Skip to main content
Top
Published in: Tumor Biology 5/2016

01-05-2016 | Original Article

Derivate isocorydine inhibits cell proliferation in hepatocellular carcinoma cell lines by inducing G2/M cell cycle arrest and apoptosis

Authors: Lijuan Chen, Hua Tian, Meng Li, Chao Ge, Fangyu Zhao, Lixing Zhang, Hong Li, Junxi Liu, Tingpu Wang, Ming Yao, Jinjun Li

Published in: Tumor Biology | Issue 5/2016

Login to get access

Abstract

We have previously demonstrated that isocorydine (ICD) can be served as a potential antitumor agent in hepatocellular carcinoma (HCC). A novel derivate of isocorydine (d-ICD) could significantly improve its anticancer activity in tumors. However, the molecular mechanisms of d-ICD on HCC cells remain to be unclear. In this study, we observed that d-ICD inhibited cell proliferation and induced apoptosis of HCC cells in a concentration-dependent manner. We found d-ICD induced G2/M cycle arrest of HCC cells via DNA damage 45 alpha (GADD45A) and p21 pathway in vitro and in vivo. In d-ICD-treated cells, cell cycle-related proteins cyclin B1 and p-CDC2 were upregulated and p-cyclin B1, CDC2, and E2F1 were inhibited. p21 expression can be reversed by knockdown of GADD45A in d-ICD-treated HCC cells. Enforced expression of CCAAT/enhancer-binding protein β (C/EBPβ) in combination with d-ICD enhanced the p21 expression in HCC cells. Furthermore, the luciferase reporter assay showed that upregulation of GADD45A by C/EBPβ was achieved through the increase of GADD45A promoter activity. These findings indicate that d-ICD inhibits cell proliferation and induces cell cycle arrest through activation of C/EBPβ-GADD45A-p21 pathway in HCC cells. d-ICD might be a promising chemotherapeutic agent for the treatment of HCC.
Appendix
Available only for authorised users
Literature
2.
go back to reference Bosch FX, Ribes J, Diaz M, Cleries R. Primary liver cancer: worldwide incidence and trends. Gastroenterology. 2004;127:S5–16.CrossRefPubMed Bosch FX, Ribes J, Diaz M, Cleries R. Primary liver cancer: worldwide incidence and trends. Gastroenterology. 2004;127:S5–16.CrossRefPubMed
3.
go back to reference Bloom J, Cross FR. Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol. 2007;8:149–60.CrossRefPubMed Bloom J, Cross FR. Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol. 2007;8:149–60.CrossRefPubMed
4.
go back to reference Barreto G, Schafer A, Marhold J, Stach D, Swaminathan SK, Handa V, et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature. 2007;445:671–5.CrossRefPubMed Barreto G, Schafer A, Marhold J, Stach D, Swaminathan SK, Handa V, et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature. 2007;445:671–5.CrossRefPubMed
5.
go back to reference Notas G, Alexaki VI, Kampa M, Pelekanou V, Charalampopoulos I, Sabour-Alaoui S, et al. April binding to bcma activates a JNK2-FOXO3-GADD45 pathway and induces a G2/M cell growth arrest in liver cells. J Immunol. 2012;189:4748–58. Notas G, Alexaki VI, Kampa M, Pelekanou V, Charalampopoulos I, Sabour-Alaoui S, et al. April binding to bcma activates a JNK2-FOXO3-GADD45 pathway and induces a G2/M cell growth arrest in liver cells. J Immunol. 2012;189:4748–58.
6.
go back to reference Kim T, Cui R, Jeon YJ, Fadda P, Alder H, Croce CM. MYC-repressed long noncoding RNAs antagonize MYC-induced cell proliferation and cell cycle progression. Oncotarget. 2015;7:18780–9. Kim T, Cui R, Jeon YJ, Fadda P, Alder H, Croce CM. MYC-repressed long noncoding RNAs antagonize MYC-induced cell proliferation and cell cycle progression. Oncotarget. 2015;7:18780–9.
7.
go back to reference Vera J, Raatz Y, Wolkenhauer O, Kottek T, Bhattacharya A, Simon JC, et al. Chk1 and Wee1 control genotoxic-stress induced G2-m arrest in melanoma cells. Cell Signal. 2015;27:951–60.CrossRefPubMed Vera J, Raatz Y, Wolkenhauer O, Kottek T, Bhattacharya A, Simon JC, et al. Chk1 and Wee1 control genotoxic-stress induced G2-m arrest in melanoma cells. Cell Signal. 2015;27:951–60.CrossRefPubMed
8.
9.
go back to reference Matsuoka K, Iimori M, Niimi S, Tsukihara H, Watanabe S, Kiyonari S, et al. Trifluridine induces p53-dependent sustained G2 phase arrest with its massive misincorporation into DNA and few DNA strand breaks. Mol Cancer Ther. 2015;14:1004–13.CrossRefPubMed Matsuoka K, Iimori M, Niimi S, Tsukihara H, Watanabe S, Kiyonari S, et al. Trifluridine induces p53-dependent sustained G2 phase arrest with its massive misincorporation into DNA and few DNA strand breaks. Mol Cancer Ther. 2015;14:1004–13.CrossRefPubMed
10.
go back to reference Sun H, Hou H, Lu P, Zhang L, Zhao F, Ge C, et al. Isocorydine inhibits cell proliferation in hepatocellular carcinoma cell lines by inducing G2/m cell cycle arrest and apoptosis. PLoS One. 2012;7:e36808.CrossRefPubMedPubMedCentral Sun H, Hou H, Lu P, Zhang L, Zhao F, Ge C, et al. Isocorydine inhibits cell proliferation in hepatocellular carcinoma cell lines by inducing G2/m cell cycle arrest and apoptosis. PLoS One. 2012;7:e36808.CrossRefPubMedPubMedCentral
11.
go back to reference Lu P, Sun H, Zhang L, Hou H, Zhang L, Zhao F, et al. Isocorydine targets the drug-resistant cellular side population through PDCD4-related apoptosis in hepatocellular carcinoma. Mol Med. 2012;18:1136–46.CrossRefPubMedPubMedCentral Lu P, Sun H, Zhang L, Hou H, Zhang L, Zhao F, et al. Isocorydine targets the drug-resistant cellular side population through PDCD4-related apoptosis in hepatocellular carcinoma. Mol Med. 2012;18:1136–46.CrossRefPubMedPubMedCentral
12.
go back to reference Zhong M, Liu Y, Liu J, Di D, Xu M, Yang Y, et al. Isocorydine derivatives and their anticancer activities. Molecules. 2014;19:12099–115.CrossRefPubMed Zhong M, Liu Y, Liu J, Di D, Xu M, Yang Y, et al. Isocorydine derivatives and their anticancer activities. Molecules. 2014;19:12099–115.CrossRefPubMed
13.
go back to reference Yan M, Li H, Zhao F, Zhang L, Ge C, Yao M, et al. Establishment of NOD/SCID mouse models of human hepatocellular carcinoma via subcutaneous transplantation of histologically intact tumor tissue. Chin J Cancer Res. 2013;25:289–98.PubMedPubMedCentral Yan M, Li H, Zhao F, Zhang L, Ge C, Yao M, et al. Establishment of NOD/SCID mouse models of human hepatocellular carcinoma via subcutaneous transplantation of histologically intact tumor tissue. Chin J Cancer Res. 2013;25:289–98.PubMedPubMedCentral
14.
go back to reference Li H, Ge C, Zhao F, Yan M, Hu C, Jia D, et al. Hypoxia-inducible factor 1 alpha-activated angiopoietin-like protein 4 contributes to tumor metastasis via vascular cell adhesion molecule-1/integrin beta1 signaling in human hepatocellular carcinoma. Hepatology. 2011;54:910–9.CrossRefPubMed Li H, Ge C, Zhao F, Yan M, Hu C, Jia D, et al. Hypoxia-inducible factor 1 alpha-activated angiopoietin-like protein 4 contributes to tumor metastasis via vascular cell adhesion molecule-1/integrin beta1 signaling in human hepatocellular carcinoma. Hepatology. 2011;54:910–9.CrossRefPubMed
15.
go back to reference Tian H, Ge C, Li H, Zhao F, Hou H, Chen T, et al. Ribonucleotide reductase m2b inhibits cell migration and spreading by early growth response protein 1-mediated phosphatase and tensin homolog/akt1 pathway in hepatocellular carcinoma. Hepatology. 2014;59:1459–70.CrossRefPubMed Tian H, Ge C, Li H, Zhao F, Hou H, Chen T, et al. Ribonucleotide reductase m2b inhibits cell migration and spreading by early growth response protein 1-mediated phosphatase and tensin homolog/akt1 pathway in hepatocellular carcinoma. Hepatology. 2014;59:1459–70.CrossRefPubMed
16.
go back to reference Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 2006;66:11851–8.CrossRefPubMed Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 2006;66:11851–8.CrossRefPubMed
17.
go back to reference Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.CrossRefPubMed Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.CrossRefPubMed
18.
go back to reference Liu K, Liu S, Zhang W, Ji B, Wang Y, Liu Y. Mir222 regulates sorafenib resistance and enhance tumorigenicity in hepatocellular carcinoma. Int J Oncol. 2014;45:1537–46.PubMed Liu K, Liu S, Zhang W, Ji B, Wang Y, Liu Y. Mir222 regulates sorafenib resistance and enhance tumorigenicity in hepatocellular carcinoma. Int J Oncol. 2014;45:1537–46.PubMed
19.
go back to reference Simioni C, Cani A, Martelli AM, Zauli G, Alameen AA, Ultimo S, et al. The novel dual PI3K/mTOR inhibitor NVP-BGT226 displays cytotoxic activity in both normoxic and hypoxic hepatocarcinoma cells. Oncotarget. 2015;6:17147–60.CrossRefPubMedPubMedCentral Simioni C, Cani A, Martelli AM, Zauli G, Alameen AA, Ultimo S, et al. The novel dual PI3K/mTOR inhibitor NVP-BGT226 displays cytotoxic activity in both normoxic and hypoxic hepatocarcinoma cells. Oncotarget. 2015;6:17147–60.CrossRefPubMedPubMedCentral
20.
go back to reference Sakaue-Sawano A, Kobayashi T, Ohtawa K, Miyawaki A. Drug-induced cell cycle modulation leading to cell-cycle arrest, nuclear mis-segregation, or endoreplication. BMC Cell Biol. 2011;12:2.CrossRefPubMedPubMedCentral Sakaue-Sawano A, Kobayashi T, Ohtawa K, Miyawaki A. Drug-induced cell cycle modulation leading to cell-cycle arrest, nuclear mis-segregation, or endoreplication. BMC Cell Biol. 2011;12:2.CrossRefPubMedPubMedCentral
21.
go back to reference Hall M, Peters G. Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res. 1996;68:67–108.CrossRefPubMed Hall M, Peters G. Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res. 1996;68:67–108.CrossRefPubMed
22.
go back to reference Coqueret O. New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol. 2003;13:65–70.CrossRefPubMed Coqueret O. New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol. 2003;13:65–70.CrossRefPubMed
23.
go back to reference Li D, Kang N, Ji J, Zhan Q. BRCA1 regulates transforming growth factor-beta (TGF-beta1) signaling through Gadd45a by enhancing the protein stability of Smad4. Mol Oncol. 2015;9:1655–66. Li D, Kang N, Ji J, Zhan Q. BRCA1 regulates transforming growth factor-beta (TGF-beta1) signaling through Gadd45a by enhancing the protein stability of Smad4. Mol Oncol. 2015;9:1655–66.
24.
go back to reference Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700.CrossRefPubMed Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700.CrossRefPubMed
25.
go back to reference Kearsey JM, Coates PJ, Prescott AR, Warbrick E, Hall PA. Gadd45 is a nuclear cell cycle regulated protein which interacts with p21Cip1. Oncogene. 1995;11:1675–83.PubMed Kearsey JM, Coates PJ, Prescott AR, Warbrick E, Hall PA. Gadd45 is a nuclear cell cycle regulated protein which interacts with p21Cip1. Oncogene. 1995;11:1675–83.PubMed
26.
go back to reference Cretu A, Sha X, Tront J, Hoffman B, Liebermann DA. Stress sensor Gadd45 genes as therapeutic targets in cancer. Cancer Ther. 2009;7:268–76.PubMedPubMedCentral Cretu A, Sha X, Tront J, Hoffman B, Liebermann DA. Stress sensor Gadd45 genes as therapeutic targets in cancer. Cancer Ther. 2009;7:268–76.PubMedPubMedCentral
27.
go back to reference Kastan MB, Zhan Q, el Deiry WS, Carrier F, Jacks T, Walsh WV, et al. A mammalian cell cycle checkpoint pathway utilizing p53 and Gadd45 is defective in ataxia-telangiectasia. Cell. 1992;71:587–97.CrossRefPubMed Kastan MB, Zhan Q, el Deiry WS, Carrier F, Jacks T, Walsh WV, et al. A mammalian cell cycle checkpoint pathway utilizing p53 and Gadd45 is defective in ataxia-telangiectasia. Cell. 1992;71:587–97.CrossRefPubMed
28.
go back to reference Takekawa M, Saito H. A family of stress-inducible Gadd45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell. 1998;95:521–30.CrossRefPubMed Takekawa M, Saito H. A family of stress-inducible Gadd45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell. 1998;95:521–30.CrossRefPubMed
29.
go back to reference Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L, et al. Gadd45 induction of a G2/m cell cycle checkpoint. Proc Natl Acad Sci U S A. 1999;96:3706–11.CrossRefPubMedPubMedCentral Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L, et al. Gadd45 induction of a G2/m cell cycle checkpoint. Proc Natl Acad Sci U S A. 1999;96:3706–11.CrossRefPubMedPubMedCentral
30.
go back to reference Ma L, Liu J, Liu L, Duan G, Wang Q, Xu Y, et al. Overexpression of the transcription factor MEF2D in hepatocellular carcinoma sustains malignant character by suppressing G2-m transition genes. Cancer Res. 2014;74:1452–62.CrossRefPubMed Ma L, Liu J, Liu L, Duan G, Wang Q, Xu Y, et al. Overexpression of the transcription factor MEF2D in hepatocellular carcinoma sustains malignant character by suppressing G2-m transition genes. Cancer Res. 2014;74:1452–62.CrossRefPubMed
31.
go back to reference Sun Y, Tang S, Xiao X. The effect of Gadd45a on furazolidone-induced S-phase cell-cycle arrest in human hepatoma G2 cells. J Biochem Mol Toxicol. 2015. doi:10.1002/jbt.21719. Sun Y, Tang S, Xiao X. The effect of Gadd45a on furazolidone-induced S-phase cell-cycle arrest in human hepatoma G2 cells. J Biochem Mol Toxicol. 2015. doi:10.​1002/​jbt.​21719.
32.
go back to reference Fornace Jr AJ, Nebert DW, Hollander MC, Luethy JD, Papathanasiou M, Fargnoli J, et al. Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol Cell Biol. 1989;9:4196–203.CrossRefPubMedPubMedCentral Fornace Jr AJ, Nebert DW, Hollander MC, Luethy JD, Papathanasiou M, Fargnoli J, et al. Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol Cell Biol. 1989;9:4196–203.CrossRefPubMedPubMedCentral
33.
go back to reference Tamura RE, de Vasconcellos JF, Sarkar D, Libermann TA, Fisher PB, Zerbini LF. Gadd45 proteins: central players in tumorigenesis. Curr Mol Med. 2012;12:634–51.CrossRefPubMedPubMedCentral Tamura RE, de Vasconcellos JF, Sarkar D, Libermann TA, Fisher PB, Zerbini LF. Gadd45 proteins: central players in tumorigenesis. Curr Mol Med. 2012;12:634–51.CrossRefPubMedPubMedCentral
34.
go back to reference Sun L, Gong R, Wan B, Huang X, Wu C, Zhang X, et al. Gadd45gamma, down-regulated in 65% hepatocellular carcinoma (HCC) from 23 Chinese patients, inhibits cell growth and induces cell cycle G2/m arrest for hepatoma Hep-G2 cell lines. Mol Biol Rep. 2003;30:249–53.CrossRefPubMed Sun L, Gong R, Wan B, Huang X, Wu C, Zhang X, et al. Gadd45gamma, down-regulated in 65% hepatocellular carcinoma (HCC) from 23 Chinese patients, inhibits cell growth and induces cell cycle G2/m arrest for hepatoma Hep-G2 cell lines. Mol Biol Rep. 2003;30:249–53.CrossRefPubMed
35.
go back to reference Zhang L, Yang Z, Ma A, Qu Y, Xia S, Xu D, et al. Growth arrest and DNA damage 45G down-regulation contributes to Janus kinase/signal transducer and activator of transcription 3 activation and cellular senescence evasion in hepatocellular carcinoma. Hepatology. 2014;59:178–89.CrossRefPubMed Zhang L, Yang Z, Ma A, Qu Y, Xia S, Xu D, et al. Growth arrest and DNA damage 45G down-regulation contributes to Janus kinase/signal transducer and activator of transcription 3 activation and cellular senescence evasion in hepatocellular carcinoma. Hepatology. 2014;59:178–89.CrossRefPubMed
36.
go back to reference Wang H, Iakova P, Wilde M, Welm A, Goode T, Roesler WJ, et al. C/EBPalpha arrests cell proliferation through direct inhibition of Cdk2 and Cdk4. Mol Cell. 2001;8:817–28.CrossRefPubMed Wang H, Iakova P, Wilde M, Welm A, Goode T, Roesler WJ, et al. C/EBPalpha arrests cell proliferation through direct inhibition of Cdk2 and Cdk4. Mol Cell. 2001;8:817–28.CrossRefPubMed
37.
go back to reference Zhu S, Yoon K, Sterneck E, Johnson PF, Smart RC. CCAAT/enhancer binding protein-beta is a mediator of keratinocyte survival and skin tumorigenesis involving oncogenic Ras signaling. Proc Natl Acad Sci U S A. 2002;99:207–12.CrossRefPubMed Zhu S, Yoon K, Sterneck E, Johnson PF, Smart RC. CCAAT/enhancer binding protein-beta is a mediator of keratinocyte survival and skin tumorigenesis involving oncogenic Ras signaling. Proc Natl Acad Sci U S A. 2002;99:207–12.CrossRefPubMed
38.
go back to reference Lane MD, Tang QQ, Jiang MS. Role of the CCAAT enhancer binding proteins (C/EBPS) in adipocyte differentiation. Biochem Biophys Res Commun. 1999;266:677–83.CrossRefPubMed Lane MD, Tang QQ, Jiang MS. Role of the CCAAT enhancer binding proteins (C/EBPS) in adipocyte differentiation. Biochem Biophys Res Commun. 1999;266:677–83.CrossRefPubMed
39.
go back to reference Tang QQ, Lane MD. Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev. 1999;13:2231–41.CrossRefPubMedPubMedCentral Tang QQ, Lane MD. Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev. 1999;13:2231–41.CrossRefPubMedPubMedCentral
40.
go back to reference Panka DJ, Wang W, Atkins MB, Mier JW. The Raf inhibitor BAY 43-9006 (sorafenib) induces caspase-independent apoptosis in melanoma cells. Cancer Res. 2006;66:1611–9.CrossRefPubMed Panka DJ, Wang W, Atkins MB, Mier JW. The Raf inhibitor BAY 43-9006 (sorafenib) induces caspase-independent apoptosis in melanoma cells. Cancer Res. 2006;66:1611–9.CrossRefPubMed
Metadata
Title
Derivate isocorydine inhibits cell proliferation in hepatocellular carcinoma cell lines by inducing G2/M cell cycle arrest and apoptosis
Authors
Lijuan Chen
Hua Tian
Meng Li
Chao Ge
Fangyu Zhao
Lixing Zhang
Hong Li
Junxi Liu
Tingpu Wang
Ming Yao
Jinjun Li
Publication date
01-05-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 5/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-4362-6

Other articles of this Issue 5/2016

Tumor Biology 5/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine