Skip to main content
Top
Published in: Tumor Biology 2/2016

01-02-2016 | Review

Research advances in HMGN5 and cancer

Authors: Zhan Shi, Run Tang, Ding Wu, Xiaoqing Sun

Published in: Tumor Biology | Issue 2/2016

Login to get access

Abstract

High-mobility group nucleosome-binding domain 5 (HMGN5) is a new member of the high-mobility group N (HMGN) protein family that is involved in nucleosomal binding and transcriptional activation. It was first discovered in mouse, and recent studies found that the expressions of HMGN5 in many human cancers were also highly regulated, such as prostate, bladder, breast, and lung and clear cell renal cell carcinoma. Numerous reports have demonstrated that HMGN5 plays significant roles in many biological and pathological conditions, such as in developmental defects, hypersensitivity to stress, embryonic stem cell differentiation, and tumor progression. Importantly, deficiency of HMGN5 has been shown to be linked to cancer cell growth, cell cycle regulation, migration, invasion, and clinical outcomes, and it represents a promising therapeutic target for many malignant tumors. In the present review, we provide an overview of the current knowledge concerning the role of HMGN5 in cancer development and progression.
Literature
1.
go back to reference Hock R, Furusawa T, Ueda T, Bustin M. HMG chromosomal proteins in development and disease. Trends Cell Biol. 2007;17(2):72–9.CrossRefPubMed Hock R, Furusawa T, Ueda T, Bustin M. HMG chromosomal proteins in development and disease. Trends Cell Biol. 2007;17(2):72–9.CrossRefPubMed
2.
go back to reference Postnikov Y, Bustin M. Regulation of chromatin structure and function by HMGN proteins. Biochim Biophys Acta. 2010;1799(1–2):62–8.CrossRefPubMed Postnikov Y, Bustin M. Regulation of chromatin structure and function by HMGN proteins. Biochim Biophys Acta. 2010;1799(1–2):62–8.CrossRefPubMed
3.
go back to reference Rochman M, Taher L, Kurahashi T, Cherukuri S, Uversky VN, Landsman D, et al. Effects of HMGN variants on the cellular transcription profile. Nucleic Acids Res. 2011;39(10):4076–87.CrossRefPubMedPubMedCentral Rochman M, Taher L, Kurahashi T, Cherukuri S, Uversky VN, Landsman D, et al. Effects of HMGN variants on the cellular transcription profile. Nucleic Acids Res. 2011;39(10):4076–87.CrossRefPubMedPubMedCentral
4.
go back to reference Kugler JE, Deng T, Bustin M. The HMGN family of chromatin-binding proteins: dynamic modulators of epigenetic processes. Biochim Biophys Acta. 2012;1819(7):652–6.CrossRefPubMedPubMedCentral Kugler JE, Deng T, Bustin M. The HMGN family of chromatin-binding proteins: dynamic modulators of epigenetic processes. Biochim Biophys Acta. 2012;1819(7):652–6.CrossRefPubMedPubMedCentral
6.
go back to reference Rochman M, Malicet C, Bustin M. HMGN5/NSBP1: a new member of the HMGN protein family that affects chromatin structure and function. Biochim Biophys Acta. 2010;1799(1–2):86–92.CrossRefPubMedPubMedCentral Rochman M, Malicet C, Bustin M. HMGN5/NSBP1: a new member of the HMGN protein family that affects chromatin structure and function. Biochim Biophys Acta. 2010;1799(1–2):86–92.CrossRefPubMedPubMedCentral
7.
go back to reference Rochman M, Postnikov Y, Correll S, Malicet C, Wincovitch S, Karpova TS, et al. The interaction of NSBP1/HMGN5 with nucleosomes in euchromatin counteracts linker histone-mediated chromatin compaction and modulates transcription. Mol Cell. 2009;35(5):642–56.CrossRefPubMedPubMedCentral Rochman M, Postnikov Y, Correll S, Malicet C, Wincovitch S, Karpova TS, et al. The interaction of NSBP1/HMGN5 with nucleosomes in euchromatin counteracts linker histone-mediated chromatin compaction and modulates transcription. Mol Cell. 2009;35(5):642–56.CrossRefPubMedPubMedCentral
8.
go back to reference Shirakawa H, Landsman D, Postnikov YV, Bustin M. NBP-45, a novel nucleosomal binding protein with a tissue-specific and developmentally regulated expression. J Biol Chem. 2000;275(9):6368–74.CrossRefPubMed Shirakawa H, Landsman D, Postnikov YV, Bustin M. NBP-45, a novel nucleosomal binding protein with a tissue-specific and developmentally regulated expression. J Biol Chem. 2000;275(9):6368–74.CrossRefPubMed
9.
go back to reference King LM, Francomano CA. Characterization of a human gene encoding nucleosomal binding protein NSBP1. Genomics. 2001;71(2):163–73.CrossRefPubMed King LM, Francomano CA. Characterization of a human gene encoding nucleosomal binding protein NSBP1. Genomics. 2001;71(2):163–73.CrossRefPubMed
10.
11.
go back to reference Song G, Zhou LQ, Weng M, He Q, He ZS, Hao JR, et al. Expression of nucleosomal binding protein 1 in normal prostate benign prostate hyperplasia, and prostate cancer and significance thereof. Zhonghua Yi Xue Za Zhi. 2006;86(28):1962–5.PubMed Song G, Zhou LQ, Weng M, He Q, He ZS, Hao JR, et al. Expression of nucleosomal binding protein 1 in normal prostate benign prostate hyperplasia, and prostate cancer and significance thereof. Zhonghua Yi Xue Za Zhi. 2006;86(28):1962–5.PubMed
12.
go back to reference Jiang N, Zhou LQ, Zhang XY. Downregulation of the nucleosome-binding protein 1 (NSBP1) gene can inhibit the in vitro and in vivo proliferation of prostate cancer cells. Asian J Androl. 2010;12(5):709–17.CrossRefPubMedPubMedCentral Jiang N, Zhou LQ, Zhang XY. Downregulation of the nucleosome-binding protein 1 (NSBP1) gene can inhibit the in vitro and in vivo proliferation of prostate cancer cells. Asian J Androl. 2010;12(5):709–17.CrossRefPubMedPubMedCentral
13.
go back to reference Zhang XY, Guo ZQ, Ji SQ, Zhang M, Jiang N, Li XS, et al. Small interfering RNA targeting HMGN5 induces apoptosis via modulation of a mitochondrial pathway and Bcl-2 family proteins in prostate cancer cells. Asian J Androl. 2012;14(3):487–92.CrossRefPubMedPubMedCentral Zhang XY, Guo ZQ, Ji SQ, Zhang M, Jiang N, Li XS, et al. Small interfering RNA targeting HMGN5 induces apoptosis via modulation of a mitochondrial pathway and Bcl-2 family proteins in prostate cancer cells. Asian J Androl. 2012;14(3):487–92.CrossRefPubMedPubMedCentral
14.
go back to reference Su B, Shi B, Tang Y, Guo Z, Yu X, He X, et al. HMGN5 knockdown sensitizes prostate cancer cells to ionizing radiation. Prostate. 2015;75(1):33–44.CrossRefPubMed Su B, Shi B, Tang Y, Guo Z, Yu X, He X, et al. HMGN5 knockdown sensitizes prostate cancer cells to ionizing radiation. Prostate. 2015;75(1):33–44.CrossRefPubMed
15.
go back to reference Huang CY, Chang YJ, Luo SD, Uyanga B, Lin FY, Tai CJ et al. Maspin mediates the gemcitabine sensitivity of hormone-independent prostate cancer. Tumour Biol J Int Soc Oncodev Biol Med. 2015. doi:10.1007/s13277-015-4083-x. Huang CY, Chang YJ, Luo SD, Uyanga B, Lin FY, Tai CJ et al. Maspin mediates the gemcitabine sensitivity of hormone-independent prostate cancer. Tumour Biol J Int Soc Oncodev Biol Med. 2015. doi:10.​1007/​s13277-015-4083-x.
16.
go back to reference Guo Z, Zhang X, Li X, Xie F, Su B, Zhang M, et al. Expression of oncogenic HMGN5 increases the sensitivity of prostate cancer cells to gemcitabine. Oncol Rep. 2015;33(3):1519–25.PubMed Guo Z, Zhang X, Li X, Xie F, Su B, Zhang M, et al. Expression of oncogenic HMGN5 increases the sensitivity of prostate cancer cells to gemcitabine. Oncol Rep. 2015;33(3):1519–25.PubMed
17.
go back to reference Wei P, Qiao B, Li Q, Han X, Zhang H, Huo Q, et al. microRNA-340 suppresses tumorigenic potential of prostate cancer cells by targeting high-mobility group nucleosome-binding domain 5. DNA Cell Biol. 2015. doi:10.1089/dna.2015.3021. Wei P, Qiao B, Li Q, Han X, Zhang H, Huo Q, et al. microRNA-340 suppresses tumorigenic potential of prostate cancer cells by targeting high-mobility group nucleosome-binding domain 5. DNA Cell Biol. 2015. doi:10.​1089/​dna.​2015.​3021.
18.
go back to reference Wahafu W, He ZS, Zhang XY, Zhang CJ, Yao K, Hao H, et al. The nucleosome binding protein NSBP1 is highly expressed in human bladder cancer and promotes the proliferation and invasion of bladder cancer cells. Tumour Biol J Int Soc Oncodev Biol Med. 2011;32(5):931–9.CrossRef Wahafu W, He ZS, Zhang XY, Zhang CJ, Yao K, Hao H, et al. The nucleosome binding protein NSBP1 is highly expressed in human bladder cancer and promotes the proliferation and invasion of bladder cancer cells. Tumour Biol J Int Soc Oncodev Biol Med. 2011;32(5):931–9.CrossRef
19.
go back to reference Gan Y, Tan J, Yang J, Zhou Y, Dai Y, He L, et al. Knockdown of HMGN5 suppresses the viability and invasion of human urothelial bladder cancer 5637 cells in vitro and in vivo. Med Oncol. 2015;32(4):136.CrossRefPubMed Gan Y, Tan J, Yang J, Zhou Y, Dai Y, He L, et al. Knockdown of HMGN5 suppresses the viability and invasion of human urothelial bladder cancer 5637 cells in vitro and in vivo. Med Oncol. 2015;32(4):136.CrossRefPubMed
20.
go back to reference Yao K, He L, Gan Y, Zeng Q, Dai Y, Tan J. MiR-186 suppresses the growth and metastasis of bladder cancer by targeting NSBP1. Diagn Pathol. 2015;10:146.CrossRefPubMedPubMedCentral Yao K, He L, Gan Y, Zeng Q, Dai Y, Tan J. MiR-186 suppresses the growth and metastasis of bladder cancer by targeting NSBP1. Diagn Pathol. 2015;10:146.CrossRefPubMedPubMedCentral
21.
go back to reference Zhao Z, Wu F, Ding S, Sun L, Liu Z, Ding K, et al. Label-free quantitative proteomic analysis reveals potential biomarkers and pathways in renal cell carcinoma. Tumour Biol J Int Soc Oncodev Biol Med. 2015;36(2):939–51.CrossRef Zhao Z, Wu F, Ding S, Sun L, Liu Z, Ding K, et al. Label-free quantitative proteomic analysis reveals potential biomarkers and pathways in renal cell carcinoma. Tumour Biol J Int Soc Oncodev Biol Med. 2015;36(2):939–51.CrossRef
22.
go back to reference Brugarolas J. Molecular genetics of clear-cell renal cell carcinoma. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(18):1968–76.CrossRef Brugarolas J. Molecular genetics of clear-cell renal cell carcinoma. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(18):1968–76.CrossRef
23.
go back to reference Ji SQ, Yao L, Zhang XY, Li XS, Zhou LQ. Knockdown of the nucleosome binding protein 1 inhibits the growth and invasion of clear cell renal cell carcinoma cells in vitro and in vivo. J Exp Clin Cancer Res. 2012;31:22.CrossRefPubMedPubMedCentral Ji SQ, Yao L, Zhang XY, Li XS, Zhou LQ. Knockdown of the nucleosome binding protein 1 inhibits the growth and invasion of clear cell renal cell carcinoma cells in vitro and in vivo. J Exp Clin Cancer Res. 2012;31:22.CrossRefPubMedPubMedCentral
24.
go back to reference Chen P, Wang XL, Ma ZS, Xu Z, Jia B, Ren J, et al. Knockdown of HMGN5 expression by RNA interference induces cell cycle arrest in human lung cancer cells. Asian Pac J Cancer Prev. 2012;13(7):3223–8.CrossRefPubMed Chen P, Wang XL, Ma ZS, Xu Z, Jia B, Ren J, et al. Knockdown of HMGN5 expression by RNA interference induces cell cycle arrest in human lung cancer cells. Asian Pac J Cancer Prev. 2012;13(7):3223–8.CrossRefPubMed
25.
go back to reference Li DQ, Hou YF, Wu J, Chen Y, Lu JS, Di GH, et al. Gene expression profile analysis of an isogenic tumour metastasis model reveals a functional role for oncogene AF1Q in breast cancer metastasis. Eur J Cancer. 2006;42(18):3274–86.CrossRefPubMed Li DQ, Hou YF, Wu J, Chen Y, Lu JS, Di GH, et al. Gene expression profile analysis of an isogenic tumour metastasis model reveals a functional role for oncogene AF1Q in breast cancer metastasis. Eur J Cancer. 2006;42(18):3274–86.CrossRefPubMed
26.
go back to reference Weng M, Song F, Chen J, Wu J, Qin J, Jin T, et al. The high-mobility group nucleosome-binding domain 5 is highly expressed in breast cancer and promotes the proliferation and invasion of breast cancer cells. Tumour Biol J Int Soc Oncodev Biol Med. 2015;36(2):959–66.CrossRef Weng M, Song F, Chen J, Wu J, Qin J, Jin T, et al. The high-mobility group nucleosome-binding domain 5 is highly expressed in breast cancer and promotes the proliferation and invasion of breast cancer cells. Tumour Biol J Int Soc Oncodev Biol Med. 2015;36(2):959–66.CrossRef
28.
go back to reference Zhou X, Yuan B, Yuan W, Wang C, Gao R, Wang J. The expression and clinical significance of high mobility group nucleosome binding domain 5 in human osteosarcoma. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35(7):6539–47.CrossRef Zhou X, Yuan B, Yuan W, Wang C, Gao R, Wang J. The expression and clinical significance of high mobility group nucleosome binding domain 5 in human osteosarcoma. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35(7):6539–47.CrossRef
29.
go back to reference Zhou W, Hao M, Du X, Chen K, Wang G, Yang J. Advances in targeted therapy for osteosarcoma. Discov Med. 2014;17(96):301–7.PubMed Zhou W, Hao M, Du X, Chen K, Wang G, Yang J. Advances in targeted therapy for osteosarcoma. Discov Med. 2014;17(96):301–7.PubMed
31.
go back to reference Xiao X, Wang W, Wang Z. The role of chemotherapy for metastatic, relapsed and refractory osteosarcoma. Paediatr Drugs. 2014;16(6):503–12.CrossRefPubMed Xiao X, Wang W, Wang Z. The role of chemotherapy for metastatic, relapsed and refractory osteosarcoma. Paediatr Drugs. 2014;16(6):503–12.CrossRefPubMed
32.
go back to reference Yang C, Gao R, Wang J, Yuan W, Wang C, Zhou X. High-mobility group nucleosome-binding domain 5 increases drug resistance in osteosarcoma through upregulating autophagy. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35(7):6357–63.CrossRef Yang C, Gao R, Wang J, Yuan W, Wang C, Zhou X. High-mobility group nucleosome-binding domain 5 increases drug resistance in osteosarcoma through upregulating autophagy. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35(7):6357–63.CrossRef
33.
go back to reference Qu J, Yan R, Chen J, Xu T, Zhou J, Wang M, et al. HMGN5: a potential oncogene in gliomas. J Neuro-Oncol. 2011;104(3):729–36.CrossRef Qu J, Yan R, Chen J, Xu T, Zhou J, Wang M, et al. HMGN5: a potential oncogene in gliomas. J Neuro-Oncol. 2011;104(3):729–36.CrossRef
35.
go back to reference Spano D, Heck C, De Antonellis P, Christofori G, Zollo M. Molecular networks that regulate cancer metastasis. Semin Cancer Biol. 2012;22(3):234–49.CrossRefPubMed Spano D, Heck C, De Antonellis P, Christofori G, Zollo M. Molecular networks that regulate cancer metastasis. Semin Cancer Biol. 2012;22(3):234–49.CrossRefPubMed
37.
go back to reference Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest. 2009;119(6):1438–49.CrossRefPubMedPubMedCentral Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest. 2009;119(6):1438–49.CrossRefPubMedPubMedCentral
39.
go back to reference Cao H, Xu E, Liu H, Wan L, Lai M. Epithelial-mesenchymal transition in colorectal cancer metastasis: a system review. Pathol Res Pract. 2015;211(8):557–69.CrossRefPubMed Cao H, Xu E, Liu H, Wan L, Lai M. Epithelial-mesenchymal transition in colorectal cancer metastasis: a system review. Pathol Res Pract. 2015;211(8):557–69.CrossRefPubMed
40.
go back to reference Wong IY, Javaid S, Wong EA, Perk S, Haber DA, Toner M, et al. Collective and individual migration following the epithelial-mesenchymal transition. Nat Mater. 2014;13(11):1063–71.CrossRefPubMedPubMedCentral Wong IY, Javaid S, Wong EA, Perk S, Haber DA, Toner M, et al. Collective and individual migration following the epithelial-mesenchymal transition. Nat Mater. 2014;13(11):1063–71.CrossRefPubMedPubMedCentral
41.
go back to reference Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28(1–2):15–33.CrossRefPubMed Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28(1–2):15–33.CrossRefPubMed
42.
go back to reference Garg M. Targeting microRNAs in epithelial-to-mesenchymal transition-induced cancer stem cells: therapeutic approaches in cancer. Expert Opin Ther Targets. 2015;19(2):285–97.CrossRefPubMed Garg M. Targeting microRNAs in epithelial-to-mesenchymal transition-induced cancer stem cells: therapeutic approaches in cancer. Expert Opin Ther Targets. 2015;19(2):285–97.CrossRefPubMed
44.
go back to reference Yun SJ, Kim WJ. Role of the epithelial-mesenchymal transition in bladder cancer: from prognosis to therapeutic target. Korean J Urol. 2013;54(10):645–50.CrossRefPubMedPubMedCentral Yun SJ, Kim WJ. Role of the epithelial-mesenchymal transition in bladder cancer: from prognosis to therapeutic target. Korean J Urol. 2013;54(10):645–50.CrossRefPubMedPubMedCentral
45.
go back to reference Xiong D, Liou Y, Shu J, Li D, Zhang L, Chen J. Down-regulating ribonuclease inhibitor enhances metastasis of bladder cancer cells through regulating epithelial-mesenchymal transition and ILK signaling pathway. Exp Mol Pathol. 2014;96(3):411–21.CrossRefPubMed Xiong D, Liou Y, Shu J, Li D, Zhang L, Chen J. Down-regulating ribonuclease inhibitor enhances metastasis of bladder cancer cells through regulating epithelial-mesenchymal transition and ILK signaling pathway. Exp Mol Pathol. 2014;96(3):411–21.CrossRefPubMed
46.
go back to reference McConkey DJ, Choi W, Marquis L, Martin F, Williams MB, Shah J, et al. Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev. 2009;28(3–4):335–44.CrossRefPubMed McConkey DJ, Choi W, Marquis L, Martin F, Williams MB, Shah J, et al. Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev. 2009;28(3–4):335–44.CrossRefPubMed
47.
go back to reference Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR. Cadherin switching. J Cell Sci. 2008;121(Pt 6):727–35.CrossRefPubMed Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR. Cadherin switching. J Cell Sci. 2008;121(Pt 6):727–35.CrossRefPubMed
48.
50.
51.
go back to reference Roy R, Yang J, Moses MA. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(31):5287–97.CrossRef Roy R, Yang J, Moses MA. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(31):5287–97.CrossRef
53.
go back to reference Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161–74.CrossRefPubMed Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161–74.CrossRefPubMed
54.
go back to reference Yen JH, Kocieda VP, Jing H, Ganea D. Prostaglandin E2 induces matrix metalloproteinase 9 expression in dendritic cells through two independent signaling pathways leading to activator protein 1 (AP-1) activation. J Biol Chem. 2011;286(45):38913–23.CrossRefPubMedPubMedCentral Yen JH, Kocieda VP, Jing H, Ganea D. Prostaglandin E2 induces matrix metalloproteinase 9 expression in dendritic cells through two independent signaling pathways leading to activator protein 1 (AP-1) activation. J Biol Chem. 2011;286(45):38913–23.CrossRefPubMedPubMedCentral
55.
go back to reference Murphy DA, Courtneidge SA. The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol. 2011;12(7):413–26.CrossRefPubMedPubMedCentral Murphy DA, Courtneidge SA. The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol. 2011;12(7):413–26.CrossRefPubMedPubMedCentral
56.
go back to reference Moroz A, Delella FK, Almeida R, Lacorte LM, Favaro WJ, Deffune E, et al. Finasteride inhibits human prostate cancer cell invasion through MMP2 and MMP9 downregulation. PLoS One. 2013;8(12):e84757.CrossRefPubMedPubMedCentral Moroz A, Delella FK, Almeida R, Lacorte LM, Favaro WJ, Deffune E, et al. Finasteride inhibits human prostate cancer cell invasion through MMP2 and MMP9 downregulation. PLoS One. 2013;8(12):e84757.CrossRefPubMedPubMedCentral
57.
go back to reference Yan Y, Liang H, Li T, Li M, Li R, Qin X, et al. The MMP-1, MMP-2, and MMP-9 gene polymorphisms and susceptibility to bladder cancer: a meta-analysis. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35(4):3047–52.CrossRef Yan Y, Liang H, Li T, Li M, Li R, Qin X, et al. The MMP-1, MMP-2, and MMP-9 gene polymorphisms and susceptibility to bladder cancer: a meta-analysis. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35(4):3047–52.CrossRef
58.
go back to reference Lu H, Cao X, Zhang H, Sun G, Fan G, Chen L, et al. Imbalance between MMP-2, 9 and TIMP-1 promote the invasion and metastasis of renal cell carcinoma via SKP2 signaling pathways. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35(10):9807–13.CrossRef Lu H, Cao X, Zhang H, Sun G, Fan G, Chen L, et al. Imbalance between MMP-2, 9 and TIMP-1 promote the invasion and metastasis of renal cell carcinoma via SKP2 signaling pathways. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35(10):9807–13.CrossRef
59.
go back to reference Yang J, Kuang XR, Lv PT, Yan XX. Thymoquinone inhibits proliferation and invasion of human nonsmall-cell lung cancer cells via ERK pathway. Tumour Biol J Int Soc Oncodev Biol Med. 2015;36(1):259–69.CrossRef Yang J, Kuang XR, Lv PT, Yan XX. Thymoquinone inhibits proliferation and invasion of human nonsmall-cell lung cancer cells via ERK pathway. Tumour Biol J Int Soc Oncodev Biol Med. 2015;36(1):259–69.CrossRef
60.
go back to reference Zhang Y, Pan T, Zhong X, Cheng C. Androgen receptor promotes esophageal cancer cell migration and proliferation via matrix metalloproteinase 2. Tumour Biol J Int Soc Oncodev Biol Med. 2015;36(8):5859–64.CrossRef Zhang Y, Pan T, Zhong X, Cheng C. Androgen receptor promotes esophageal cancer cell migration and proliferation via matrix metalloproteinase 2. Tumour Biol J Int Soc Oncodev Biol Med. 2015;36(8):5859–64.CrossRef
61.
go back to reference Zhang MX, Xu XM, Zhang P, Han NN, Deng JJ, Yu TT, et al. Effect of silencing NEK2 on biological behaviors of HepG2 in human hepatoma cells and MAPK signal pathway. Tumour Biol J Int Soc Oncodev Biol Med. 2015. doi:10.1007/s13277-015-3993-y. Zhang MX, Xu XM, Zhang P, Han NN, Deng JJ, Yu TT, et al. Effect of silencing NEK2 on biological behaviors of HepG2 in human hepatoma cells and MAPK signal pathway. Tumour Biol J Int Soc Oncodev Biol Med. 2015. doi:10.​1007/​s13277-015-3993-y.
62.
go back to reference Ganguly K, Rejmak E, Mikosz M, Nikolaev E, Knapska E, Kaczmarek L. Matrix metalloproteinase (MMP) 9 transcription in mouse brain induced by fear learning. J Biol Chem. 2013;288(29):20978–91.CrossRefPubMedPubMedCentral Ganguly K, Rejmak E, Mikosz M, Nikolaev E, Knapska E, Kaczmarek L. Matrix metalloproteinase (MMP) 9 transcription in mouse brain induced by fear learning. J Biol Chem. 2013;288(29):20978–91.CrossRefPubMedPubMedCentral
63.
go back to reference Liu SJ, Yin CX, Ding MC, Xia SY, Shen QM, Wu JD. Berberine suppresses in vitro migration of human aortic smooth muscle cells through the inhibitions of MMP-2/9, u-PA, AP-1, and NF-kappaB. BMB Rep. 2014;47(7):388–92.CrossRefPubMedPubMedCentral Liu SJ, Yin CX, Ding MC, Xia SY, Shen QM, Wu JD. Berberine suppresses in vitro migration of human aortic smooth muscle cells through the inhibitions of MMP-2/9, u-PA, AP-1, and NF-kappaB. BMB Rep. 2014;47(7):388–92.CrossRefPubMedPubMedCentral
64.
go back to reference Yoo SY, Kwon SM. Angiogenesis and its therapeutic opportunities. Mediat Inflamm. 2013;2013:127170.CrossRef Yoo SY, Kwon SM. Angiogenesis and its therapeutic opportunities. Mediat Inflamm. 2013;2013:127170.CrossRef
67.
go back to reference Moens S, Goveia J, Stapor PC, Cantelmo AR, Carmeliet P. The multifaceted activity of VEGF in angiogenesis—implications for therapy responses. Cytokine Growth Factor Rev. 2014;25(4):473–82.CrossRefPubMed Moens S, Goveia J, Stapor PC, Cantelmo AR, Carmeliet P. The multifaceted activity of VEGF in angiogenesis—implications for therapy responses. Cytokine Growth Factor Rev. 2014;25(4):473–82.CrossRefPubMed
68.
go back to reference Liang X, Xu F, Li X, Ma C, Zhang Y, Xu W. VEGF signal system: the application of antiangiogenesis. Curr Med Chem. 2014;21(7):894–910.CrossRefPubMed Liang X, Xu F, Li X, Ma C, Zhang Y, Xu W. VEGF signal system: the application of antiangiogenesis. Curr Med Chem. 2014;21(7):894–910.CrossRefPubMed
70.
go back to reference Le Bras B, Barallobre MJ, Homman-Ludiye J, Ny A, Wyns S, Tammela T, et al. VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. Nat Neurosci. 2006;9(3):340–8.CrossRefPubMed Le Bras B, Barallobre MJ, Homman-Ludiye J, Ny A, Wyns S, Tammela T, et al. VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. Nat Neurosci. 2006;9(3):340–8.CrossRefPubMed
71.
go back to reference Xu H, Zhang T, Man GC, May KE, Becker CM, Davis TN, et al. Vascular endothelial growth factor C is increased in endometrium and promotes endothelial functions, vascular permeability and angiogenesis and growth of endometriosis. Angiogenesis. 2013;16(3):541–51.CrossRefPubMed Xu H, Zhang T, Man GC, May KE, Becker CM, Davis TN, et al. Vascular endothelial growth factor C is increased in endometrium and promotes endothelial functions, vascular permeability and angiogenesis and growth of endometriosis. Angiogenesis. 2013;16(3):541–51.CrossRefPubMed
72.
go back to reference Alitalo A, Detmar M. Interaction of tumor cells and lymphatic vessels in cancer progression. Oncogene. 2012;31(42):4499–508.CrossRefPubMed Alitalo A, Detmar M. Interaction of tumor cells and lymphatic vessels in cancer progression. Oncogene. 2012;31(42):4499–508.CrossRefPubMed
73.
go back to reference Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer. 2005;5(9):726–34.CrossRefPubMed Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer. 2005;5(9):726–34.CrossRefPubMed
74.
go back to reference Amaravadi RK, Lippincott-Schwartz J, Yin XM, Weiss WA, Takebe N, Timmer W, et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17(4):654–66.CrossRef Amaravadi RK, Lippincott-Schwartz J, Yin XM, Weiss WA, Takebe N, Timmer W, et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17(4):654–66.CrossRef
75.
go back to reference Valente G, Morani F. Expression and clinical significance of the autophagy proteins BECLIN 1 and LC3 in ovarian cancer. BioMed Res Int. 2014. doi:10.1155/2014/462658. Valente G, Morani F. Expression and clinical significance of the autophagy proteins BECLIN 1 and LC3 in ovarian cancer. BioMed Res Int. 2014. doi:10.​1155/​2014/​462658.
76.
go back to reference Sun Y, Liu JH, Jin L, Lin SM, Yang Y, Sui YX, et al. Over-expression of the Beclin1 gene upregulates chemosensitivity to anti-cancer drugs by enhancing therapy-induced apoptosis in cervix squamous carcinoma CaSki cells. Cancer Lett. 2010;294(2):204–10.CrossRefPubMed Sun Y, Liu JH, Jin L, Lin SM, Yang Y, Sui YX, et al. Over-expression of the Beclin1 gene upregulates chemosensitivity to anti-cancer drugs by enhancing therapy-induced apoptosis in cervix squamous carcinoma CaSki cells. Cancer Lett. 2010;294(2):204–10.CrossRefPubMed
78.
go back to reference Randhawa R, Sehgal M, Singh TR, Duseja A, Changotra H. Unc-51 like kinase 1 (ULK1) in silico analysis for biomarker identification: a vital component of autophagy. Gene. 2015;562(1):40–9.CrossRefPubMed Randhawa R, Sehgal M, Singh TR, Duseja A, Changotra H. Unc-51 like kinase 1 (ULK1) in silico analysis for biomarker identification: a vital component of autophagy. Gene. 2015;562(1):40–9.CrossRefPubMed
80.
go back to reference El-Khattouti A, Selimovic D, Haikel Y, Hassan M. Crosstalk between apoptosis and autophagy: molecular mechanisms and therapeutic strategies in cancer. J Cell Death. 2013;6:37–55.PubMedPubMedCentral El-Khattouti A, Selimovic D, Haikel Y, Hassan M. Crosstalk between apoptosis and autophagy: molecular mechanisms and therapeutic strategies in cancer. J Cell Death. 2013;6:37–55.PubMedPubMedCentral
81.
go back to reference Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15(4):1126–32.CrossRef Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15(4):1126–32.CrossRef
82.
go back to reference Juraver-Geslin HA, Durand BC. Early development of the neural plate: new roles for apoptosis and for one of its main effectors caspase-3. Genesis (New York, NY: 2000). 2015;53(2):203–24.CrossRef Juraver-Geslin HA, Durand BC. Early development of the neural plate: new roles for apoptosis and for one of its main effectors caspase-3. Genesis (New York, NY: 2000). 2015;53(2):203–24.CrossRef
83.
go back to reference Gao L, Nieters A, Brenner H. Cell proliferation-related genetic polymorphisms and gastric cancer risk: systematic review and meta-analysis. Eur J Hum Genet. 2009;17(12):1658–67.CrossRefPubMedPubMedCentral Gao L, Nieters A, Brenner H. Cell proliferation-related genetic polymorphisms and gastric cancer risk: systematic review and meta-analysis. Eur J Hum Genet. 2009;17(12):1658–67.CrossRefPubMedPubMedCentral
84.
go back to reference De Falco M, De Luca A. Cell cycle as a target of antineoplastic drugs. Curr Pharm Des. 2010;16(12):1417–26.CrossRefPubMed De Falco M, De Luca A. Cell cycle as a target of antineoplastic drugs. Curr Pharm Des. 2010;16(12):1417–26.CrossRefPubMed
85.
go back to reference Blomme J, Inze D, Gonzalez N. The cell-cycle interactome: a source of growth regulators? J Exp Bot. 2014;65(10):2715–30.CrossRefPubMed Blomme J, Inze D, Gonzalez N. The cell-cycle interactome: a source of growth regulators? J Exp Bot. 2014;65(10):2715–30.CrossRefPubMed
86.
87.
go back to reference Qu DW, Xu HS, Han XJ, Wang YL, Ouyang CJ. Expression of cyclinD1 and Ki-67 proteins in gliomas and its clinical significance. Eur Rev Med Pharmacol Sci. 2014;18(4):516–9.PubMed Qu DW, Xu HS, Han XJ, Wang YL, Ouyang CJ. Expression of cyclinD1 and Ki-67 proteins in gliomas and its clinical significance. Eur Rev Med Pharmacol Sci. 2014;18(4):516–9.PubMed
89.
go back to reference Feng W, Cai D, Zhang B, Lou G, Zou X. Combination of HDAC inhibitor TSA and silibinin induces cell cycle arrest and apoptosis by targeting survivin and cyclinB1/Cdk1 in pancreatic cancer cells. Biomed Pharmacother. 2015;74:257–64.CrossRefPubMed Feng W, Cai D, Zhang B, Lou G, Zou X. Combination of HDAC inhibitor TSA and silibinin induces cell cycle arrest and apoptosis by targeting survivin and cyclinB1/Cdk1 in pancreatic cancer cells. Biomed Pharmacother. 2015;74:257–64.CrossRefPubMed
90.
go back to reference Wolf F, Wandke C, Isenberg N, Geley S. Dose-dependent effects of stable cyclin B1 on progression through mitosis in human cells. EMBO J. 2006;25(12):2802–13.CrossRefPubMedPubMedCentral Wolf F, Wandke C, Isenberg N, Geley S. Dose-dependent effects of stable cyclin B1 on progression through mitosis in human cells. EMBO J. 2006;25(12):2802–13.CrossRefPubMedPubMedCentral
91.
go back to reference Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550–62.CrossRefPubMed Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550–62.CrossRefPubMed
92.
go back to reference Dong Y, Liang G, Yuan B, Yang C, Gao R, Zhou X. MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumour Biol J Int Soc Oncodev Biol Med. 2015;36(3):1477–86.CrossRef Dong Y, Liang G, Yuan B, Yang C, Gao R, Zhou X. MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumour Biol J Int Soc Oncodev Biol Med. 2015;36(3):1477–86.CrossRef
93.
go back to reference Zhang L, Wang H, Zhu J, Ding K, Xu J. FTY720 reduces migration and invasion of human glioblastoma cell lines via inhibiting the PI3K/AKT/mTOR/p70S6K signaling pathway. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35(11):10707–14.CrossRef Zhang L, Wang H, Zhu J, Ding K, Xu J. FTY720 reduces migration and invasion of human glioblastoma cell lines via inhibiting the PI3K/AKT/mTOR/p70S6K signaling pathway. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35(11):10707–14.CrossRef
94.
go back to reference Zhen Y, Ye Y, Yu X, Mai C, Zhou Y, Chen Y, et al. Reduced CTGF expression promotes cell growth, migration, and invasion in nasopharyngeal carcinoma. PLoS One. 2014;8(6):e64976.CrossRefPubMed Zhen Y, Ye Y, Yu X, Mai C, Zhou Y, Chen Y, et al. Reduced CTGF expression promotes cell growth, migration, and invasion in nasopharyngeal carcinoma. PLoS One. 2014;8(6):e64976.CrossRefPubMed
95.
go back to reference Reddy KB, Nabha SM, Atanaskova N. Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev. 2003;22(4):395–403.CrossRefPubMed Reddy KB, Nabha SM, Atanaskova N. Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev. 2003;22(4):395–403.CrossRefPubMed
96.
go back to reference Krueger JS, Keshamouni VG, Atanaskova N, Reddy KB. Temporal and quantitative regulation of mitogen-activated protein kinase (MAPK) modulates cell motility and invasion. Oncogene. 2001;20(31):4209–18.CrossRefPubMed Krueger JS, Keshamouni VG, Atanaskova N, Reddy KB. Temporal and quantitative regulation of mitogen-activated protein kinase (MAPK) modulates cell motility and invasion. Oncogene. 2001;20(31):4209–18.CrossRefPubMed
97.
go back to reference Zhang T, Yang D, Fan Y, Xie P, Li H. Epigallocatechin-3-gallate enhances ischemia/reperfusion-induced apoptosis in human umbilical vein endothelial cells via AKT and MAPK pathways. Apoptosis Int J Programmed Cell Death. 2009;14(10):1245–54.CrossRef Zhang T, Yang D, Fan Y, Xie P, Li H. Epigallocatechin-3-gallate enhances ischemia/reperfusion-induced apoptosis in human umbilical vein endothelial cells via AKT and MAPK pathways. Apoptosis Int J Programmed Cell Death. 2009;14(10):1245–54.CrossRef
98.
go back to reference Caceres LC, Bonacci GR, Sanchez MC, Chiabrando GA. Activated alpha(2) macroglobulin induces matrix metalloproteinase 9 expression by low-density lipoprotein receptor-related protein 1 through MAPK-ERK1/2 and NF-kappaB activation in macrophage-derived cell lines. J Cell Biochem. 2010;111(3):607–17.CrossRefPubMed Caceres LC, Bonacci GR, Sanchez MC, Chiabrando GA. Activated alpha(2) macroglobulin induces matrix metalloproteinase 9 expression by low-density lipoprotein receptor-related protein 1 through MAPK-ERK1/2 and NF-kappaB activation in macrophage-derived cell lines. J Cell Biochem. 2010;111(3):607–17.CrossRefPubMed
99.
go back to reference Xu T, Wang NS, Fu LL, Ye CY, Yu SQ, Mei CL. Celecoxib inhibits growth of human autosomal dominant polycystic kidney cyst-lining epithelial cells through the VEGF/Raf/MAPK/ERK signaling pathway. Mol Biol Rep. 2012;39(7):7743–53.CrossRefPubMedPubMedCentral Xu T, Wang NS, Fu LL, Ye CY, Yu SQ, Mei CL. Celecoxib inhibits growth of human autosomal dominant polycystic kidney cyst-lining epithelial cells through the VEGF/Raf/MAPK/ERK signaling pathway. Mol Biol Rep. 2012;39(7):7743–53.CrossRefPubMedPubMedCentral
100.
go back to reference Elsum IA, Martin C, Humbert PO. Scribble regulates an EMT polarity pathway through modulation of MAPK-ERK signaling to mediate junction formation. J Cell Sci. 2013;126(Pt 17):3990–9.CrossRefPubMed Elsum IA, Martin C, Humbert PO. Scribble regulates an EMT polarity pathway through modulation of MAPK-ERK signaling to mediate junction formation. J Cell Sci. 2013;126(Pt 17):3990–9.CrossRefPubMed
Metadata
Title
Research advances in HMGN5 and cancer
Authors
Zhan Shi
Run Tang
Ding Wu
Xiaoqing Sun
Publication date
01-02-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 2/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-4693-3

Other articles of this Issue 2/2016

Tumor Biology 2/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine