Skip to main content
Top
Published in: Tumor Biology 12/2015

01-12-2015 | Research Article

The comparison between dual inhibition of mTOR with MAPK and PI3K signaling pathways in KRAS mutant NSCLC cell lines

Authors: Irem Dogan Turacli, Ayla Cihan Ozkan, Abdullah Ekmekci

Published in: Tumor Biology | Issue 12/2015

Login to get access

Abstract

KRAS mutations are found in 15–25 % of patients with lung adenocarcinoma, and they lead to constitutive activation of KRAS signaling pathway that results in sustained cell proliferation. Currently, there are no direct anti-KRAS therapies available. Therefore, it is rational to target the downstream molecules of KRAS signaling pathway, which are mitogen-activated protein kinase (MAPK) signaling pathway (RAF-MEK-ERK) and PI3K pathway (PI3K-AKT-mTOR). Here, we examined the inhibition of both these pathways alone and in combination and analyzed the anti-proliferative and apoptotic events in KRAS mutant NSCLC cell lines, A549 and Calu-1. Cytotoxicity was determined by MTT assay after the cells were treated with LY294002 (PI3K inhibitor), U0126 (MEK inhibitor), and RAD001 (mTOR inhibitor) for 24 and 48 h. The expression levels of p-ERK, ERK, AKT, p-AKT, p53, cyclinD1, c-myc, p27kip1, BAX, BIM, and GAPDH were detected by western blot after 6 and 24 h treatment. Although PI3K/mTOR inhibition is more effective in cytotoxicity in A549 and Calu-1 cells, MEK/mTOR inhibition markedly decreases cell proliferation protein marker expressions. Our data show that combined targeting of MEK and PI3K-AKT with mTOR is a better option than single agents alone for KRAS mutant NSCLC, thus opening the possibility of a beneficial treatment strategy in the future.
Literature
1.
2.
go back to reference Beasley MB, Brambilla E, Travis WD. The 2004 world health organization classification of lung tumors. Semin Roentgenol. 2005;40:90–7.CrossRefPubMed Beasley MB, Brambilla E, Travis WD. The 2004 world health organization classification of lung tumors. Semin Roentgenol. 2005;40:90–7.CrossRefPubMed
3.
go back to reference A genomics-based classification of human lung tumors. Sci Transl Med 5: 209ra153. 2013. A genomics-based classification of human lung tumors. Sci Transl Med 5: 209ra153. 2013.
4.
go back to reference Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, et al. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia. 2004;18:189–218.CrossRefPubMed Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, et al. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia. 2004;18:189–218.CrossRefPubMed
7.
go back to reference Mascaux C, Iannino N, Martin B, Paesmans M, Berghmans T, et al. The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer. 2005;92:131–9.CrossRefPubMed Mascaux C, Iannino N, Martin B, Paesmans M, Berghmans T, et al. The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer. 2005;92:131–9.CrossRefPubMed
8.
9.
go back to reference Sable CL, Filippa N, Filloux C, Hemmings BA, Van Obberghen E. Involvement of the pleckstrin homology domain in the insulin-stimulated activation of protein kinase B. J Biol Chem. 1998;273:29600–6.CrossRefPubMed Sable CL, Filippa N, Filloux C, Hemmings BA, Van Obberghen E. Involvement of the pleckstrin homology domain in the insulin-stimulated activation of protein kinase B. J Biol Chem. 1998;273:29600–6.CrossRefPubMed
10.
go back to reference Liang J, Slingerland JM. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle. 2003;2:339–45.CrossRefPubMed Liang J, Slingerland JM. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle. 2003;2:339–45.CrossRefPubMed
12.
go back to reference Bondar VM, Sweeney-Gotsch B, Andreeff M, Mills GB, Mcconkey DJ. Inhibition of the phosphatidylinositol 3'-kinase-AKT pathway induces apoptosis in pancreatic carcinoma cells in vitro and in vivo. Mol Cancer Ther. 2002;1:989–97.PubMed Bondar VM, Sweeney-Gotsch B, Andreeff M, Mills GB, Mcconkey DJ. Inhibition of the phosphatidylinositol 3'-kinase-AKT pathway induces apoptosis in pancreatic carcinoma cells in vitro and in vivo. Mol Cancer Ther. 2002;1:989–97.PubMed
13.
go back to reference Tsurutani J, Fukuoka J, Tsurutani H, Shih JH, Hewitt SM, et al. Evaluation of two phosphorylation sites improves the prognostic significance of Akt activation in non-small-cell lung cancer tumors. J Clin Oncol. 2006;24:306–14.CrossRefPubMed Tsurutani J, Fukuoka J, Tsurutani H, Shih JH, Hewitt SM, et al. Evaluation of two phosphorylation sites improves the prognostic significance of Akt activation in non-small-cell lung cancer tumors. J Clin Oncol. 2006;24:306–14.CrossRefPubMed
14.
go back to reference Boulay A, Lane HA. The mammalian target of rapamycin kinase and tumor growth inhibition. Recent Results Cancer Res Fortschritte der Krebsforschung Progres dans les Recherches sur le Cancer. 2007;172:99–124.PubMed Boulay A, Lane HA. The mammalian target of rapamycin kinase and tumor growth inhibition. Recent Results Cancer Res Fortschritte der Krebsforschung Progres dans les Recherches sur le Cancer. 2007;172:99–124.PubMed
15.
go back to reference O’donnell A, Faivre S, Burris 3rd HA, Rea D, Papadimitrakopoulou V, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol. 2008;26:1588–95.CrossRefPubMed O’donnell A, Faivre S, Burris 3rd HA, Rea D, Papadimitrakopoulou V, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol. 2008;26:1588–95.CrossRefPubMed
16.
go back to reference Tabernero J, Rojo F, Calvo E, Burris H, Judson I, et al. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol. 2008;26:1603–10.CrossRefPubMed Tabernero J, Rojo F, Calvo E, Burris H, Judson I, et al. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol. 2008;26:1603–10.CrossRefPubMed
17.
go back to reference O’reilly KE, Rojo F, She QB, Solit D, Mills GB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66:1500–8.CrossRefPubMedPubMedCentral O’reilly KE, Rojo F, She QB, Solit D, Mills GB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66:1500–8.CrossRefPubMedPubMedCentral
18.
go back to reference Rodrik-Outmezguine VS, Chandarlapaty S, Pagano NC, Poulikakos PI, Scaltriti M, et al. mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov. 2011;1:248–59.CrossRefPubMedPubMedCentral Rodrik-Outmezguine VS, Chandarlapaty S, Pagano NC, Poulikakos PI, Scaltriti M, et al. mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov. 2011;1:248–59.CrossRefPubMedPubMedCentral
19.
go back to reference Mccubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 2007;1773:1263–84.CrossRefPubMed Mccubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 2007;1773:1263–84.CrossRefPubMed
20.
go back to reference Papin C, Eychene A, Brunet A, Pages G, Pouyssegur J, et al. B-Raf protein isoforms interact with and phosphorylate Mek-1 on serine residues 218 and 222. Oncogene. 1995;10:1647–51.PubMed Papin C, Eychene A, Brunet A, Pages G, Pouyssegur J, et al. B-Raf protein isoforms interact with and phosphorylate Mek-1 on serine residues 218 and 222. Oncogene. 1995;10:1647–51.PubMed
21.
go back to reference Adjei AA. Signal transduction pathway targets for anticancer drug discovery. Curr Pharm Des. 2000;6:361–78.CrossRefPubMed Adjei AA. Signal transduction pathway targets for anticancer drug discovery. Curr Pharm Des. 2000;6:361–78.CrossRefPubMed
22.
go back to reference Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem. 1998;273:18623–32.CrossRefPubMed Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem. 1998;273:18623–32.CrossRefPubMed
23.
go back to reference Shaul YD, Seger R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta. 2007;1773:1213–26.CrossRefPubMed Shaul YD, Seger R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta. 2007;1773:1213–26.CrossRefPubMed
24.
go back to reference Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 2008;118:3065–74.PubMedPubMedCentral Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 2008;118:3065–74.PubMedPubMedCentral
25.
go back to reference Yu CF, Liu ZX, Cantley LG. ERK negatively regulates the epidermal growth factor-mediated interaction of Gab1 and the phosphatidylinositol 3-kinase. J Biol Chem. 2002;277:19382–8.CrossRefPubMed Yu CF, Liu ZX, Cantley LG. ERK negatively regulates the epidermal growth factor-mediated interaction of Gab1 and the phosphatidylinositol 3-kinase. J Biol Chem. 2002;277:19382–8.CrossRefPubMed
26.
go back to reference Zimmermann S, Moelling K. Phosphorylation and regulation of Raf by Akt (protein kinase B). Science. 1999;286:1741–4.CrossRefPubMed Zimmermann S, Moelling K. Phosphorylation and regulation of Raf by Akt (protein kinase B). Science. 1999;286:1741–4.CrossRefPubMed
27.
go back to reference Guan KL, Figueroa C, Brtva TR, Zhu T, Taylor J, et al. Negative regulation of the serine/threonine kinase B-Raf by Akt. J Biol Chem. 2000;275:27354–9.PubMed Guan KL, Figueroa C, Brtva TR, Zhu T, Taylor J, et al. Negative regulation of the serine/threonine kinase B-Raf by Akt. J Biol Chem. 2000;275:27354–9.PubMed
28.
go back to reference Carriere A, Romeo Y, Acosta-Jaquez HA, Moreau J, Bonneil E, et al. ERK1/2 phosphorylate raptor to promote Ras-dependent activation of mTOR complex 1 (mTORC1). J Biol Chem. 2011;286:567–77.CrossRefPubMed Carriere A, Romeo Y, Acosta-Jaquez HA, Moreau J, Bonneil E, et al. ERK1/2 phosphorylate raptor to promote Ras-dependent activation of mTOR complex 1 (mTORC1). J Biol Chem. 2011;286:567–77.CrossRefPubMed
29.
go back to reference Iida S, Miki Y, Ono K, Akahira J, Nakamura Y, et al. Synergistic anti-tumor effects of RAD001 with MEK inhibitors in neuroendocrine tumors: a potential mechanism of therapeutic limitation of mTOR inhibitor. Mol Cell Endocrinol. 2012;350:99–106.CrossRefPubMed Iida S, Miki Y, Ono K, Akahira J, Nakamura Y, et al. Synergistic anti-tumor effects of RAD001 with MEK inhibitors in neuroendocrine tumors: a potential mechanism of therapeutic limitation of mTOR inhibitor. Mol Cell Endocrinol. 2012;350:99–106.CrossRefPubMed
30.
go back to reference Wan X, Harkavy B, Shen N, Grohar P, Helman LJ. Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene. 2007;26:1932–40.CrossRefPubMed Wan X, Harkavy B, Shen N, Grohar P, Helman LJ. Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene. 2007;26:1932–40.CrossRefPubMed
31.
go back to reference Chen X, Zhao M, Hao M, Sun X, Wang J, et al. Dual inhibition of PI3K and mTOR mitigates compensatory AKT activation and improves tamoxifen response in breast cancer. Mol Cancer Res. 2013;11:1269–78.CrossRefPubMed Chen X, Zhao M, Hao M, Sun X, Wang J, et al. Dual inhibition of PI3K and mTOR mitigates compensatory AKT activation and improves tamoxifen response in breast cancer. Mol Cancer Res. 2013;11:1269–78.CrossRefPubMed
32.
go back to reference Ishibe S, Haydu JE, Togawa A, Marlier A, Cantley LG. Cell confluence regulates hepatocyte growth factor-stimulated cell morphogenesis in a beta-catenin-dependent manner. Mol Cell Biol. 2006;26:9232–43.CrossRefPubMedPubMedCentral Ishibe S, Haydu JE, Togawa A, Marlier A, Cantley LG. Cell confluence regulates hepatocyte growth factor-stimulated cell morphogenesis in a beta-catenin-dependent manner. Mol Cell Biol. 2006;26:9232–43.CrossRefPubMedPubMedCentral
33.
go back to reference Swat A, Dolado I, Rojas JM, Nebreda AR. Cell density-dependent inhibition of epidermal growth factor receptor signaling by p38alpha mitogen-activated protein kinase via Sprouty2 downregulation. Mol Cell Biol. 2009;29:3332–43.CrossRefPubMedPubMedCentral Swat A, Dolado I, Rojas JM, Nebreda AR. Cell density-dependent inhibition of epidermal growth factor receptor signaling by p38alpha mitogen-activated protein kinase via Sprouty2 downregulation. Mol Cell Biol. 2009;29:3332–43.CrossRefPubMedPubMedCentral
34.
go back to reference Gao J, Zhao Y, Lv Y, Chen Y, Wei B, et al. Mirk/Dyrk1B mediates G0/G1 to S phase cell cycle progression and cell survival involving MAPK/ERK signaling in human cancer cells. Cancer Cell Int. 2013;13:2.CrossRefPubMedPubMedCentral Gao J, Zhao Y, Lv Y, Chen Y, Wei B, et al. Mirk/Dyrk1B mediates G0/G1 to S phase cell cycle progression and cell survival involving MAPK/ERK signaling in human cancer cells. Cancer Cell Int. 2013;13:2.CrossRefPubMedPubMedCentral
35.
go back to reference Ko JC, Wang YT, Yang JL. Dual and opposing roles of ERK in regulating G(1) and S-G(2)/M delays in A549 cells caused by hyperoxia. Exp Cell Res. 2004;297:472–83.CrossRefPubMed Ko JC, Wang YT, Yang JL. Dual and opposing roles of ERK in regulating G(1) and S-G(2)/M delays in A549 cells caused by hyperoxia. Exp Cell Res. 2004;297:472–83.CrossRefPubMed
37.
go back to reference Ji D, Zhang Z, Cheng L, Chang J, Wang S, et al. The combination of RAD001 and MK-2206 exerts synergistic cytotoxic effects against PTEN mutant gastric cancer cells: involvement of MAPK-dependent autophagic, but not apoptotic cell death pathway. PLoS One. 2014;9, e85116.CrossRefPubMedPubMedCentral Ji D, Zhang Z, Cheng L, Chang J, Wang S, et al. The combination of RAD001 and MK-2206 exerts synergistic cytotoxic effects against PTEN mutant gastric cancer cells: involvement of MAPK-dependent autophagic, but not apoptotic cell death pathway. PLoS One. 2014;9, e85116.CrossRefPubMedPubMedCentral
38.
go back to reference Zito CR, Jilaveanu LB, Anagnostou V, Rimm D, Bepler G, et al. Multi-level targeting of the phosphatidylinositol-3-kinase pathway in non-small cell lung cancer cells. PLoS One. 2012;7, e31331.CrossRefPubMedPubMedCentral Zito CR, Jilaveanu LB, Anagnostou V, Rimm D, Bepler G, et al. Multi-level targeting of the phosphatidylinositol-3-kinase pathway in non-small cell lung cancer cells. PLoS One. 2012;7, e31331.CrossRefPubMedPubMedCentral
39.
go back to reference Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med. 2008;14:1351–6.CrossRefPubMedPubMedCentral Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med. 2008;14:1351–6.CrossRefPubMedPubMedCentral
40.
go back to reference Qu Y, Wu X, Yin Y, Yang Y, Ma D, et al. Antitumor activity of selective MEK1/2 inhibitor AZD6244 in combination with PI3K/mTOR inhibitor BEZ235 in gefitinib-resistant NSCLC xenograft models. J Exp Clin Cancer Res CR. 2014;33:52.CrossRefPubMed Qu Y, Wu X, Yin Y, Yang Y, Ma D, et al. Antitumor activity of selective MEK1/2 inhibitor AZD6244 in combination with PI3K/mTOR inhibitor BEZ235 in gefitinib-resistant NSCLC xenograft models. J Exp Clin Cancer Res CR. 2014;33:52.CrossRefPubMed
41.
go back to reference Hata AN, Yeo A, Faber AC, Lifshits E, Chen Z, et al. Failure to induce apoptosis via BCL-2 family proteins underlies lack of efficacy of combined MEK and PI3K inhibitors for KRAS-mutant lung cancers. Cancer Res. 2014;74:3146–56.CrossRefPubMedPubMedCentral Hata AN, Yeo A, Faber AC, Lifshits E, Chen Z, et al. Failure to induce apoptosis via BCL-2 family proteins underlies lack of efficacy of combined MEK and PI3K inhibitors for KRAS-mutant lung cancers. Cancer Res. 2014;74:3146–56.CrossRefPubMedPubMedCentral
42.
go back to reference Ballif BA, Blenis J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ Mol Biol J Am Assoc Cancer Res. 2001;12:397–408. Ballif BA, Blenis J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ Mol Biol J Am Assoc Cancer Res. 2001;12:397–408.
43.
go back to reference Allan LA, Morrice N, Brady S, Magee G, Pathak S, et al. Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat Cell Biol. 2003;5:647–54.CrossRefPubMed Allan LA, Morrice N, Brady S, Magee G, Pathak S, et al. Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat Cell Biol. 2003;5:647–54.CrossRefPubMed
44.
go back to reference Sahu RP, Batra S, Kandala PK, Brown TL, Srivastava SK. The role of K-ras gene mutation in TRAIL-induced apoptosis in pancreatic and lung cancer cell lines. Cancer Chemother Pharmacol. 2011;67:481–7.CrossRefPubMed Sahu RP, Batra S, Kandala PK, Brown TL, Srivastava SK. The role of K-ras gene mutation in TRAIL-induced apoptosis in pancreatic and lung cancer cell lines. Cancer Chemother Pharmacol. 2011;67:481–7.CrossRefPubMed
45.
go back to reference Mirza AM, Gysin S, Malek N, Nakayama K, Roberts JM, et al. Cooperative regulation of the cell division cycle by the protein kinases RAF and AKT. Mol Cell Biol. 2004;24:10868–81.CrossRefPubMedPubMedCentral Mirza AM, Gysin S, Malek N, Nakayama K, Roberts JM, et al. Cooperative regulation of the cell division cycle by the protein kinases RAF and AKT. Mol Cell Biol. 2004;24:10868–81.CrossRefPubMedPubMedCentral
46.
go back to reference Gysin S, Lee SH, Dean NM, Mcmahon M. Pharmacologic inhibition of RAF→MEK→ERK signaling elicits pancreatic cancer cell cycle arrest through induced expression of p27Kip1. Cancer Res. 2005;65:4870–80.CrossRefPubMed Gysin S, Lee SH, Dean NM, Mcmahon M. Pharmacologic inhibition of RAF→MEK→ERK signaling elicits pancreatic cancer cell cycle arrest through induced expression of p27Kip1. Cancer Res. 2005;65:4870–80.CrossRefPubMed
47.
go back to reference Ku BM, Jho EH, Bae YH, Sun JM, Ahn JS, et al. BYL719, a selective inhibitor of phosphoinositide 3-kinase alpha, enhances the effect of selumetinib (AZD6244, ARRY-142886) in KRAS-mutant non-small cell lung cancer. Investig New Drugs. 2014. Ku BM, Jho EH, Bae YH, Sun JM, Ahn JS, et al. BYL719, a selective inhibitor of phosphoinositide 3-kinase alpha, enhances the effect of selumetinib (AZD6244, ARRY-142886) in KRAS-mutant non-small cell lung cancer. Investig New Drugs. 2014.
48.
go back to reference Chen Y, Nowak I, Huang J, Keng PC, Sun H, et al. Erk/MAP kinase signaling pathway and neuroendocrine differentiation of non-small-cell lung cancer. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2014;9:50–8. Chen Y, Nowak I, Huang J, Keng PC, Sun H, et al. Erk/MAP kinase signaling pathway and neuroendocrine differentiation of non-small-cell lung cancer. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2014;9:50–8.
49.
go back to reference Haagensen EJ, Kyle S, Beale GS, Maxwell RJ, Newell DR. The synergistic interaction of MEK and PI3K inhibitors is modulated by mTOR inhibition. Br J Cancer. 2012;106:1386–94.CrossRefPubMedPubMedCentral Haagensen EJ, Kyle S, Beale GS, Maxwell RJ, Newell DR. The synergistic interaction of MEK and PI3K inhibitors is modulated by mTOR inhibition. Br J Cancer. 2012;106:1386–94.CrossRefPubMedPubMedCentral
Metadata
Title
The comparison between dual inhibition of mTOR with MAPK and PI3K signaling pathways in KRAS mutant NSCLC cell lines
Authors
Irem Dogan Turacli
Ayla Cihan Ozkan
Abdullah Ekmekci
Publication date
01-12-2015
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 12/2015
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3671-0

Other articles of this Issue 12/2015

Tumor Biology 12/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine