Skip to main content
Top
Published in: Tumor Biology 12/2015

01-12-2015 | Research Article

Transforming growth factor β type II receptor as a marker in diffuse large B cell lymphoma

Authors: Shudan Mao, Wenqi Yang, Limei Ai, Zhe Li, Jieping Jin

Published in: Tumor Biology | Issue 12/2015

Login to get access

Abstract

The objective of this study was to investigate the expression and significance of the transforming growth factor β type II receptor (TGFβRII) in diffuse large B cell lymphoma. All patients were enrolled at the First Affiliated Hospital of Liaoning Medical University between 2001 and 2007. The median follow-up period was 53.3 months. Of the 338 patients studied, 131 (38.76 %) had TGFβRII positive expression on immunohistochemistry. The 5 year survival rate was significantly higher in patients with TGFβRII expression than in those without TGFβRII expression (40.3 vs. 31.6 %, P = 0.041). Multivariate analysis identified TGFβRII expression as an independent predictive parameter for survival, in addition to lactate dehydrogenase, clinical stage, and histologic subtype. TGFβRII expression may be considered a new prognostic factor of diffuse large B cell lymphoma.
Literature
1.
go back to reference Swerdlow SH, Campo E, Harris NL, et al., editors. World Health Organization classification of tumours of haematopoietic and lymphoid tissues (edition 4). Lyon: International Agency for Research on Cancer Press; 2008. Swerdlow SH, Campo E, Harris NL, et al., editors. World Health Organization classification of tumours of haematopoietic and lymphoid tissues (edition 4). Lyon: International Agency for Research on Cancer Press; 2008.
2.
go back to reference Armitage JO, Weisenburger DD. New approach to classifying non-Hodgkin’s lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin’s Lymphoma Classification Project. J Clin Oncol. 1998;16:2780–95.CrossRefPubMed Armitage JO, Weisenburger DD. New approach to classifying non-Hodgkin’s lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin’s Lymphoma Classification Project. J Clin Oncol. 1998;16:2780–95.CrossRefPubMed
3.
go back to reference Harris NL, Jaffe ES, Stein H, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood. 1994;84:1361–92.PubMed Harris NL, Jaffe ES, Stein H, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood. 1994;84:1361–92.PubMed
4.
go back to reference Jaffe ES, Harris NL, Diebold J, Muller-Hermelink HK. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues. A progress report. Am J Clin Pathol. 1999;111:S8–S12.PubMed Jaffe ES, Harris NL, Diebold J, Muller-Hermelink HK. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues. A progress report. Am J Clin Pathol. 1999;111:S8–S12.PubMed
5.
go back to reference Coiffier B, Gisselbrecht C, Vose JM, et al. Prognostic factors in aggressive malignant lymphomas: description and validation of a prognostic index that could identify patients requiring a more intensive therapy. The Groupe d’Etudes des Lymphomes Agressifs. J Clin Oncol. 1991;9:211–9.CrossRefPubMed Coiffier B, Gisselbrecht C, Vose JM, et al. Prognostic factors in aggressive malignant lymphomas: description and validation of a prognostic index that could identify patients requiring a more intensive therapy. The Groupe d’Etudes des Lymphomes Agressifs. J Clin Oncol. 1991;9:211–9.CrossRefPubMed
6.
go back to reference Hermine O, Haioun C, Lepage E, et al. Prognostic significance of bcl-2 protein expression in aggressive non-Hodgkin’s lymphoma. Groupe d’Etude des Lymphomes de l’Adulte (GELA). Blood. 1996;87:265–72.PubMed Hermine O, Haioun C, Lepage E, et al. Prognostic significance of bcl-2 protein expression in aggressive non-Hodgkin’s lymphoma. Groupe d’Etude des Lymphomes de l’Adulte (GELA). Blood. 1996;87:265–72.PubMed
7.
go back to reference Kramer MH, Hermans J, Parker J, et al. Clinical significance of bcl2 and p53 protein expression in diffuse large B-cell lymphoma: a populationbased study. J Clin Oncol. 1996;14:2131–8.CrossRefPubMed Kramer MH, Hermans J, Parker J, et al. Clinical significance of bcl2 and p53 protein expression in diffuse large B-cell lymphoma: a populationbased study. J Clin Oncol. 1996;14:2131–8.CrossRefPubMed
8.
go back to reference Hill ME, MacLennan KA, Cunningham DC, et al. Prognostic significance of BCL-2 expression and bcl-2 major breakpoint region rearrangement in diffuse large cell non-Hodgkin’s lymphoma: a British National Lymphoma Investigation Study. Blood. 1996;88:1046–51.PubMed Hill ME, MacLennan KA, Cunningham DC, et al. Prognostic significance of BCL-2 expression and bcl-2 major breakpoint region rearrangement in diffuse large cell non-Hodgkin’s lymphoma: a British National Lymphoma Investigation Study. Blood. 1996;88:1046–51.PubMed
9.
go back to reference Gascoyne RD, Adomat SA, Krajewski S, et al. Prognostic significance of Bcl-2 protein expression and Bcl-2 gene rearrangement in diffuse aggressive non-Hodgkin’s lymphoma. Blood. 1997;90:244–51.PubMed Gascoyne RD, Adomat SA, Krajewski S, et al. Prognostic significance of Bcl-2 protein expression and Bcl-2 gene rearrangement in diffuse aggressive non-Hodgkin’s lymphoma. Blood. 1997;90:244–51.PubMed
10.
go back to reference Koduru PR, Raju K, Vadmal V, et al. Correlation between mutation in p53, p53 expression, cytogenetics, histologic type, and survival in patients with B-cell non-Hodgkin’s lymphoma. Blood. 1997;90:4078–91.PubMed Koduru PR, Raju K, Vadmal V, et al. Correlation between mutation in p53, p53 expression, cytogenetics, histologic type, and survival in patients with B-cell non-Hodgkin’s lymphoma. Blood. 1997;90:4078–91.PubMed
11.
go back to reference Ichikawa A, Kinoshita T, Watanabe T, et al. Mutations of the p53 gene as a prognostic factor in aggressive B-cell lymphoma. N Engl J Med. 1997;337:529–34.CrossRefPubMed Ichikawa A, Kinoshita T, Watanabe T, et al. Mutations of the p53 gene as a prognostic factor in aggressive B-cell lymphoma. N Engl J Med. 1997;337:529–34.CrossRefPubMed
12.
go back to reference Zhang H, Gao J, Zhao Z, Li M, Liu C. Clinical implications of SPRR1A expression in diffuse large B-cell lymphomas: a prospective, observational study. BMC Cancer. 2014;14:333.CrossRefPubMedPubMedCentral Zhang H, Gao J, Zhao Z, Li M, Liu C. Clinical implications of SPRR1A expression in diffuse large B-cell lymphomas: a prospective, observational study. BMC Cancer. 2014;14:333.CrossRefPubMedPubMedCentral
13.
go back to reference Liu C, Lu Y, Wang B-b, Zhang Y-j, Zhang R-s, Lu Y, et al. Clinical implications of stem cell gene Oct-4 expression in breast cancer. Ann Surg. 2011;253:1165–71.CrossRefPubMed Liu C, Lu Y, Wang B-b, Zhang Y-j, Zhang R-s, Lu Y, et al. Clinical implications of stem cell gene Oct-4 expression in breast cancer. Ann Surg. 2011;253:1165–71.CrossRefPubMed
14.
go back to reference Liu C, Cao X, Zhang Y, Xu H, Zhang R, Wu Y, et al. Co-expression of Oct-4 and Nestin in human breast cancers. Mol Biol Rep. 2012;39:5875–81.CrossRefPubMed Liu C, Cao X, Zhang Y, Xu H, Zhang R, Wu Y, et al. Co-expression of Oct-4 and Nestin in human breast cancers. Mol Biol Rep. 2012;39:5875–81.CrossRefPubMed
15.
go back to reference Xu D, Xu H, Ren Y, Liu C, Wang X, Zhang H, et al. Cancer stem cell-related gene periostin: a novel prognostic marker for breast cancer. PLoS One. 2012;7(10):e46670.CrossRefPubMedPubMedCentral Xu D, Xu H, Ren Y, Liu C, Wang X, Zhang H, et al. Cancer stem cell-related gene periostin: a novel prognostic marker for breast cancer. PLoS One. 2012;7(10):e46670.CrossRefPubMedPubMedCentral
16.
go back to reference Hao Zhang, Yuan Ren, Huanming Xu, Deyan Pang, Chao Duan, Caigang Liu. The expression of stem cell protein Piwil2 and piR-932 in breast cancer. 2013 Aug 27. pii: S0960-7404(13)00066-2. Hao Zhang, Yuan Ren, Huanming Xu, Deyan Pang, Chao Duan, Caigang Liu. The expression of stem cell protein Piwil2 and piR-932 in breast cancer. 2013 Aug 27. pii: S0960-7404(13)00066-2.
17.
go back to reference Liu B, Nicolaides NC, Markowitz S, Willson JKV, Parsons RE, Jen J, et al. Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nat Genet. 1995;9:48.CrossRefPubMed Liu B, Nicolaides NC, Markowitz S, Willson JKV, Parsons RE, Jen J, et al. Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nat Genet. 1995;9:48.CrossRefPubMed
18.
go back to reference Thibodeau SN, French AJ, Roche PC, Cunningham JM, Tester DJ, Lindor NM, et al. Altered expression of hMSH2 and hMLH1 in tumors with microsatellite instability and genetic alterations in mismatch repair genes. Cancer Res. 1996;56:4836.PubMed Thibodeau SN, French AJ, Roche PC, Cunningham JM, Tester DJ, Lindor NM, et al. Altered expression of hMSH2 and hMLH1 in tumors with microsatellite instability and genetic alterations in mismatch repair genes. Cancer Res. 1996;56:4836.PubMed
19.
go back to reference Umar A, Boyer JC, Thomas DC, Nguyen DC, Risinger JI, Boyd J, et al. Defective mismatch repair in extracts of colorectal and endometrial cancer cell lines exhibiting microsatellite instability. J Biol Chem. 1994;269:14367.PubMed Umar A, Boyer JC, Thomas DC, Nguyen DC, Risinger JI, Boyd J, et al. Defective mismatch repair in extracts of colorectal and endometrial cancer cell lines exhibiting microsatellite instability. J Biol Chem. 1994;269:14367.PubMed
20.
go back to reference Boyer JC, Umar A, Risinger JI, Lipford JR, Kane M, Yin S, et al. Microsatellite instability, mismatch repair deficiency, and genetic defects in human cancer cell lines. Cancer Res. 1995;55:6063.PubMed Boyer JC, Umar A, Risinger JI, Lipford JR, Kane M, Yin S, et al. Microsatellite instability, mismatch repair deficiency, and genetic defects in human cancer cell lines. Cancer Res. 1995;55:6063.PubMed
21.
go back to reference Kane MF, Loda M, Gaida GM, Lipman J, Mishra R, Goldman H, et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair defective human tumor cell lines. Cancer Res. 1997;57:808.PubMed Kane MF, Loda M, Gaida GM, Lipman J, Mishra R, Goldman H, et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair defective human tumor cell lines. Cancer Res. 1997;57:808.PubMed
22.
go back to reference Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa JP, et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A. 1998;95:6870.CrossRefPubMedPubMedCentral Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa JP, et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A. 1998;95:6870.CrossRefPubMedPubMedCentral
23.
go back to reference Simpkins SB, Bocker T, Swisher EM, Mutch DG, Gersell DJ, Kovatich AJ, et al. hMLH1 promoter methylation and gene silencing is the primary cause of microsatellite instability in sporadic endometrial cancers. Hum Mol Genet. 1999;8:661.CrossRefPubMed Simpkins SB, Bocker T, Swisher EM, Mutch DG, Gersell DJ, Kovatich AJ, et al. hMLH1 promoter methylation and gene silencing is the primary cause of microsatellite instability in sporadic endometrial cancers. Hum Mol Genet. 1999;8:661.CrossRefPubMed
24.
go back to reference Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, et al. Inactivation of the type II TGFβ receptor in colon cancer cells with microsatellite instability. Science. 1995;268:1336.CrossRefPubMed Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, et al. Inactivation of the type II TGFβ receptor in colon cancer cells with microsatellite instability. Science. 1995;268:1336.CrossRefPubMed
25.
go back to reference Yamamoto H, Sawai H, Perucho M. Frameshift somatic mutations in gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res. 1997;57:4420.PubMed Yamamoto H, Sawai H, Perucho M. Frameshift somatic mutations in gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res. 1997;57:4420.PubMed
26.
go back to reference Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC, et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science. 1997;275:967.CrossRefPubMed Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC, et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science. 1997;275:967.CrossRefPubMed
27.
go back to reference Schwartz Jr S, Yamamoto H, Navarro M, Maestro M, Reventos J, Perucho M. Frameshift mutations at mononucleotide repeats in caspase-5 and other target genes in endometrial and gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res. 1999;59:2995.PubMed Schwartz Jr S, Yamamoto H, Navarro M, Maestro M, Reventos J, Perucho M. Frameshift mutations at mononucleotide repeats in caspase-5 and other target genes in endometrial and gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res. 1999;59:2995.PubMed
28.
go back to reference Stansfeld AG, Diebold J, Noel H, et al. Updated Kiel classification for lymphomas. Lancet. 1988;1:292–3.CrossRefPubMed Stansfeld AG, Diebold J, Noel H, et al. Updated Kiel classification for lymphomas. Lancet. 1988;1:292–3.CrossRefPubMed
29.
go back to reference Isufi I, Seetharam M, Zhou L, Sohal D, Opalinska J, et al. Transforming growth factor-beta signaling in normal and malignant hematopoiesis. J Interferon Cytokine Res. 2007;27:543–52.CrossRefPubMed Isufi I, Seetharam M, Zhou L, Sohal D, Opalinska J, et al. Transforming growth factor-beta signaling in normal and malignant hematopoiesis. J Interferon Cytokine Res. 2007;27:543–52.CrossRefPubMed
30.
go back to reference Santibanez JF, Quintanilla M, Bernabeu C. TGF-beta/TGF-beta receptor system and its role in physiological and pathological conditions. Clin Sci (Lond). 2011;121:233–51.CrossRef Santibanez JF, Quintanilla M, Bernabeu C. TGF-beta/TGF-beta receptor system and its role in physiological and pathological conditions. Clin Sci (Lond). 2011;121:233–51.CrossRef
31.
go back to reference Wrana JL, Attisano L, Carcamo J, Zentella A, Doody J, et al. TGF beta signals through a heteromeric protein kinase receptor complex. Cell. 1992;71:1003–14.CrossRefPubMed Wrana JL, Attisano L, Carcamo J, Zentella A, Doody J, et al. TGF beta signals through a heteromeric protein kinase receptor complex. Cell. 1992;71:1003–14.CrossRefPubMed
32.
go back to reference Derynck R, Zhang Y. Smad-dependent and Smad-independent pathways in TGF-family signalling. Nature. 2003;425:577–84.CrossRefPubMed Derynck R, Zhang Y. Smad-dependent and Smad-independent pathways in TGF-family signalling. Nature. 2003;425:577–84.CrossRefPubMed
34.
go back to reference Rehmann JA, LeBien TW. Transforming growth factorbeta regulates normal human pre-Bcell differentiation. Int Immunol. 1994;6:315–22.CrossRefPubMed Rehmann JA, LeBien TW. Transforming growth factorbeta regulates normal human pre-Bcell differentiation. Int Immunol. 1994;6:315–22.CrossRefPubMed
35.
go back to reference Kehrl JH, Thevenin C, Rieckmann P, et al. Transforming growth factor-beta suppresses human Blymphocyte Ig production by inhibiting synthesis and the switch from the membrane form to the secreted form of Ig mRNA. J Immunol. 1991;146:4016–23.PubMed Kehrl JH, Thevenin C, Rieckmann P, et al. Transforming growth factor-beta suppresses human Blymphocyte Ig production by inhibiting synthesis and the switch from the membrane form to the secreted form of Ig mRNA. J Immunol. 1991;146:4016–23.PubMed
36.
go back to reference Smeland EB, Blomhoff HK, Holte H, et al. Transforming growth factor type beta (TGF beta) inhibits G1 to S transition, but not activation of human Blymphocytes. Exp Cell Res. 1987;171:213–22.CrossRefPubMed Smeland EB, Blomhoff HK, Holte H, et al. Transforming growth factor type beta (TGF beta) inhibits G1 to S transition, but not activation of human Blymphocytes. Exp Cell Res. 1987;171:213–22.CrossRefPubMed
37.
go back to reference Bouchard C, Fridman WH, Sautes C. Effect of TGF-beta1 on cell cycle regulatory proteins in LPS-stimulated normal mouse Blymphocytes. J Immunol. 1997;159:4155–64.PubMed Bouchard C, Fridman WH, Sautes C. Effect of TGF-beta1 on cell cycle regulatory proteins in LPS-stimulated normal mouse Blymphocytes. J Immunol. 1997;159:4155–64.PubMed
38.
go back to reference Djaborkhel R, Tvrdik D, Eckschlager T, et al. Cyclin A down-regulation in TGFbeta1-arrested follicular lymphoma cells. Exp Cell Res. 2000;261:250–9.CrossRefPubMed Djaborkhel R, Tvrdik D, Eckschlager T, et al. Cyclin A down-regulation in TGFbeta1-arrested follicular lymphoma cells. Exp Cell Res. 2000;261:250–9.CrossRefPubMed
39.
go back to reference Kehrl JH, Roberts AB, Wakefield LM, et al. Transforming growth factor beta is an important immunomodulatory protein for human Blymphocytes. J Immunol. 1986;137:3855–60.PubMed Kehrl JH, Roberts AB, Wakefield LM, et al. Transforming growth factor beta is an important immunomodulatory protein for human Blymphocytes. J Immunol. 1986;137:3855–60.PubMed
40.
go back to reference Wahl SM, Hunt DA, Wong HL, et al. Transforming growth factor is a potent immunosuppressive agent that inhibits IL-1-dependent lymphocyte proliferation. J Immunol. 1988;140:3026–32.PubMed Wahl SM, Hunt DA, Wong HL, et al. Transforming growth factor is a potent immunosuppressive agent that inhibits IL-1-dependent lymphocyte proliferation. J Immunol. 1988;140:3026–32.PubMed
41.
go back to reference Ranges GE, Figari IS, Espevik T, et al. Inhibition of cytotoxic T cell development by transforming growth factor beta and reversal by recombinant tumor necrosis factor alpha. J Exp Med. 1987;166:991–8.CrossRefPubMed Ranges GE, Figari IS, Espevik T, et al. Inhibition of cytotoxic T cell development by transforming growth factor beta and reversal by recombinant tumor necrosis factor alpha. J Exp Med. 1987;166:991–8.CrossRefPubMed
42.
go back to reference Lotz M, Ranheim E, Kipps TJ. Transforming growth factor beta as endogenous growth inhibitor of chronic lymphocytic leukemia Bcells. J Exp Med. 1994;179:999–1004.CrossRefPubMed Lotz M, Ranheim E, Kipps TJ. Transforming growth factor beta as endogenous growth inhibitor of chronic lymphocytic leukemia Bcells. J Exp Med. 1994;179:999–1004.CrossRefPubMed
43.
go back to reference Lebman DA, Edmiston JS. The role of TGF-beta in growth, differentiation, and maturation of Blymphocytes. Microbes Infect. 1999;1:1297–304.CrossRefPubMed Lebman DA, Edmiston JS. The role of TGF-beta in growth, differentiation, and maturation of Blymphocytes. Microbes Infect. 1999;1:1297–304.CrossRefPubMed
44.
go back to reference Chaouchi N, Arvanitakis L, Auffredou MT, et al. Characterization of transforming growth factor-beta 1 induced apoptosis in normal human Bcells and lymphoma Bcell lines. Oncogene. 1995;11:1615–22.PubMed Chaouchi N, Arvanitakis L, Auffredou MT, et al. Characterization of transforming growth factor-beta 1 induced apoptosis in normal human Bcells and lymphoma Bcell lines. Oncogene. 1995;11:1615–22.PubMed
Metadata
Title
Transforming growth factor β type II receptor as a marker in diffuse large B cell lymphoma
Authors
Shudan Mao
Wenqi Yang
Limei Ai
Zhe Li
Jieping Jin
Publication date
01-12-2015
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 12/2015
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3700-z

Other articles of this Issue 12/2015

Tumor Biology 12/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine