saini S, Arora S, Shahryari V, Zaman MS, et al. miR-23b represses proto-oncogene Src kinase and functions as methylation-silenced tumor suppressor with diagnostic and prognostic significance in prostate cancer. Cancer Res. 2012;72(24):6435–46.PubMedPubMedCentralCrossRef
86.
go back to reference Anand SS, Gill BS. Breakthroughs in epigenetics. PharmaTutor. 2015;3(7):16–24. Anand SS, Gill BS. Breakthroughs in epigenetics. PharmaTutor. 2015;3(7):16–24.
87.
go back to reference Ngo TH, Barnard RJ, Cohen P, Freedland S, Tran C, Elshimali YI, et al. Effect of isocaloric low-fat diet on human LAPC-4 prostate cancer xenografts in severe combined immunodeficient mice and the insulin-like growth factor axis. Clin Cancer Res. 2003;9(7):2734–43.PubMed Ngo TH, Barnard RJ, Cohen P, Freedland S, Tran C, Elshimali YI, et al. Effect of isocaloric low-fat diet on human LAPC-4 prostate cancer xenografts in severe combined immunodeficient mice and the insulin-like growth factor axis. Clin Cancer Res. 2003;9(7):2734–43.PubMed
88.
go back to reference Sonn GA, Aronson W, Litwin M. Impact of diet on prostate cancer: a review. Prostate Cancer Prostatic Dis. 2005;8(4):304–10.PubMedCrossRef Sonn GA, Aronson W, Litwin M. Impact of diet on prostate cancer: a review. Prostate Cancer Prostatic Dis. 2005;8(4):304–10.PubMedCrossRef
90.
go back to reference Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.PubMedCrossRef Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.PubMedCrossRef
91.
go back to reference Brase JC, Johannes M, Schlomm T, Fälth M, Haese A, Steuber T, et al. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer. 2011;128(3):608–16.PubMedCrossRef Brase JC, Johannes M, Schlomm T, Fälth M, Haese A, Steuber T, et al. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer. 2011;128(3):608–16.PubMedCrossRef
93.
go back to reference Shi X-B, Xue L, Yang J, Ma A-H, Zhao J, Xu M, et al. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci. 2007;104(50):19983–8.PubMedPubMedCentralCrossRef Shi X-B, Xue L, Yang J, Ma A-H, Zhao J, Xu M, et al. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci. 2007;104(50):19983–8.PubMedPubMedCentralCrossRef
94.
go back to reference Ma S, Chan YP, Kwan PS, Lee TK, Yan M, Tang KH, et al. MicroRNA-616 induces androgen-independent growth of prostate cancer cells by suppressing expression of tissue factor pathway inhibitor TFPI-2. Cancer Res. 2011;71(2):583–92.PubMedCrossRef Ma S, Chan YP, Kwan PS, Lee TK, Yan M, Tang KH, et al. MicroRNA-616 induces androgen-independent growth of prostate cancer cells by suppressing expression of tissue factor pathway inhibitor TFPI-2. Cancer Res. 2011;71(2):583–92.PubMedCrossRef
95.
go back to reference Sun T, Yang M, Chen S, Balk S, Pomerantz M, Hsieh CL, et al. The altered expression of MiR‐221/‐222 and MiR‐23b/‐27b is associated with the development of human castration resistant prostate cancer. Prostate. 2012;72(10):1093–103.PubMedCrossRef Sun T, Yang M, Chen S, Balk S, Pomerantz M, Hsieh CL, et al. The altered expression of MiR‐221/‐222 and MiR‐23b/‐27b is associated with the development of human castration resistant prostate cancer. Prostate. 2012;72(10):1093–103.PubMedCrossRef
96.
go back to reference Mo W, Zhang J, Li X, Meng D, Gao Y, Yang S, et al. Identification of novel AR-targeted microRNAs mediating androgen signalling through critical pathways to regulate cell viability in prostate cancer. PLoS One. 2013;8(2):e56592.PubMedPubMedCentralCrossRef Mo W, Zhang J, Li X, Meng D, Gao Y, Yang S, et al. Identification of novel AR-targeted microRNAs mediating androgen signalling through critical pathways to regulate cell viability in prostate cancer. PLoS One. 2013;8(2):e56592.PubMedPubMedCentralCrossRef
97.
98.
go back to reference Lujambio A. CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle. 2007;6(12):1454–8.CrossRef Lujambio A. CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle. 2007;6(12):1454–8.CrossRef
99.
go back to reference Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, Dickinson S, et al. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One. 2010;5(1):e8697.PubMedPubMedCentralCrossRef Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, Dickinson S, et al. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One. 2010;5(1):e8697.PubMedPubMedCentralCrossRef
100.
go back to reference Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y, et al. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res. 2008;68(11):4123–32.PubMedCrossRef Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y, et al. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res. 2008;68(11):4123–32.PubMedCrossRef
101.
go back to reference Suh SO, Chen Y, Zaman MS, Hirata H, Yamamura S, Shahryari V, et al. MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis. 2011;32(5):772–8.PubMedPubMedCentralCrossRef Suh SO, Chen Y, Zaman MS, Hirata H, Yamamura S, Shahryari V, et al. MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis. 2011;32(5):772–8.PubMedPubMedCentralCrossRef
102.
go back to reference Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci. 2009;106(9):3207–12.PubMedPubMedCentralCrossRef Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci. 2009;106(9):3207–12.PubMedPubMedCentralCrossRef
103.
go back to reference Gu W, Gao T, Shen J, Sun Y, Zheng X, Wang J, et al. MicroRNA-183 inhibits apoptosis and promotes proliferation and invasion of gastric cancer cells by targeting PDCD4. Int J Clin Exp Med. 2014;7(9):2519.PubMedPubMedCentral Gu W, Gao T, Shen J, Sun Y, Zheng X, Wang J, et al. MicroRNA-183 inhibits apoptosis and promotes proliferation and invasion of gastric cancer cells by targeting PDCD4. Int J Clin Exp Med. 2014;7(9):2519.PubMedPubMedCentral
104.
go back to reference Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58.PubMedPubMedCentralCrossRef Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58.PubMedPubMedCentralCrossRef
105.
go back to reference Gill BS, Sharma P, Kumar R, Kumar S. Misconstrued versatility of Ganoderma lucidum: a key player in multi-targeted cellular signaling. Tumor Biol. 2015. p. 1–16. Gill BS, Sharma P, Kumar R, Kumar S. Misconstrued versatility of Ganoderma lucidum: a key player in multi-targeted cellular signaling. Tumor Biol. 2015. p. 1–16.
106.
go back to reference Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci. 2005;102(39):13944–9.PubMedPubMedCentralCrossRef Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci. 2005;102(39):13944–9.PubMedPubMedCentralCrossRef
107.
go back to reference Porkka KP, Ogg EL, Saramäki OR, Vessella RL, Pukkila H, Lähdesmäki H, et al. The miR‐15a‐miR‐16‐1 locus is homozygously deleted in a subset of prostate cancers. Genes Chromosomes Cancer. 2011;50(7):499–509.PubMedCrossRef Porkka KP, Ogg EL, Saramäki OR, Vessella RL, Pukkila H, Lähdesmäki H, et al. The miR‐15a‐miR‐16‐1 locus is homozygously deleted in a subset of prostate cancers. Genes Chromosomes Cancer. 2011;50(7):499–509.PubMedCrossRef
108.
go back to reference Se C, Tian J, Chen S, Zhang X, Zhang Y. Role of miR‐34c in ketamine‐induced neurotoxicity in neonatal mice hippocampus. Cell Biol Int. 2015;39(2):164–8.CrossRef Se C, Tian J, Chen S, Zhang X, Zhang Y. Role of miR‐34c in ketamine‐induced neurotoxicity in neonatal mice hippocampus. Cell Biol Int. 2015;39(2):164–8.CrossRef
109.
go back to reference Gong J, Zhang J, Li B, Zeng C, You K, Chen M, et al. MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R. Oncogene. 2013;32(25):3071–9.PubMedCrossRef Gong J, Zhang J, Li B, Zeng C, You K, Chen M, et al. MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R. Oncogene. 2013;32(25):3071–9.PubMedCrossRef
110.
go back to reference Hersh EM, Metch BS, Muggia FM, Brown TD, Whitehead RP, Budd GT, et al. Phase II studies of recombinant human tumor necrosis factor alpha in patients with malignant disease: a summary of the Southwest Oncology Group experience. J Immunother. 1991;10(6):426–31.PubMedCrossRef Hersh EM, Metch BS, Muggia FM, Brown TD, Whitehead RP, Budd GT, et al. Phase II studies of recombinant human tumor necrosis factor alpha in patients with malignant disease: a summary of the Southwest Oncology Group experience. J Immunother. 1991;10(6):426–31.PubMedCrossRef
111.
go back to reference Garofalo M, Quintavalle C, Di Leva G, Zanca C, Romano G, Taccioli C, et al. MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene. 2008;27(27):3845–55.PubMedCrossRef Garofalo M, Quintavalle C, Di Leva G, Zanca C, Romano G, Taccioli C, et al. MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene. 2008;27(27):3845–55.PubMedCrossRef
112.
go back to reference Ovcharenko D, Kelnar K, Johnson C, Leng N, Brown D. Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway. Cancer Res. 2007;67(22):10782–8.PubMedCrossRef Ovcharenko D, Kelnar K, Johnson C, Leng N, Brown D. Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway. Cancer Res. 2007;67(22):10782–8.PubMedCrossRef
113.
go back to reference Yamamura S, Saini S, Majid S, Hirata H, Ueno K, Deng G, et al. MicroRNA-34a modulates c-Myc transcriptional complexes to suppress malignancy in human prostate cancer cells. PLoS One. 2012;7(1):e29722.PubMedPubMedCentralCrossRef Yamamura S, Saini S, Majid S, Hirata H, Ueno K, Deng G, et al. MicroRNA-34a modulates c-Myc transcriptional complexes to suppress malignancy in human prostate cancer cells. PLoS One. 2012;7(1):e29722.PubMedPubMedCentralCrossRef
114.
go back to reference Li X, Pan J-H, Song B, Xiong E-Q, Chen Z-W, Zhou Z-S, et al. Suppression of CX43 expression by miR-20a in the progression of human prostate cancer. Cancer Biol Ther. 2012;13(10):890–8.PubMedCrossRef Li X, Pan J-H, Song B, Xiong E-Q, Chen Z-W, Zhou Z-S, et al. Suppression of CX43 expression by miR-20a in the progression of human prostate cancer. Cancer Biol Ther. 2012;13(10):890–8.PubMedCrossRef
115.
go back to reference Williams SA, Singh P, Isaacs JT, Denmeade SR. Does PSA play a role as a promoting agent during the initiation and/or progression of prostate cancer? Prostate. 2007;67(3):312–29.PubMedCrossRef Williams SA, Singh P, Isaacs JT, Denmeade SR. Does PSA play a role as a promoting agent during the initiation and/or progression of prostate cancer? Prostate. 2007;67(3):312–29.PubMedCrossRef
116.
go back to reference Saini S, Majid S, Yamamura S, Tabatabai L, Suh SO, Shahryari V, et al. Regulatory role of miR-203 in prostate cancer progression and metastasis. Clin Cancer Res. 2011;17(16):5287–98.PubMedCrossRef Saini S, Majid S, Yamamura S, Tabatabai L, Suh SO, Shahryari V, et al. Regulatory role of miR-203 in prostate cancer progression and metastasis. Clin Cancer Res. 2011;17(16):5287–98.PubMedCrossRef
117.
go back to reference Davis JN, Wojno KJ, Daignault S, Hofer MD, Kuefer R, Rubin MA, et al. Elevated E2F1 inhibits transcription of the androgen receptor in metastatic hormone-resistant prostate cancer. Cancer Res. 2006;66(24):11897–906.PubMedCrossRef Davis JN, Wojno KJ, Daignault S, Hofer MD, Kuefer R, Rubin MA, et al. Elevated E2F1 inhibits transcription of the androgen receptor in metastatic hormone-resistant prostate cancer. Cancer Res. 2006;66(24):11897–906.PubMedCrossRef
118.
go back to reference Gill BS, Kumar S. Differential algorithms-assisted molecular modeling-based identification of mechanistic binding of ganoderic acids. Med Chem Res. 2015;24(9):3483–93.CrossRef Gill BS, Kumar S. Differential algorithms-assisted molecular modeling-based identification of mechanistic binding of ganoderic acids. Med Chem Res. 2015;24(9):3483–93.CrossRef
119.
go back to reference Christoffersen NR, Silahtaroglu A, Ørom UA, Kauppinen S, Lund AH. miR-200b mediates post-transcriptional repression of ZFHX1B. RNA. 2007;13(8):1172–8.PubMedPubMedCentralCrossRef Christoffersen NR, Silahtaroglu A, Ørom UA, Kauppinen S, Lund AH. miR-200b mediates post-transcriptional repression of ZFHX1B. RNA. 2007;13(8):1172–8.PubMedPubMedCentralCrossRef
120.
go back to reference Karolina DS, Armugam A, Tavintharan S, Wong MT, Lim SC, Sum CF, et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One. 2011;6(8):e22839.PubMedPubMedCentralCrossRef Karolina DS, Armugam A, Tavintharan S, Wong MT, Lim SC, Sum CF, et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One. 2011;6(8):e22839.PubMedPubMedCentralCrossRef
121.
go back to reference Qi W, Chan H, Teng L, Li L, Chuai S, Zhang R, et al. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci. 2012;109(52):21360–5.PubMedPubMedCentralCrossRef Qi W, Chan H, Teng L, Li L, Chuai S, Zhang R, et al. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci. 2012;109(52):21360–5.PubMedPubMedCentralCrossRef
124.
125.
go back to reference Fleming NI, Jorissen RN, Mouradov D, Christie M, Sakthianandeswaren A, Palmieri M, et al. SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res. 2013;73(2):725–35.PubMedCrossRef Fleming NI, Jorissen RN, Mouradov D, Christie M, Sakthianandeswaren A, Palmieri M, et al. SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res. 2013;73(2):725–35.PubMedCrossRef
126.
go back to reference Kim S-J, Im Y-H, Markowitz S, Bang Y-J. Molecular mechanisms of inactivation of TGF-β receptors during carcinogenesis. Cytokine Growth Factor Rev. 2000;11(1):159–68.PubMedCrossRef Kim S-J, Im Y-H, Markowitz S, Bang Y-J. Molecular mechanisms of inactivation of TGF-β receptors during carcinogenesis. Cytokine Growth Factor Rev. 2000;11(1):159–68.PubMedCrossRef
127.
go back to reference Wikström P, Damber JE, Bergh A. Role of transforming growth factor‐β1 in prostate cancer. Microsc Res Tech. 2001;52(4):411–9.PubMedCrossRef Wikström P, Damber JE, Bergh A. Role of transforming growth factor‐β1 in prostate cancer. Microsc Res Tech. 2001;52(4):411–9.PubMedCrossRef
128.
go back to reference Davis-Dusenbery BN, Chan MC, Reno KE, Weisman AS, Layne MD, Lagna G, et al. Down-regulation of Krüppel-like Factor-4 (KLF4) by microRNA-143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor-β and bone morphogenetic protein 4. J Biol Chem. 2011;286(32):28097–110.PubMedPubMedCentralCrossRef Davis-Dusenbery BN, Chan MC, Reno KE, Weisman AS, Layne MD, Lagna G, et al. Down-regulation of Krüppel-like Factor-4 (KLF4) by microRNA-143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor-β and bone morphogenetic protein 4. J Biol Chem. 2011;286(32):28097–110.PubMedPubMedCentralCrossRef
129.
go back to reference Zhang H, Cai X, Wang Y, Tang H, Tong D, Ji F. microRNA-143, down-regulated in osteosarcoma, promotes apoptosis and suppresses tumorigenicity by targeting Bcl-2. Oncol Rep. 2010;24(5):1363–9.PubMed Zhang H, Cai X, Wang Y, Tang H, Tong D, Ji F. microRNA-143, down-regulated in osteosarcoma, promotes apoptosis and suppresses tumorigenicity by targeting Bcl-2. Oncol Rep. 2010;24(5):1363–9.PubMed
130.
go back to reference Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene. 2009;28(10):1385–92.PubMedCrossRef Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene. 2009;28(10):1385–92.PubMedCrossRef
131.
go back to reference Wu G-S, Song Y-L, Yin Z-Q, Guo J-J, Wang S-P, Zhao W-W, et al. Ganoderiol A-enriched extract suppresses migration and adhesion of MDA-MB-231 cells by inhibiting FAK-SRC-paxillin cascade pathway. PLoS One. 2013;8(10):e76620.PubMedPubMedCentralCrossRef Wu G-S, Song Y-L, Yin Z-Q, Guo J-J, Wang S-P, Zhao W-W, et al. Ganoderiol A-enriched extract suppresses migration and adhesion of MDA-MB-231 cells by inhibiting FAK-SRC-paxillin cascade pathway. PLoS One. 2013;8(10):e76620.PubMedPubMedCentralCrossRef
132.
go back to reference Liu Z, Lu C-L, Cui L-P, Hu Y-L, Yu Q, Jiang Y, et al. MicroRNA-146a modulates TGF-β1-induced phenotypic differentiation in human dermal fibroblasts by targeting SMAD4. Arch Dermatol Res. 2012;304(3):195–202.PubMedCrossRef Liu Z, Lu C-L, Cui L-P, Hu Y-L, Yu Q, Jiang Y, et al. MicroRNA-146a modulates TGF-β1-induced phenotypic differentiation in human dermal fibroblasts by targeting SMAD4. Arch Dermatol Res. 2012;304(3):195–202.PubMedCrossRef
133.
go back to reference Geraldo M, Yamashita A, Kimura E. MicroRNA miR-146b-5p regulates signal transduction of TGF-β by repressing SMAD4 in thyroid cancer. Oncogene. 2011;31(15):1910–22.PubMedCrossRef Geraldo M, Yamashita A, Kimura E. MicroRNA miR-146b-5p regulates signal transduction of TGF-β by repressing SMAD4 in thyroid cancer. Oncogene. 2011;31(15):1910–22.PubMedCrossRef
134.
go back to reference Fornari F, Milazzo M, Chieco P, Negrini M, Calin GA, Grazi GL, et al. MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 2010;70(12):5184–93.PubMedCrossRef Fornari F, Milazzo M, Chieco P, Negrini M, Calin GA, Grazi GL, et al. MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 2010;70(12):5184–93.PubMedCrossRef
135.
go back to reference Ueno K, Hirata H, Shahryari V, Deng G, Tanaka Y, Tabatabai Z, et al. microRNA-183 is an oncogene targeting Dkk-3 and SMAD4 in prostate cancer. Br J Cancer. 2013;108(8):1659–67.PubMedPubMedCentralCrossRef Ueno K, Hirata H, Shahryari V, Deng G, Tanaka Y, Tabatabai Z, et al. microRNA-183 is an oncogene targeting Dkk-3 and SMAD4 in prostate cancer. Br J Cancer. 2013;108(8):1659–67.PubMedPubMedCentralCrossRef
136.
go back to reference Mishra S, Deng J, Gowda P, Rao M, Lin C, Chen C, et al. Androgen receptor and microRNA-21 axis downregulates transforming growth factor beta receptor II (TGFBR2) expression in prostate cancer. Oncogene. 2014;33(31):4097–106.PubMedCrossRef Mishra S, Deng J, Gowda P, Rao M, Lin C, Chen C, et al. Androgen receptor and microRNA-21 axis downregulates transforming growth factor beta receptor II (TGFBR2) expression in prostate cancer. Oncogene. 2014;33(31):4097–106.PubMedCrossRef
137.
go back to reference Xu B, Niu X, Zhang X, Tao J, Wu D, Wang Z, et al. miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem. 2011;350(1-2):207–13.PubMedCrossRef Xu B, Niu X, Zhang X, Tao J, Wu D, Wang Z, et al. miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem. 2011;350(1-2):207–13.PubMedCrossRef
138.
go back to reference Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase—AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501.PubMedCrossRef Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase—AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501.PubMedCrossRef
139.
go back to reference Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell. 2003;4(4):257–62.PubMedCrossRef Luo J, Manning BD, Cantley LC. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell. 2003;4(4):257–62.PubMedCrossRef
140.
go back to reference Sun D, Lee YS, Malhotra A, Kim HK, Matecic M, Evans C, et al. miR-99 family of MicroRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Res. 2011;71(4):1313–24.PubMedPubMedCentralCrossRef Sun D, Lee YS, Malhotra A, Kim HK, Matecic M, Evans C, et al. miR-99 family of MicroRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Res. 2011;71(4):1313–24.PubMedPubMedCentralCrossRef
141.
go back to reference Saini S, Majid S, Shahryari V, Arora S, Yamamura S, Chang I, et al. miRNA-708 control of CD44+ prostate cancer–initiating cells. Cancer Res. 2012;72(14):3618–30.PubMedCrossRef Saini S, Majid S, Shahryari V, Arora S, Yamamura S, Chang I, et al. miRNA-708 control of CD44+ prostate cancer–initiating cells. Cancer Res. 2012;72(14):3618–30.PubMedCrossRef
142.
go back to reference Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18(1):11–22.PubMedPubMedCentralCrossRef Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18(1):11–22.PubMedPubMedCentralCrossRef
143.
go back to reference Rasheed SAK, Teo CR, Beillard EJ, Voorhoeve PM, Casey PJ. MicroRNA-182 and microRNA-200a control G-protein subunit α-13 (GNA13) expression and cell invasion synergistically in prostate cancer cells. J Biol Chem. 2013;288(11):7986–95.PubMedPubMedCentralCrossRef Rasheed SAK, Teo CR, Beillard EJ, Voorhoeve PM, Casey PJ. MicroRNA-182 and microRNA-200a control G-protein subunit α-13 (GNA13) expression and cell invasion synergistically in prostate cancer cells. J Biol Chem. 2013;288(11):7986–95.PubMedPubMedCentralCrossRef
144.
go back to reference LeRoy G, Loyola A, Lane WS, Reinberg D. Purification and characterization of a human factor that assembles and remodels chromatin. J Biol Chem. 2000;275(20):14787–90.PubMedCrossRef LeRoy G, Loyola A, Lane WS, Reinberg D. Purification and characterization of a human factor that assembles and remodels chromatin. J Biol Chem. 2000;275(20):14787–90.PubMedCrossRef
145.
go back to reference Gregory PA, Bracken CP, Bert AG, Goodall GJ. MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle. 2008;7(20):3112–7.PubMedCrossRef Gregory PA, Bracken CP, Bert AG, Goodall GJ. MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle. 2008;7(20):3112–7.PubMedCrossRef
148.
go back to reference Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell. 2001;7(6):1267–78.PubMedCrossRef Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell. 2001;7(6):1267–78.PubMedCrossRef
149.
go back to reference Gonzales JC, Fink LM, Goodman Jr OB, Symanowski JT, Vogelzang NJ, Ward DC. Comparison of circulating MicroRNA 141 to circulating tumor cells, lactate dehydrogenase, and prostate-specific antigen for determining treatment response in patients with metastatic prostate cancer. Clin Genitourin Cancer. 2011;9(1):39–45.PubMedCrossRef Gonzales JC, Fink LM, Goodman Jr OB, Symanowski JT, Vogelzang NJ, Ward DC. Comparison of circulating MicroRNA 141 to circulating tumor cells, lactate dehydrogenase, and prostate-specific antigen for determining treatment response in patients with metastatic prostate cancer. Clin Genitourin Cancer. 2011;9(1):39–45.PubMedCrossRef
150.
go back to reference Li Y, VandenBoom TG, Kong D, Wang Z, Ali S, Philip PA, et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 2009;69(16):6704–12.PubMedPubMedCentralCrossRef Li Y, VandenBoom TG, Kong D, Wang Z, Ali S, Philip PA, et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 2009;69(16):6704–12.PubMedPubMedCentralCrossRef
151.
go back to reference Takeshita F, Patrawala L, Osaki M, Takahashi R-U, Yamamoto Y, Kosaka N, et al. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther. 2010;18(1):181–7.PubMedCrossRef Takeshita F, Patrawala L, Osaki M, Takahashi R-U, Yamamoto Y, Kosaka N, et al. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther. 2010;18(1):181–7.PubMedCrossRef
152.
go back to reference Cole MD, Cowling VH. Transcription-independent functions of MYC: regulation of translation and DNA replication. Nat Rev Mol Cell Biol. 2008;9(10):810–5.PubMedCrossRef Cole MD, Cowling VH. Transcription-independent functions of MYC: regulation of translation and DNA replication. Nat Rev Mol Cell Biol. 2008;9(10):810–5.PubMedCrossRef
153.
go back to reference Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ. Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol. 1998;161(6):2833–40.PubMed Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ. Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol. 1998;161(6):2833–40.PubMed
154.
go back to reference Zaman MS, Chen Y, Deng G, Shahryari V, Suh S, Saini S, et al. The functional significance of microRNA-145 in prostate cancer. Br J Cancer. 2010;103(2):256–64.PubMedPubMedCentralCrossRef Zaman MS, Chen Y, Deng G, Shahryari V, Suh S, Saini S, et al. The functional significance of microRNA-145 in prostate cancer. Br J Cancer. 2010;103(2):256–64.PubMedPubMedCentralCrossRef
155.
go back to reference Liu C, Kelnar K, Vlassov AV, Brown D, Wang J, Tang DG. Distinct microRNA expression profiles in prostate cancer stem/progenitor cells and tumor-suppressive functions of let-7. Cancer Res. 2012;72(13):3393–404.PubMedCrossRef Liu C, Kelnar K, Vlassov AV, Brown D, Wang J, Tang DG. Distinct microRNA expression profiles in prostate cancer stem/progenitor cells and tumor-suppressive functions of let-7. Cancer Res. 2012;72(13):3393–404.PubMedCrossRef
156.
go back to reference Majid S, Dar AA, Saini S, Shahryari V, Arora S, Zaman MS, et al. miRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways. Clin Cancer Res. 2013;19(1):73–84.PubMedCrossRef Majid S, Dar AA, Saini S, Shahryari V, Arora S, Zaman MS, et al. miRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways. Clin Cancer Res. 2013;19(1):73–84.PubMedCrossRef
158.
go back to reference Seidegård J, Ekström G. The role of human glutathione transferases and epoxide hydrolases in the metabolism of xenobiotics. Environ Health Perspect. 1997;105 Suppl 4:791.PubMedPubMedCentralCrossRef Seidegård J, Ekström G. The role of human glutathione transferases and epoxide hydrolases in the metabolism of xenobiotics. Environ Health Perspect. 1997;105 Suppl 4:791.PubMedPubMedCentralCrossRef
159.
go back to reference Singh S, Shukla GC, Gupta S. MicroRNA regulating glutathione S-transferase P1 in prostate cancer. Curr Pharmacol Rep. 2015;1(2):79–88. Singh S, Shukla GC, Gupta S. MicroRNA regulating glutathione S-transferase P1 in prostate cancer. Curr Pharmacol Rep. 2015;1(2):79–88.
160.
go back to reference Tao J, Wu D, Xu B, Qian W, Li P, Lu Q, et al. microRNA-133 inhibits cell proliferation, migration and invasion in prostate cancer cells by targeting the epidermal growth factor receptor. Oncol Rep. 2012;27(6):1967.PubMed Tao J, Wu D, Xu B, Qian W, Li P, Lu Q, et al. microRNA-133 inhibits cell proliferation, migration and invasion in prostate cancer cells by targeting the epidermal growth factor receptor. Oncol Rep. 2012;27(6):1967.PubMed
161.
go back to reference Uchida Y, Chiyomaru T, Enokida H, Kawakami K, Tatarano S, Kawahara K, et al., editors. MiR-133a induces apoptosis through direct regulation of GSTP1 in bladder cancer cell lines. Urol Oncol: Semin Ori. 2013;13(1):115–23. Uchida Y, Chiyomaru T, Enokida H, Kawakami K, Tatarano S, Kawahara K, et al., editors. MiR-133a induces apoptosis through direct regulation of GSTP1 in bladder cancer cell lines. Urol Oncol: Semin Ori. 2013;13(1):115–23.
162.
go back to reference Negi A, Gill B. Success stories of enolate form of drugs. PharmaTutor. 2013;1(2):45–53. Negi A, Gill B. Success stories of enolate form of drugs. PharmaTutor. 2013;1(2):45–53.
163.
go back to reference Petersen M, Nielsen CB, Nielsen KE, Jensen GA, Bondensgaard K, Singh SK, et al. The conformations of locked nucleic acids (LNA). J Mol Recognit. 2000;13(1):44–53.PubMedCrossRef Petersen M, Nielsen CB, Nielsen KE, Jensen GA, Bondensgaard K, Singh SK, et al. The conformations of locked nucleic acids (LNA). J Mol Recognit. 2000;13(1):44–53.PubMedCrossRef
164.
go back to reference Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010;70(14):5923–30.PubMedPubMedCentralCrossRef Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010;70(14):5923–30.PubMedPubMedCentralCrossRef
165.
167.
go back to reference Zhang W, Winder T, Ning Y, Pohl A, Yang D, Kahn M, et al. A let-7 microRNA-binding site polymorphism in 3′-untranslated region of KRAS gene predicts response in wild-type KRAS patients with metastatic colorectal cancer treated with cetuximab monotherapy. Ann Oncol. 2011;22(1):104–9.PubMedCrossRef Zhang W, Winder T, Ning Y, Pohl A, Yang D, Kahn M, et al. A let-7 microRNA-binding site polymorphism in 3′-untranslated region of KRAS gene predicts response in wild-type KRAS patients with metastatic colorectal cancer treated with cetuximab monotherapy. Ann Oncol. 2011;22(1):104–9.PubMedCrossRef
168.
go back to reference van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316(5824):575–9.PubMedCrossRef van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316(5824):575–9.PubMedCrossRef
169.
go back to reference Nana‐Sinkam S, Croce C. Clinical applications for microRNAs in cancer. Clin Pharmacol Ther. 2013;93(1):98–104.PubMedCrossRef Nana‐Sinkam S, Croce C. Clinical applications for microRNAs in cancer. Clin Pharmacol Ther. 2013;93(1):98–104.PubMedCrossRef
170.
go back to reference Saini S, Majid S, Shahryari V, Tabatabai ZL, Arora S, Yamamura S, et al. Regulation of SRC kinases by microRNA-3607 located in a frequently deleted locus in prostate cancer. Mol Cancer Ther. 2014;13(7):1952–63.PubMedPubMedCentralCrossRef Saini S, Majid S, Shahryari V, Tabatabai ZL, Arora S, Yamamura S, et al. Regulation of SRC kinases by microRNA-3607 located in a frequently deleted locus in prostate cancer. Mol Cancer Ther. 2014;13(7):1952–63.PubMedPubMedCentralCrossRef
171.
go back to reference Kogo R, Mimori K, Tanaka F, Komune S, Mori M. Clinical significance of miR-146a in gastric cancer cases. Clin Cancer Res. 2011;17(13):4277–84.PubMedCrossRef Kogo R, Mimori K, Tanaka F, Komune S, Mori M. Clinical significance of miR-146a in gastric cancer cases. Clin Cancer Res. 2011;17(13):4277–84.PubMedCrossRef
172.
go back to reference Hennessy EJ, Moore KJ. Using microRNA as an alternative treatment for hyperlipidemia and cardiovascular disease: cardio-miRs in the pipeline. J Cardiovasc Pharmacol. 2013;62(3):247.PubMedPubMedCentralCrossRef Hennessy EJ, Moore KJ. Using microRNA as an alternative treatment for hyperlipidemia and cardiovascular disease: cardio-miRs in the pipeline. J Cardiovasc Pharmacol. 2013;62(3):247.PubMedPubMedCentralCrossRef
173.
go back to reference Tomimaru Y, Eguchi H, Nagano H, Wada H, Kobayashi S, Marubashi S, et al. Circulating microRNA-21 as a novel biomarker for hepatocellular carcinoma. J Hepatol. 2012;56(1):167–75.PubMedCrossRef Tomimaru Y, Eguchi H, Nagano H, Wada H, Kobayashi S, Marubashi S, et al. Circulating microRNA-21 as a novel biomarker for hepatocellular carcinoma. J Hepatol. 2012;56(1):167–75.PubMedCrossRef
174.
go back to reference Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, Parathath S, et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest. 2011;121(7):2921.PubMedPubMedCentralCrossRef Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, Parathath S, et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest. 2011;121(7):2921.PubMedPubMedCentralCrossRef
175.
go back to reference Negi A, Gill B, Anand S. Tilling: versatile reverse genetic tool. PharmaTutor. 2014;2(1):26–32. Negi A, Gill B, Anand S. Tilling: versatile reverse genetic tool. PharmaTutor. 2014;2(1):26–32.
176.
go back to reference Taneja SS. A multidisciplinary approach to the management of hormone-refractory prostate cancer. Rev Urol. 2003;5 Suppl 2:S53.PubMedPubMedCentral Taneja SS. A multidisciplinary approach to the management of hormone-refractory prostate cancer. Rev Urol. 2003;5 Suppl 2:S53.PubMedPubMedCentral
177.
go back to reference Knudsen KE, Scher HI. Starving the addiction: new opportunities for durable suppression of AR signaling in prostate cancer. Clin Cancer Res. 2009;15(15):4792–8.PubMedPubMedCentralCrossRef Knudsen KE, Scher HI. Starving the addiction: new opportunities for durable suppression of AR signaling in prostate cancer. Clin Cancer Res. 2009;15(15):4792–8.PubMedPubMedCentralCrossRef
178.
go back to reference Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer. 2001;1(1):34–45.PubMedCrossRef Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer. 2001;1(1):34–45.PubMedCrossRef
179.
180.
go back to reference Yang M, Mattes J. Discovery, biology and therapeutic potential of RNA interference, microRNA and antagomirs. Pharmacol Ther. 2008;117(1):94–104.PubMedCrossRef Yang M, Mattes J. Discovery, biology and therapeutic potential of RNA interference, microRNA and antagomirs. Pharmacol Ther. 2008;117(1):94–104.PubMedCrossRef
181.
go back to reference Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4(9):721–6.PubMedCrossRef Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4(9):721–6.PubMedCrossRef
182.
go back to reference Krützfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T, et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res. 2007;35(9):2885–92.PubMedPubMedCentralCrossRef Krützfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T, et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res. 2007;35(9):2885–92.PubMedPubMedCentralCrossRef
183.
go back to reference Cortez MA, Valdecanas D, Zhang X, Zhan Y, Bhardwaj V, Calin GA, et al. Therapeutic delivery of miR-200c enhances radiosensitivity in lung cancer. Mol Ther. 2014;22(8):1494–503.PubMedPubMedCentralCrossRef Cortez MA, Valdecanas D, Zhang X, Zhan Y, Bhardwaj V, Calin GA, et al. Therapeutic delivery of miR-200c enhances radiosensitivity in lung cancer. Mol Ther. 2014;22(8):1494–503.PubMedPubMedCentralCrossRef
184.
go back to reference Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17(2):211–5.PubMedPubMedCentralCrossRef Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17(2):211–5.PubMedPubMedCentralCrossRef
185.
go back to reference Korpela E, Vesprini D, Liu S. MicroRNA in radiotherapy: miRage or miRador&quest. Br J Cancer. 2015;112:777–82. Korpela E, Vesprini D, Liu S. MicroRNA in radiotherapy: miRage or miRador&quest. Br J Cancer. 2015;112:777–82.
186.
go back to reference Bentzen SM, Parliament M, Deasy JO, Dicker A, Curran WJ, Williams JP, et al. Biomarkers and surrogate endpoints for normal-tissue effects of radiation therapy: the importance of dose–volume effects. Int J Radiat Oncol Biol Phys. 2010;76(3):S145–50.PubMedPubMedCentralCrossRef Bentzen SM, Parliament M, Deasy JO, Dicker A, Curran WJ, Williams JP, et al. Biomarkers and surrogate endpoints for normal-tissue effects of radiation therapy: the importance of dose–volume effects. Int J Radiat Oncol Biol Phys. 2010;76(3):S145–50.PubMedPubMedCentralCrossRef
187.
go back to reference Hamama S, Noman MZ, Gervaz P, Delanian S, Vozenin M-C. MiR-210: a potential therapeutic target against radiation-induced enteropathy. Radiother Oncol. 2014;111(2):219–21.PubMedCrossRef Hamama S, Noman MZ, Gervaz P, Delanian S, Vozenin M-C. MiR-210: a potential therapeutic target against radiation-induced enteropathy. Radiother Oncol. 2014;111(2):219–21.PubMedCrossRef
188.
go back to reference Pan Y, Zhang Y, Jia T, Zhang K, Li J, Wang L. Development of a microRNA delivery system based on bacteriophage MS2 virus‐like particles. FEBS J. 2012;279(7):1198–208.PubMedCrossRef Pan Y, Zhang Y, Jia T, Zhang K, Li J, Wang L. Development of a microRNA delivery system based on bacteriophage MS2 virus‐like particles. FEBS J. 2012;279(7):1198–208.PubMedCrossRef
189.
go back to reference Zhang X, Zhu S, Li Z, Yuan X, Cui Z, Yang X, et al. Multilayer modification on titanium surface for in situ delivery of MicroRNAs. Mater Lett. 2014;133:243–6.CrossRef Zhang X, Zhu S, Li Z, Yuan X, Cui Z, Yang X, et al. Multilayer modification on titanium surface for in situ delivery of MicroRNAs. Mater Lett. 2014;133:243–6.CrossRef
190.
go back to reference Izzard L, Ye S, Jenkins K, Xia Y, Tizard M, Stambas J. miRNA modulation of SOCS1 using an influenza A virus delivery system. J Gen Virol. 2014;95(Pt 9):1880–5.PubMedCrossRef Izzard L, Ye S, Jenkins K, Xia Y, Tizard M, Stambas J. miRNA modulation of SOCS1 using an influenza A virus delivery system. J Gen Virol. 2014;95(Pt 9):1880–5.PubMedCrossRef
191.
go back to reference Maier MA, Jayaraman M, Matsuda S, Liu J, Barros S, Querbes W, et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol Ther. 2013;21(8):1570–8.PubMedPubMedCentralCrossRef Maier MA, Jayaraman M, Matsuda S, Liu J, Barros S, Querbes W, et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol Ther. 2013;21(8):1570–8.PubMedPubMedCentralCrossRef
192.
go back to reference Shi S, Han L, Deng L, Zhang Y, Shen H, Gong T, et al. Dual drugs (microRNA-34a and paclitaxel)-loaded functional solid lipid nanoparticles for synergistic cancer cell suppression. J Control Release. 2014;194:228–37.PubMedCrossRef Shi S, Han L, Deng L, Zhang Y, Shen H, Gong T, et al. Dual drugs (microRNA-34a and paclitaxel)-loaded functional solid lipid nanoparticles for synergistic cancer cell suppression. J Control Release. 2014;194:228–37.PubMedCrossRef
193.
go back to reference Lin S-Y, Zhao W-Y, Tsai H-C, Hsu W-H, Lo C-L, Hsiue G-H. Sterically polymer-based liposomal complexes with dual-shell structure for enhancing the siRNA delivery. Biomacromolecules. 2012;13(3):664–75.PubMedCrossRef Lin S-Y, Zhao W-Y, Tsai H-C, Hsu W-H, Lo C-L, Hsiue G-H. Sterically polymer-based liposomal complexes with dual-shell structure for enhancing the siRNA delivery. Biomacromolecules. 2012;13(3):664–75.PubMedCrossRef
194.
go back to reference Wong SC, Klein JJ, Hamilton HL, Chu Q, Frey CL, Trubetskoy VS, et al. Co-injection of a targeted, reversibly masked endosomolytic polymer dramatically improves the efficacy of cholesterol-conjugated small interfering RNAs in vivo. Nucleic Acid Ther. 2012;22(6):380–90.PubMedPubMedCentral Wong SC, Klein JJ, Hamilton HL, Chu Q, Frey CL, Trubetskoy VS, et al. Co-injection of a targeted, reversibly masked endosomolytic polymer dramatically improves the efficacy of cholesterol-conjugated small interfering RNAs in vivo. Nucleic Acid Ther. 2012;22(6):380–90.PubMedPubMedCentral
195.
go back to reference Hao Z, Fan W, Hao J, Wu X, Zeng GQ, Zhang LJ et al. Efficient delivery of micro RNA to bone-metastatic prostate tumors by using aptamer-conjugated atelocollagen in vitro and in vivo. Drug Deliv. 2014. p. 1-8. Hao Z, Fan W, Hao J, Wu X, Zeng GQ, Zhang LJ et al. Efficient delivery of micro RNA to bone-metastatic prostate tumors by using aptamer-conjugated atelocollagen in vitro and in vivo. Drug Deliv. 2014. p. 1-8.
196.
go back to reference Peltier HJ, Latham GJ. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA. 2008;14(5):844–52.PubMedPubMedCentralCrossRef Peltier HJ, Latham GJ. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA. 2008;14(5):844–52.PubMedPubMedCentralCrossRef
Metadata
Title
Missing link between microRNA and prostate cancer
Publication date
01-05-2016
Published in
Tumor Biology / Issue 5/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-4900-x

Other articles of this Issue 5/2016

Tumor Biology 5/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine