Skip to main content
Top
Published in: Tumor Biology 2/2016

01-02-2016 | Original Article

SNHG3 correlates with malignant status and poor prognosis in hepatocellular carcinoma

Authors: Ting Zhang, Chuanhui Cao, Dehua Wu, Li Liu

Published in: Tumor Biology | Issue 2/2016

Login to get access

Abstract

Long noncoding RNAs (lncRNAs) have been found dysregulated in human disease, especially in cancer. Small nucleolar RNA host gene 3 (SNHG3) is an lncRNA whose potential function and mechanism in hepatocellular carcinoma (HCC) remain largely unknown. In the present study, we aimed to determine SNHG3 expression and its clinical significance in HCC. Our results showed that the expression level of SNHG3 was significantly upregulated in HCC tissues compared with paired noncancerous tissues from 51 HCC patients, as determined by quantitative real-time polymerase chain reaction (qRT-PCR; P < 0.001), which was consistent with the results of two independent HCC cohorts from The Cancer Genome Atlas (TCGA) and Oncomine databases (P < 0.0001 and P = 0.0325, respectively). These results were further confirmed in 144 paired paraffin-embedded HCC specimens by in situ hybridization assay (ISH). Furthermore, SNHG3 expression was significantly correlated with tumor size (P = 0.003), portal vein tumor thrombus (PVTT; P = 0.014), and relapse (P = 0.038). The high expression level of SNHG3 was markedly correlated with overall survival (OS; P < 0.0001), recurrence-free survival (RFS; P = 0.006), and disease-free survival (DFS; P < 0.0001). More importantly, multivariate analysis indicated that SNHG3 expression was an independent prognostic factor for HCC patients (P < 0.001). In conclusion, increased SNHG3 expression is associated with malignant status and poor prognosis in HCC patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Meng X, Franklin DA, Dong J, Zhang Y. MDM2-p53 pathway in hepatocellular carcinoma. Cancer Res. 2014;74:716–7167.CrossRef Meng X, Franklin DA, Dong J, Zhang Y. MDM2-p53 pathway in hepatocellular carcinoma. Cancer Res. 2014;74:716–7167.CrossRef
2.
go back to reference Maluccio M, Covey A. Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma. CA Cancer J Clin. 2012;62:394–9.CrossRefPubMed Maluccio M, Covey A. Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma. CA Cancer J Clin. 2012;62:394–9.CrossRefPubMed
3.
go back to reference He G, Dhar D, Nakagawa H, Font-Burgada J, Ogata H, Jiang Y, et al. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell. 2013;155:384–96.CrossRefPubMedPubMedCentral He G, Dhar D, Nakagawa H, Font-Burgada J, Ogata H, Jiang Y, et al. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell. 2013;155:384–96.CrossRefPubMedPubMedCentral
4.
go back to reference Villanueva A, Minguez B, Forner A, Reig M, Llovet JM. Hepatocellular carcinoma: novel molecular approaches for diagnosis, prognosis, and therapy. Annu Rev Med. 2010;61:317–28.CrossRefPubMedPubMedCentral Villanueva A, Minguez B, Forner A, Reig M, Llovet JM. Hepatocellular carcinoma: novel molecular approaches for diagnosis, prognosis, and therapy. Annu Rev Med. 2010;61:317–28.CrossRefPubMedPubMedCentral
8.
go back to reference Shi X, Sun M, Liu H, Yao Y, Song Y. Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett. 2013;339:159–66.CrossRefPubMed Shi X, Sun M, Liu H, Yao Y, Song Y. Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett. 2013;339:159–66.CrossRefPubMed
10.
go back to reference Shabalina SA1, Spiridonov NA. The mammalian transcriptome and the function of non-coding DNA sequences. Genome Biol [NLM - MEDLINE]. 2004;5:105.CrossRef Shabalina SA1, Spiridonov NA. The mammalian transcriptome and the function of non-coding DNA sequences. Genome Biol [NLM - MEDLINE]. 2004;5:105.CrossRef
11.
go back to reference Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458:223–7.CrossRefPubMedPubMedCentral Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458:223–7.CrossRefPubMedPubMedCentral
12.
13.
go back to reference Brown CJ et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature. 1991;349:38–44.CrossRefPubMed Brown CJ et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature. 1991;349:38–44.CrossRefPubMed
14.
go back to reference Rinn JL1, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by Non-coding RNAs. Cell. 2007;129:1311–23.CrossRefPubMedPubMedCentral Rinn JL1, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by Non-coding RNAs. Cell. 2007;129:1311–23.CrossRefPubMedPubMedCentral
15.
go back to reference Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071–6.CrossRefPubMedPubMedCentral Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071–6.CrossRefPubMedPubMedCentral
16.
go back to reference Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, et al. The Nuclear-Retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39:925–38.CrossRefPubMedPubMedCentral Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, et al. The Nuclear-Retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39:925–38.CrossRefPubMedPubMedCentral
17.
go back to reference Xia T, Liao Q, Jiang X, Shao Y, Xiao B, Xi Y, et al. Long noncoding RNA associated-competing endogenous RNAs in gastric cancer. Sci Rep-UK. 2014; 4. Xia T, Liao Q, Jiang X, Shao Y, Xiao B, Xi Y, et al. Long noncoding RNA associated-competing endogenous RNAs in gastric cancer. Sci Rep-UK. 2014; 4.
18.
go back to reference Su S, Liu Q, Chen J, Chen J, Chen F, He C, et al. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell. 2014;25:605–20.CrossRefPubMed Su S, Liu Q, Chen J, Chen J, Chen F, He C, et al. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell. 2014;25:605–20.CrossRefPubMed
19.
go back to reference Trimarchi T, Bilal E, Ntziachristos P, Fabbri G, Dalla-Favera R, Tsirigos A, et al. Genome-wide mapping and characterization of notch-regulated long noncoding RNAs in acute leukemia. Cell. 2014;158:593–606.CrossRefPubMedPubMedCentral Trimarchi T, Bilal E, Ntziachristos P, Fabbri G, Dalla-Favera R, Tsirigos A, et al. Genome-wide mapping and characterization of notch-regulated long noncoding RNAs in acute leukemia. Cell. 2014;158:593–606.CrossRefPubMedPubMedCentral
20.
go back to reference Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF, et al. A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 2014;25:666–81.CrossRefPubMed Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF, et al. A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 2014;25:666–81.CrossRefPubMed
21.
go back to reference Cao C, Sun J, Zhang D, Guo X, Xie L, Li X, et al. The long intergenic noncoding RNA UFC1, a target of MicroRNA 34a, interacts with the mRNA stabilizing protein HuR to increase levels of beta-Catenin in HCC cells. Gastroenterology. 2015;148:415–26.CrossRefPubMed Cao C, Sun J, Zhang D, Guo X, Xie L, Li X, et al. The long intergenic noncoding RNA UFC1, a target of MicroRNA 34a, interacts with the mRNA stabilizing protein HuR to increase levels of beta-Catenin in HCC cells. Gastroenterology. 2015;148:415–26.CrossRefPubMed
22.
go back to reference Huang JL, Zheng L, Hu YW, et al. Characteristics of long non-coding RNA and its relation to hepatocellular carcinoma. Carcinogenesis. 2014;35:507–14.CrossRefPubMed Huang JL, Zheng L, Hu YW, et al. Characteristics of long non-coding RNA and its relation to hepatocellular carcinoma. Carcinogenesis. 2014;35:507–14.CrossRefPubMed
24.
go back to reference Xing Z, Lin A, Li C, Liang K, Wang S, Liu Y, et al. LncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell. 2014;159:1110–25.CrossRefPubMedPubMedCentral Xing Z, Lin A, Li C, Liang K, Wang S, Liu Y, et al. LncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell. 2014;159:1110–25.CrossRefPubMedPubMedCentral
25.
26.
go back to reference El Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76.CrossRefPubMed El Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76.CrossRefPubMed
27.
go back to reference He Y, Meng X, Huang C, Wu B, Zhang L, Lv X, et al. Long noncoding RNAs: novel insights into hepatocelluar carcinoma. Cancer Lett. 2014;344:20–7.CrossRefPubMed He Y, Meng X, Huang C, Wu B, Zhang L, Lv X, et al. Long noncoding RNAs: novel insights into hepatocelluar carcinoma. Cancer Lett. 2014;344:20–7.CrossRefPubMed
28.
go back to reference Zhu J, Liu S, Ye F, et al. The long noncoding RNA expression profile of hepatocellular carcinoma identified by microarray analysis. PLoS One. 2014;9:e101707.CrossRefPubMedPubMedCentral Zhu J, Liu S, Ye F, et al. The long noncoding RNA expression profile of hepatocellular carcinoma identified by microarray analysis. PLoS One. 2014;9:e101707.CrossRefPubMedPubMedCentral
29.
go back to reference Panzitt K, Tschernatsch MM, Guelly C, Moustafa T, Stradner M, Strohmaier HM, et al. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology. 2007;132(1):330–42.CrossRefPubMed Panzitt K, Tschernatsch MM, Guelly C, Moustafa T, Stradner M, Strohmaier HM, et al. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology. 2007;132(1):330–42.CrossRefPubMed
30.
go back to reference Geng YJ, Xie SL, Li Q, Ma J, Wang GY. Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J Int Med Res. 2011;39(6):2119–28.CrossRefPubMed Geng YJ, Xie SL, Li Q, Ma J, Wang GY. Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J Int Med Res. 2011;39(6):2119–28.CrossRefPubMed
31.
go back to reference Yang Z, Zhou L, Wu LM, Lai MC, Xie HY, Zhang F, et al. Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol. 2011;18(5):1243–50.CrossRefPubMed Yang Z, Zhou L, Wu LM, Lai MC, Xie HY, Zhang F, et al. Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol. 2011;18(5):1243–50.CrossRefPubMed
32.
go back to reference Pelczar P et al. The host gene for intronic U17 small nucleolar RNAs in mammals has no protein-coding potential and is a member of the 5′-terminal oligopyrimidine gene family. Mol Cell Biol. 1998;18(8):4509–18.CrossRefPubMedPubMedCentral Pelczar P et al. The host gene for intronic U17 small nucleolar RNAs in mammals has no protein-coding potential and is a member of the 5′-terminal oligopyrimidine gene family. Mol Cell Biol. 1998;18(8):4509–18.CrossRefPubMedPubMedCentral
Metadata
Title
SNHG3 correlates with malignant status and poor prognosis in hepatocellular carcinoma
Authors
Ting Zhang
Chuanhui Cao
Dehua Wu
Li Liu
Publication date
01-02-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 2/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-4052-4

Other articles of this Issue 2/2016

Tumor Biology 2/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine