Skip to main content
Top
Published in: Tumor Biology 2/2016

01-02-2016 | Original Article

Ruxolitinib induces autophagy in chronic myeloid leukemia cells

Authors: Bakiye Goker Bagca, Ozgun Ozalp, Cansu Caliskan Kurt, Zeynep Mutlu, Guray Saydam, Cumhur Gunduz, Cigir Biray Avci

Published in: Tumor Biology | Issue 2/2016

Login to get access

Abstract

Ruxolitinib is the first agent used in myelofibrosis treatment with its potent JAK2 inhibitory effect. In this novel study, we aimed to discover the anti-leukemic effect of ruxolitinib in K-562 human chronic myeloid leukemia cell line compared to NCI-BL 2171 human healthy B lymphocyte cell line. Cytotoxic effect of ruxolitinib was determined by using WST-1 assay. IC50 values for K-562 and NCI-BL 2171 cell lines were defined as 20 and 23.6 μM at the 48th hour, respectively. Autophagic effects of ruxolitinib were detected by measuring LC3B-II protein formation. Ruxolitinib induced autophagic cell death in K-562 and NCI-BL 2171 cell lines 2.11- and 1.79-fold compared to control groups, respectively. To determine the autophagy-related gene expression changes, total RNA was isolated from K-562 and NCI-BL 2171 cells treated with ruxolitinib and untreated cells as control group. Reverse transcription procedure was performed for cDNA synthesis, and gene expressions were shown by RT-qPCR. Ruxolitinib treatment caused a notable decrease in expression of AKT, mTOR, and STAT autophagy inhibitor genes in K-562 cells, contrariwise control cell line. Ruxolitinib is a promising agent in chronic myeloid leukemia treatment by blocking JAK/STAT pathway known as downstream of BCR-ABL and triggering autophagy. This is the first study that reveals the relationship between ruxolitinib and autophagy induction.
Literature
1.
go back to reference Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002; 2292-2302. Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002; 2292-2302.
2.
go back to reference Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2008;2009:937–51. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2008;2009:937–51.
3.
go back to reference Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2014 update on diagnosis, monitoring, and management. Am J Hematol. 2014;89(5):547–56.CrossRefPubMed Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2014 update on diagnosis, monitoring, and management. Am J Hematol. 2014;89(5):547–56.CrossRefPubMed
4.
go back to reference Nowell P, Hungerford D. A minute chromosome in human chronic granulocytic leukemia [abstract]. Science. 1960;132:1497. Nowell P, Hungerford D. A minute chromosome in human chronic granulocytic leukemia [abstract]. Science. 1960;132:1497.
5.
go back to reference Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290–3.CrossRefPubMed Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290–3.CrossRefPubMed
6.
go back to reference Shtivelman E, Lifshitz B, Gale RP, Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 1985;315:550–4.CrossRefPubMed Shtivelman E, Lifshitz B, Gale RP, Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 1985;315:550–4.CrossRefPubMed
7.
go back to reference Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353:172–87.CrossRefPubMed Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353:172–87.CrossRefPubMed
8.
go back to reference Buchdunger E. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res. 1996;56:100–4.PubMed Buchdunger E. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res. 1996;56:100–4.PubMed
9.
go back to reference Sawyers CL. Imatinib induces hematologic hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood. 2002;99:3530–9.CrossRefPubMed Sawyers CL. Imatinib induces hematologic hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood. 2002;99:3530–9.CrossRefPubMed
10.
go back to reference Manley P, Cowan-Jacob S, Mestan J. Advances in the structural biology, design and clinical development of Bcr-Abl kinase inhibitors for the treatment of chronic myeloid leukaemia. Biochimica et Biophysica Acta. 2005;1754. Manley P, Cowan-Jacob S, Mestan J. Advances in the structural biology, design and clinical development of Bcr-Abl kinase inhibitors for the treatment of chronic myeloid leukaemia. Biochimica et Biophysica Acta. 2005;1754.
11.
go back to reference Jabbour E, Cortes J, Kantarjian H. Nilotinib for the treatment of chronic myeloid leukemia: an evidence-based review. Core Evid. 2009;4:207–13.CrossRef Jabbour E, Cortes J, Kantarjian H. Nilotinib for the treatment of chronic myeloid leukemia: an evidence-based review. Core Evid. 2009;4:207–13.CrossRef
12.
go back to reference Okarski JS, Newitt JA, Chang CY, Cheng JD, Wittekind M, Kiefer SE, et al. The structure of dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res. 2006;66(11):5790–7.CrossRef Okarski JS, Newitt JA, Chang CY, Cheng JD, Wittekind M, Kiefer SE, et al. The structure of dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res. 2006;66(11):5790–7.CrossRef
13.
go back to reference O'Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM, Wang F, et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009;16(5):401–12.CrossRefPubMedPubMedCentral O'Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM, Wang F, et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009;16(5):401–12.CrossRefPubMedPubMedCentral
14.
go back to reference Ávalos Y, Canales J, Bravo-Sagua R, Criollo A, Lavandero S, Quest AFG. Tumor suppression and promotion by autophagy. BioMed Res Int. 2014;1-15. Ávalos Y, Canales J, Bravo-Sagua R, Criollo A, Lavandero S, Quest AFG. Tumor suppression and promotion by autophagy. BioMed Res Int. 2014;1-15.
15.
go back to reference Strozyk E, Kulms D. The role of AKT/mTOR pathway in stress response to UV-irradiation: implication in skin carcinogenesis by regulation of apoptosis, autophagy and senescence. Int J Mol Sci. 2013;14:15260–85.CrossRefPubMedPubMedCentral Strozyk E, Kulms D. The role of AKT/mTOR pathway in stress response to UV-irradiation: implication in skin carcinogenesis by regulation of apoptosis, autophagy and senescence. Int J Mol Sci. 2013;14:15260–85.CrossRefPubMedPubMedCentral
16.
go back to reference Fan YJ, Zong WX. The cellular decision between apoptosis and autophagy. Chin J Cancer.2013; 121-29. Fan YJ, Zong WX. The cellular decision between apoptosis and autophagy. Chin J Cancer.2013; 121-29.
17.
go back to reference Ostojic A, Vrhovac R, Verstovsek S. Ruxolitinib: a new JAK1/2 inhibitor that offers promising options for treatment of myelofibrosis. Future Oncol. 2011;7(9):1035–43.CrossRefPubMedPubMedCentral Ostojic A, Vrhovac R, Verstovsek S. Ruxolitinib: a new JAK1/2 inhibitor that offers promising options for treatment of myelofibrosis. Future Oncol. 2011;7(9):1035–43.CrossRefPubMedPubMedCentral
18.
go back to reference Nicolas CS, Amici M, Bortolotto ZA, Doherty A, Csaba Z, Fafouri A, et al. The role of JAK-STAT signaling within the CNS. Landes Biosci. 2013;e22925:1–10. Nicolas CS, Amici M, Bortolotto ZA, Doherty A, Csaba Z, Fafouri A, et al. The role of JAK-STAT signaling within the CNS. Landes Biosci. 2013;e22925:1–10.
19.
go back to reference Lütticken C, Wegenka UM, Yuan J, Buschmann J, Schindler C, Ziemiecki A, et al. Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science. 1994;263(5143):89–92.CrossRefPubMed Lütticken C, Wegenka UM, Yuan J, Buschmann J, Schindler C, Ziemiecki A, et al. Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science. 1994;263(5143):89–92.CrossRefPubMed
20.
22.
go back to reference Bahadori M. New advances in RNAs. Arch Iran Med. 2006;11(4):435–43. Bahadori M. New advances in RNAs. Arch Iran Med. 2006;11(4):435–43.
23.
go back to reference Lin Q, Meloni D, Pan Y, Xia M, Rodgers J, Shepard S, et al. Enantioselective synthesis of Janus kinase inhibitor INCB018424 via an organocatalytic aza-Michael reaction. Org Lett. 2009;11(9):1999–2002.CrossRefPubMed Lin Q, Meloni D, Pan Y, Xia M, Rodgers J, Shepard S, et al. Enantioselective synthesis of Janus kinase inhibitor INCB018424 via an organocatalytic aza-Michael reaction. Org Lett. 2009;11(9):1999–2002.CrossRefPubMed
24.
go back to reference Quintás-Cardama A, Vaddi K, Liu P, Manshouri T, Li J, Scherle PA. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood. 2010;115:3109–17.CrossRefPubMedPubMedCentral Quintás-Cardama A, Vaddi K, Liu P, Manshouri T, Li J, Scherle PA. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood. 2010;115:3109–17.CrossRefPubMedPubMedCentral
25.
go back to reference Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 2002;285(1-2):1–24.CrossRefPubMed Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 2002;285(1-2):1–24.CrossRefPubMed
26.
go back to reference Yarilina A, Xu K, Chan C, Ivashkiv LB. Regulation of inflammatory responses in tumor necrosis factor-activated and rheumatoid arthritis synovial macrophages by JAK inhibitors. Arthritis Rheum. 2012;64(12):3856–66.CrossRefPubMedPubMedCentral Yarilina A, Xu K, Chan C, Ivashkiv LB. Regulation of inflammatory responses in tumor necrosis factor-activated and rheumatoid arthritis synovial macrophages by JAK inhibitors. Arthritis Rheum. 2012;64(12):3856–66.CrossRefPubMedPubMedCentral
27.
go back to reference Gallipoli P, Pellicano F, Morrison H, Laidlaw K, Allan EK, Bhatia R, et al. Autocrine TNF-α production supports CML stem and progenitor cell survival and enhances their proliferation. Blood. 2013;122(19):3335–9.CrossRefPubMedPubMedCentral Gallipoli P, Pellicano F, Morrison H, Laidlaw K, Allan EK, Bhatia R, et al. Autocrine TNF-α production supports CML stem and progenitor cell survival and enhances their proliferation. Blood. 2013;122(19):3335–9.CrossRefPubMedPubMedCentral
28.
go back to reference Wullaert A, Heyninck K, Beyaert R. Mechanisms of crosstalk between TNF-induced NFkappaB and JNK activation in hepatocytes. Biochem Pharmacol. 2006;72(9):1090–101.CrossRefPubMed Wullaert A, Heyninck K, Beyaert R. Mechanisms of crosstalk between TNF-induced NFkappaB and JNK activation in hepatocytes. Biochem Pharmacol. 2006;72(9):1090–101.CrossRefPubMed
29.
30.
go back to reference Wilson GS, Tian A, Hebbard L, Duan W, George J, Li X, et al. Tumoricidal effects of the JAK inhibitor Ruxolitinib (INC424) on hepatocellular carcinoma in vitro. Cancer Lett. 2013;341(2):224–30.CrossRefPubMed Wilson GS, Tian A, Hebbard L, Duan W, George J, Li X, et al. Tumoricidal effects of the JAK inhibitor Ruxolitinib (INC424) on hepatocellular carcinoma in vitro. Cancer Lett. 2013;341(2):224–30.CrossRefPubMed
31.
go back to reference Hu Y, Hong Y, Xu Y, Liu P, Guo DH, Chen Y. Inhibition of the JAK/STAT pathway with ruxolitinib overcomes cisplatin resistance in non-small-cell lung cancer NSCLC. Apoptosis. 2014;19(11):1627–36.CrossRefPubMed Hu Y, Hong Y, Xu Y, Liu P, Guo DH, Chen Y. Inhibition of the JAK/STAT pathway with ruxolitinib overcomes cisplatin resistance in non-small-cell lung cancer NSCLC. Apoptosis. 2014;19(11):1627–36.CrossRefPubMed
32.
go back to reference Klejman A, Schreiner SJ, Nieborowska-Skorska M, Slupianek A, Wilson M, Smithgall TE, et al. The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. EMBO J. 2002;21(21):5766–74.CrossRefPubMedPubMedCentral Klejman A, Schreiner SJ, Nieborowska-Skorska M, Slupianek A, Wilson M, Smithgall TE, et al. The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. EMBO J. 2002;21(21):5766–74.CrossRefPubMedPubMedCentral
33.
go back to reference Chen Y, Hu Y, Zhang H, Peng C, Li S. Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nat Genet. 2009;41(7):783–92.CrossRefPubMedPubMedCentral Chen Y, Hu Y, Zhang H, Peng C, Li S. Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nat Genet. 2009;41(7):783–92.CrossRefPubMedPubMedCentral
34.
go back to reference Woessner DW, Lim CS. Disrupting BCR-ABL in combination with secondary leukemia specific pathways in CML cells leads to enhanced apoptosis and decreased proliferation. Mol Pharm. 2013;10(1):270–7.CrossRefPubMed Woessner DW, Lim CS. Disrupting BCR-ABL in combination with secondary leukemia specific pathways in CML cells leads to enhanced apoptosis and decreased proliferation. Mol Pharm. 2013;10(1):270–7.CrossRefPubMed
35.
go back to reference Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, et al. Granulocytemacrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004;351(7):657–67.CrossRefPubMed Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, et al. Granulocytemacrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004;351(7):657–67.CrossRefPubMed
36.
go back to reference Perrotti D, Cesi V, Trotta R, Guerzoni C, Santilli G, Campbell K, et al. BCR-ABL suppresses C/EBPalpha expression through inhibitory action of hnRNP E2. Nat Genet. 2002;30(1):48–58.CrossRefPubMed Perrotti D, Cesi V, Trotta R, Guerzoni C, Santilli G, Campbell K, et al. BCR-ABL suppresses C/EBPalpha expression through inhibitory action of hnRNP E2. Nat Genet. 2002;30(1):48–58.CrossRefPubMed
37.
go back to reference Treanor LM, Zhou S, Janke L, Churchman ML, Ma Z, Lu T, et al. Interleukin-7 receptor mutants initiate early T cell precursor leukemia in murine thymocyte progenitors with multipotent potential. J Exp Med. 2014;211(4):701–13.CrossRefPubMedPubMedCentral Treanor LM, Zhou S, Janke L, Churchman ML, Ma Z, Lu T, et al. Interleukin-7 receptor mutants initiate early T cell precursor leukemia in murine thymocyte progenitors with multipotent potential. J Exp Med. 2014;211(4):701–13.CrossRefPubMedPubMedCentral
38.
go back to reference Mullican SE, Zhang S, Konopleva M, Ruvolo V, Andreeff M, Milbrandt J, et al. Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukemia. Nat Med. 2007;13(6):730–5.CrossRefPubMed Mullican SE, Zhang S, Konopleva M, Ruvolo V, Andreeff M, Milbrandt J, et al. Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukemia. Nat Med. 2007;13(6):730–5.CrossRefPubMed
39.
go back to reference Thomas EK, Cancelas JA, Chae HD. Rac guanosine triphosphatases represent integrating molecular therapeutic targets for BCR-ABL-induced myeloproliferative disease. Cancer Cell. 2007;12:467–78.CrossRefPubMed Thomas EK, Cancelas JA, Chae HD. Rac guanosine triphosphatases represent integrating molecular therapeutic targets for BCR-ABL-induced myeloproliferative disease. Cancer Cell. 2007;12:467–78.CrossRefPubMed
40.
go back to reference Zhang H, Peng C, Hu Y, Li H, Sheng Z, Chen Y, et al. The Blk pathway functions as a tumor suppressor in chronic myeloid leukemia stem cells. Nat Genet. 2012;44(8):861–71.CrossRefPubMedPubMedCentral Zhang H, Peng C, Hu Y, Li H, Sheng Z, Chen Y, et al. The Blk pathway functions as a tumor suppressor in chronic myeloid leukemia stem cells. Nat Genet. 2012;44(8):861–71.CrossRefPubMedPubMedCentral
41.
go back to reference Weisberg E, Azab AK, Manley PW, Kung AL, Christie AL, Bronson R, et al. Inhibition of CXCR4 in CML cells disrupts their interaction with the bone marrow microenvironment and sensitizes them to nilotinib. Leukemia. 2012;26(5):985–90.CrossRefPubMed Weisberg E, Azab AK, Manley PW, Kung AL, Christie AL, Bronson R, et al. Inhibition of CXCR4 in CML cells disrupts their interaction with the bone marrow microenvironment and sensitizes them to nilotinib. Leukemia. 2012;26(5):985–90.CrossRefPubMed
42.
go back to reference Rao R, Fiskus W, Yang Y, Lee P, Joshi R, Fernandez P, et al. HDAC6 inhibition enhances 17-AAG-mediated abrogation of hsp90 chaperone function in human leukemia cells. Blood. 2008;112(5):1886–93.CrossRefPubMed Rao R, Fiskus W, Yang Y, Lee P, Joshi R, Fernandez P, et al. HDAC6 inhibition enhances 17-AAG-mediated abrogation of hsp90 chaperone function in human leukemia cells. Blood. 2008;112(5):1886–93.CrossRefPubMed
43.
go back to reference Krause DS, Fulzele K, Catic A, Sun CC, Dombkowski D, Hurley MP, et al. Differential regulation of myeloid leukemias by the bone marrow microenvironment. Nat Med. 2013;19(11):1513–7.CrossRefPubMedPubMedCentral Krause DS, Fulzele K, Catic A, Sun CC, Dombkowski D, Hurley MP, et al. Differential regulation of myeloid leukemias by the bone marrow microenvironment. Nat Med. 2013;19(11):1513–7.CrossRefPubMedPubMedCentral
45.
go back to reference Evangelisti C, Ricci F, Tazzari P, Chiarini F, Battistelli M, Falcieri E, et al. Preclinical testing of the Akt inhibitor triciribine in T-cell acute lymphoblastic leukemia. J Cell Physiol. 2011;226(3):822–31.CrossRefPubMed Evangelisti C, Ricci F, Tazzari P, Chiarini F, Battistelli M, Falcieri E, et al. Preclinical testing of the Akt inhibitor triciribine in T-cell acute lymphoblastic leukemia. J Cell Physiol. 2011;226(3):822–31.CrossRefPubMed
46.
go back to reference Fan J, Dong X, Zhang W, Zeng X, Li Y, Sun Y, et al. Tyrosine kinase inhibitor Thiotanib targets Bcr-Abl and induces apoptosis and autophagy in human chronic myeloid leukemia cells. Appl Microbiol Biotechnol. 2014;98(23):9763–75.CrossRefPubMed Fan J, Dong X, Zhang W, Zeng X, Li Y, Sun Y, et al. Tyrosine kinase inhibitor Thiotanib targets Bcr-Abl and induces apoptosis and autophagy in human chronic myeloid leukemia cells. Appl Microbiol Biotechnol. 2014;98(23):9763–75.CrossRefPubMed
47.
go back to reference Bartalucci N, Guglielmelli P, Vannucchi AM. Rationale for targeting the PI3K/Akt/mTOR pathway in myeloproliferative neoplasms. Clin Lymphoma Myeloma Leuk. 2013;13 Suppl 2:S307–9.CrossRefPubMed Bartalucci N, Guglielmelli P, Vannucchi AM. Rationale for targeting the PI3K/Akt/mTOR pathway in myeloproliferative neoplasms. Clin Lymphoma Myeloma Leuk. 2013;13 Suppl 2:S307–9.CrossRefPubMed
48.
go back to reference Lee-Sherick AB, Eisenman KM, Sather S, McGranahan A, Armistead PM, McGary CS, et al. Aberrant Mer receptor tyrosine kinase expression contributes to leukemogenesis in acute myeloid leukemia. Oncogene. 2013;32(46):5359–68.CrossRefPubMedPubMedCentral Lee-Sherick AB, Eisenman KM, Sather S, McGranahan A, Armistead PM, McGary CS, et al. Aberrant Mer receptor tyrosine kinase expression contributes to leukemogenesis in acute myeloid leukemia. Oncogene. 2013;32(46):5359–68.CrossRefPubMedPubMedCentral
49.
go back to reference Luo S, Rubinsztein DC. Atg5 and Bcl-2 provide novel insights into the interplay between apoptosis and autophagy. Cell Death Differ. 2007;14(7):1247–50.CrossRefPubMed Luo S, Rubinsztein DC. Atg5 and Bcl-2 provide novel insights into the interplay between apoptosis and autophagy. Cell Death Differ. 2007;14(7):1247–50.CrossRefPubMed
50.
go back to reference Peng X, Li W, Yuan L, Mehta RG, Kopelovich L, McCormick DL. Inhibition of proliferation and induction of autophagy by atorvastatin in PC3 prostate cancer cells correlate with downregulation of Bcl2 and upregulation of miR-182 and p21. PLoS One. 2013;8(8):e70442.CrossRefPubMedPubMedCentral Peng X, Li W, Yuan L, Mehta RG, Kopelovich L, McCormick DL. Inhibition of proliferation and induction of autophagy by atorvastatin in PC3 prostate cancer cells correlate with downregulation of Bcl2 and upregulation of miR-182 and p21. PLoS One. 2013;8(8):e70442.CrossRefPubMedPubMedCentral
Metadata
Title
Ruxolitinib induces autophagy in chronic myeloid leukemia cells
Authors
Bakiye Goker Bagca
Ozgun Ozalp
Cansu Caliskan Kurt
Zeynep Mutlu
Guray Saydam
Cumhur Gunduz
Cigir Biray Avci
Publication date
01-02-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 2/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3947-4

Other articles of this Issue 2/2016

Tumor Biology 2/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine