Skip to main content
Top
Published in: Tumor Biology 11/2015

01-11-2015 | Research Article

MST-312 induces G2/M cell cycle arrest and apoptosis in APL cells through inhibition of telomerase activity and suppression of NF-κB pathway

Authors: Ahmad Fatemi, Majid Safa, Ahmad Kazemi

Published in: Tumor Biology | Issue 11/2015

Login to get access

Abstract

Telomerase-targeted therapy for cancer has received great attention because telomerase is expressed in almost all cancer cells but is inactive in most normal somatic cells. This study was aimed to investigate the effects of telomerase inhibitor MST-312, a chemically modified derivative of epigallocatechin gallate (EGCG), on acute promyelocytic leukemia (APL) cells. Our results showed that MST-312 exerted a dose-dependent short-term cytotoxic effect on APL cells, with G2/M cell cycle arrest. Moreover, MST-312 induced apoptosis of APL cells in caspase-mediated manner. Telomeric repeat amplification protocol (TRAP) assay revealed significant reduction in telomerase activity of APL cells following short-term exposure to MST-312. Interestingly, MST-312-induced telomerase inhibition was coupled with suppression of NF-κB activity as evidenced by inhibition of IκBα phosphorylation and its degradation and decreased NF-κB DNA binding activity. In addition, gene expression analysis showed downregulation of genes regulated by NF-κB, such as antiapoptotic (survivin, Bcl-2, Mcl-1), proliferative (c-Myc), and telomerase-related (hTERT) genes. Importantly, MST-312 did not show any apoptotic effect in normal human peripheral blood mononuclear cells (PBMCs). In conclusion, our data suggest that dual inhibition of telomerase activity and NF-κB pathway by MST-312 represents a novel treatment strategy for APL.
Literature
1.
go back to reference Stein EM, Tallman MS. Acute promyelocytic leukemia in children and adolescents. Acta Haematol. 2014;132(3-4):307–12.CrossRefPubMed Stein EM, Tallman MS. Acute promyelocytic leukemia in children and adolescents. Acta Haematol. 2014;132(3-4):307–12.CrossRefPubMed
2.
go back to reference Chen Z, Wang Z-Y, Chen S-J. Acute promyelocytic leukemia: cellular and molecular basis of differentiation and apoptosis. Pharmacol Ther. 1997;76(1):141–9.CrossRefPubMed Chen Z, Wang Z-Y, Chen S-J. Acute promyelocytic leukemia: cellular and molecular basis of differentiation and apoptosis. Pharmacol Ther. 1997;76(1):141–9.CrossRefPubMed
3.
go back to reference Testa U, Riccioni R. Deregulation of apoptosis in acute myeloid leukemia. Haematologica. 2007;92(1):81–94.CrossRefPubMed Testa U, Riccioni R. Deregulation of apoptosis in acute myeloid leukemia. Haematologica. 2007;92(1):81–94.CrossRefPubMed
4.
go back to reference Fulda S. Evasion of apoptosis as a cellular stress response in cancer. International journal of cell biology. 2010;2010. Fulda S. Evasion of apoptosis as a cellular stress response in cancer. International journal of cell biology. 2010;2010.
5.
go back to reference Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N. Apoptosis and molecular targeting therapy in cancer. BioMed research international. 2014;2014. Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N. Apoptosis and molecular targeting therapy in cancer. BioMed research international. 2014;2014.
6.
7.
go back to reference Shay JW, Wright WE. Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis. 2005;26(5):867–74.CrossRefPubMed Shay JW, Wright WE. Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis. 2005;26(5):867–74.CrossRefPubMed
9.
go back to reference Low KC, Tergaonkar V. Telomerase: central regulator of all of the hallmarks of cancer. Trends Biochem Sci. 2013;38(9):426–34.CrossRefPubMed Low KC, Tergaonkar V. Telomerase: central regulator of all of the hallmarks of cancer. Trends Biochem Sci. 2013;38(9):426–34.CrossRefPubMed
11.
go back to reference Martínez P, Blasco MA. Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer. 2011;11(3):161–76.CrossRefPubMed Martínez P, Blasco MA. Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer. 2011;11(3):161–76.CrossRefPubMed
12.
go back to reference Smith LL, Coller HA, Roberts JM. Telomerase modulates expression of growth-controlling genes and enhances cell proliferation. Nat Cell Biol. 2003;5(5):474–9.CrossRefPubMed Smith LL, Coller HA, Roberts JM. Telomerase modulates expression of growth-controlling genes and enhances cell proliferation. Nat Cell Biol. 2003;5(5):474–9.CrossRefPubMed
13.
go back to reference Xiang H, Wang J, Mao Y, Liu M, Reddy VN, Li D. Human telomerase accelerates growth of lens epithelial cells through regulation of the genes mediating RB/E2F pathway. Oncogene. 2002;21(23):3784–91.CrossRefPubMed Xiang H, Wang J, Mao Y, Liu M, Reddy VN, Li D. Human telomerase accelerates growth of lens epithelial cells through regulation of the genes mediating RB/E2F pathway. Oncogene. 2002;21(23):3784–91.CrossRefPubMed
14.
go back to reference Kirkpatrick KL, Newbold RF, Mokbel K. The mRNA expression of hTERT in human breast carcinomas correlates with VEGF expression. J Carcinogen. 2004;3(1):1.CrossRef Kirkpatrick KL, Newbold RF, Mokbel K. The mRNA expression of hTERT in human breast carcinomas correlates with VEGF expression. J Carcinogen. 2004;3(1):1.CrossRef
15.
go back to reference Sharma GG, Gupta A, Wang H, Scherthan H, Dhar S, Gandhi V, et al. hTERT associates with human telomeres and enhances genomic stability and DNA repair. Oncogene. 2003;22(1):131–46.CrossRefPubMed Sharma GG, Gupta A, Wang H, Scherthan H, Dhar S, Gandhi V, et al. hTERT associates with human telomeres and enhances genomic stability and DNA repair. Oncogene. 2003;22(1):131–46.CrossRefPubMed
16.
go back to reference Lee J, Sung Y, Cheong C, Choi Y, Jeon H, Sun W, et al. TERT promotes cellular and organismal survival independently of telomerase activity. Oncogene. 2008;27(26):3754–60.CrossRefPubMed Lee J, Sung Y, Cheong C, Choi Y, Jeon H, Sun W, et al. TERT promotes cellular and organismal survival independently of telomerase activity. Oncogene. 2008;27(26):3754–60.CrossRefPubMed
17.
go back to reference Massard C, Zermati Y, Pauleau A, Larochette N, Metivier D, Sabatier L, et al. hTERT: a novel endogenous inhibitor of the mitochondrial cell death pathway. Oncogene. 2006;25(33):4505–14.CrossRefPubMed Massard C, Zermati Y, Pauleau A, Larochette N, Metivier D, Sabatier L, et al. hTERT: a novel endogenous inhibitor of the mitochondrial cell death pathway. Oncogene. 2006;25(33):4505–14.CrossRefPubMed
18.
go back to reference Rahman R, Latonen L, Wiman KG. hTERT antagonizes p53-induced apoptosis independently of telomerase activity. Oncogene. 2004;24(8):1320–7.CrossRef Rahman R, Latonen L, Wiman KG. hTERT antagonizes p53-induced apoptosis independently of telomerase activity. Oncogene. 2004;24(8):1320–7.CrossRef
19.
go back to reference Ghosh A, Saginc G, Leow SC, Khattar E, Shin EM, Yan TD, et al. Telomerase directly regulates NF-κB-dependent transcription. Nat Cell Biol. 2012;14(12):1270–81.CrossRefPubMed Ghosh A, Saginc G, Leow SC, Khattar E, Shin EM, Yan TD, et al. Telomerase directly regulates NF-κB-dependent transcription. Nat Cell Biol. 2012;14(12):1270–81.CrossRefPubMed
20.
go back to reference Park J-I, Venteicher AS, Hong JY, Choi J, Jun S, Shkreli M, et al. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature. 2009;460(7251):66–72.CrossRefPubMedPubMedCentral Park J-I, Venteicher AS, Hong JY, Choi J, Jun S, Shkreli M, et al. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature. 2009;460(7251):66–72.CrossRefPubMedPubMedCentral
21.
go back to reference Jost PJ, Ruland J. Aberrant NF-κB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood. 2007;109(7):2700–7.PubMed Jost PJ, Ruland J. Aberrant NF-κB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood. 2007;109(7):2700–7.PubMed
22.
go back to reference Cilloni D, Martinelli G, Messa F, Baccarani M, Saglio G. Nuclear factor κB as a target for new drug development in myeloid malignancies. Haematologica. 2007;92(9):1224–9.CrossRefPubMed Cilloni D, Martinelli G, Messa F, Baccarani M, Saglio G. Nuclear factor κB as a target for new drug development in myeloid malignancies. Haematologica. 2007;92(9):1224–9.CrossRefPubMed
24.
go back to reference Dutta J, Fan Y, Gupta N, Fan G, Gelinas C. Current insights into the regulation of programmed cell death by NF-κB. Oncogene. 2006;25(51):6800–16.CrossRefPubMed Dutta J, Fan Y, Gupta N, Fan G, Gelinas C. Current insights into the regulation of programmed cell death by NF-κB. Oncogene. 2006;25(51):6800–16.CrossRefPubMed
25.
go back to reference Nagel D, Vincendeau M, Eitelhuber A, Krappmann D. Mechanisms and consequences of constitutive NF-κB activation in B-cell lymphoid malignancies. Oncogene. 2014. Nagel D, Vincendeau M, Eitelhuber A, Krappmann D. Mechanisms and consequences of constitutive NF-κB activation in B-cell lymphoid malignancies. Oncogene. 2014.
26.
go back to reference Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266(5193):2011–5.CrossRefPubMed Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266(5193):2011–5.CrossRefPubMed
27.
go back to reference Zhang X, Mar V, Zhou W, Harrington L, Robinson MO. Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev. 1999;13(18):2388–99.CrossRefPubMedPubMedCentral Zhang X, Mar V, Zhou W, Harrington L, Robinson MO. Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev. 1999;13(18):2388–99.CrossRefPubMedPubMedCentral
28.
go back to reference Herbert B-S, Pitts A, Baker S, Hamilton S, Wright W, Shay J, et al. Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death. Proc Natl Acad Sci. 1999;96(25):14276–81.CrossRefPubMedPubMedCentral Herbert B-S, Pitts A, Baker S, Hamilton S, Wright W, Shay J, et al. Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death. Proc Natl Acad Sci. 1999;96(25):14276–81.CrossRefPubMedPubMedCentral
29.
go back to reference Röth A, Dürig J, Himmelreich H, Bug S, Siebert R, Dührsen U, et al. Short telomeres and high telomerase activity in T-cell prolymphocytic leukemia. Leukemia. 2007;21(12):2456–62.CrossRefPubMed Röth A, Dürig J, Himmelreich H, Bug S, Siebert R, Dührsen U, et al. Short telomeres and high telomerase activity in T-cell prolymphocytic leukemia. Leukemia. 2007;21(12):2456–62.CrossRefPubMed
31.
go back to reference Ghaffari S, Shayan-Asl N, Jamialahmadi A, Alimoghaddam K, Ghavamzadeh A. Telomerase activity and telomere length in patients with acute promyelocytic leukemia: indicative of proliferative activity, disease progression, and overall survival. Annals of Oncology. 2008:mdn394. Ghaffari S, Shayan-Asl N, Jamialahmadi A, Alimoghaddam K, Ghavamzadeh A. Telomerase activity and telomere length in patients with acute promyelocytic leukemia: indicative of proliferative activity, disease progression, and overall survival. Annals of Oncology. 2008:mdn394.
32.
go back to reference Seimiya H, Oh-hara T, Suzuki T, Naasani I, Shimazaki T, Tsuchiya K, et al. Telomere shortening and growth inhibition of human cancer cells by novel synthetic telomerase inhibitors MST-312, MST-295, and MST-199. Mol Cancer Ther. 2002;1(9):657–65. Supported in part by a grant-in-aid for scientific research on priority areas from the Ministry of Education, Culture, Sports, Science and Technology, Japan. PubMed Seimiya H, Oh-hara T, Suzuki T, Naasani I, Shimazaki T, Tsuchiya K, et al. Telomere shortening and growth inhibition of human cancer cells by novel synthetic telomerase inhibitors MST-312, MST-295, and MST-199. Mol Cancer Ther. 2002;1(9):657–65. Supported in part by a grant-in-aid for scientific research on priority areas from the Ministry of Education, Culture, Sports, Science and Technology, Japan. PubMed
34.
go back to reference Serrano D, Bleau A-M, Fernandez-Garcia I, Fernandez-Marcelo T, Iniesta P, Ortiz-de-Solorzano C, et al. Inhibition of telomerase activity preferentially targets aldehyde dehydrogenase-positive cancer stem-like cells in lung cancer. Mol Cancer. 2011;10(96). Serrano D, Bleau A-M, Fernandez-Garcia I, Fernandez-Marcelo T, Iniesta P, Ortiz-de-Solorzano C, et al. Inhibition of telomerase activity preferentially targets aldehyde dehydrogenase-positive cancer stem-like cells in lung cancer. Mol Cancer. 2011;10(96).
35.
go back to reference Collins K. Physiological assembly and activity of human telomerase complexes. Mech Ageing Dev. 2008;129(1):91–8.CrossRefPubMed Collins K. Physiological assembly and activity of human telomerase complexes. Mech Ageing Dev. 2008;129(1):91–8.CrossRefPubMed
36.
go back to reference Wojtyla A, Gladych M, Rubis B. Human telomerase activity regulation. Mol Biol Rep. 2011;38(5):3339–49.CrossRefPubMed Wojtyla A, Gladych M, Rubis B. Human telomerase activity regulation. Mol Biol Rep. 2011;38(5):3339–49.CrossRefPubMed
37.
go back to reference Cerni C. Telomeres, telomerase, and myc. An update. Mutation Res/Rev Mutation Res. 2000;462(1):31–47.CrossRef Cerni C. Telomeres, telomerase, and myc. An update. Mutation Res/Rev Mutation Res. 2000;462(1):31–47.CrossRef
38.
go back to reference Zuo Q-P, Liu S-K, Li Z-J, Li B, Zhou Y-L, Guo R, et al. NF-kappaB p65 modulates the telomerase reverse transcriptase in the HepG2 hepatoma cell line. Eur J Pharmacol. 2011;672(1):113–20.CrossRefPubMed Zuo Q-P, Liu S-K, Li Z-J, Li B, Zhou Y-L, Guo R, et al. NF-kappaB p65 modulates the telomerase reverse transcriptase in the HepG2 hepatoma cell line. Eur J Pharmacol. 2011;672(1):113–20.CrossRefPubMed
39.
go back to reference Yin L, Hubbard AK, Giardina C. NF-κB regulates transcription of the mouse telomerase catalytic subunit. J Biol Chem. 2000;275(47):36671–5.CrossRefPubMed Yin L, Hubbard AK, Giardina C. NF-κB regulates transcription of the mouse telomerase catalytic subunit. J Biol Chem. 2000;275(47):36671–5.CrossRefPubMed
40.
go back to reference Wang JC, Bennett MR. Nuclear factor-κΒ–mediated regulation of telomerase the Myc link. Arterioscler Thromb Vasc Biol. 2010;30(12):2327–8.CrossRefPubMed Wang JC, Bennett MR. Nuclear factor-κΒ–mediated regulation of telomerase the Myc link. Arterioscler Thromb Vasc Biol. 2010;30(12):2327–8.CrossRefPubMed
41.
go back to reference Olaussen KA, Dubrana K, Domont J, Spano J-P, Sabatier L, Soria J-C. Telomeres and telomerase as targets for anticancer drug development. Crit Rev Oncol/Hematol. 2006;57(3):191–214.CrossRef Olaussen KA, Dubrana K, Domont J, Spano J-P, Sabatier L, Soria J-C. Telomeres and telomerase as targets for anticancer drug development. Crit Rev Oncol/Hematol. 2006;57(3):191–214.CrossRef
42.
go back to reference Shay JW. Telomerase as a target for cancer therapeutics. Gene-based therapies for cancer: Springer; 2010. p. 231-49. Shay JW. Telomerase as a target for cancer therapeutics. Gene-based therapies for cancer: Springer; 2010. p. 231-49.
43.
go back to reference Wong VC, Ma J, Hawkins CE. Telomerase inhibition induces acute ATM-dependent growth arrest in human astrocytomas. Cancer Lett. 2009;274(1):151–9.CrossRefPubMed Wong VC, Ma J, Hawkins CE. Telomerase inhibition induces acute ATM-dependent growth arrest in human astrocytomas. Cancer Lett. 2009;274(1):151–9.CrossRefPubMed
44.
go back to reference Gellert GC, Dikmen ZG, Wright WE, Gryaznov S, Shay JW. Effects of a novel telomerase inhibitor, GRN163L, in human breast cancer. Breast Cancer Res Treat. 2006;96(1):73–81.CrossRefPubMed Gellert GC, Dikmen ZG, Wright WE, Gryaznov S, Shay JW. Effects of a novel telomerase inhibitor, GRN163L, in human breast cancer. Breast Cancer Res Treat. 2006;96(1):73–81.CrossRefPubMed
45.
go back to reference Kraemer K, Fuessel S, Schmidt U, Kotzsch M, Schwenzer B, Wirth MP, et al. Antisense-mediated hTERT inhibition specifically reduces the growth of human bladder cancer cells. Clin Cancer Res. 2003;9(10):3794–800.PubMed Kraemer K, Fuessel S, Schmidt U, Kotzsch M, Schwenzer B, Wirth MP, et al. Antisense-mediated hTERT inhibition specifically reduces the growth of human bladder cancer cells. Clin Cancer Res. 2003;9(10):3794–800.PubMed
46.
go back to reference Mikami-Terao Y, Akiyama M, Yuza Y, Yanagisawa T, Yamada O, Yamada H. Antitumor activity of G-quadruplex–interactive agent TMPyP4 in K562 leukemic cells. Cancer Lett. 2008;261(2):226–34.CrossRefPubMed Mikami-Terao Y, Akiyama M, Yuza Y, Yanagisawa T, Yamada O, Yamada H. Antitumor activity of G-quadruplex–interactive agent TMPyP4 in K562 leukemic cells. Cancer Lett. 2008;261(2):226–34.CrossRefPubMed
47.
go back to reference Calado RT, Chen J. Telomerase: not just for the elongation of telomeres. Bioessays. 2006;28(2):109–12.CrossRefPubMed Calado RT, Chen J. Telomerase: not just for the elongation of telomeres. Bioessays. 2006;28(2):109–12.CrossRefPubMed
48.
go back to reference Ding D, Xi P, Zhou J, Wang M, Cong Y-S. Human telomerase reverse transcriptase regulates MMP expression independently of telomerase activity via NF-κB-dependent transcription. FASEB J. 2013;27(11):4375–83.CrossRefPubMed Ding D, Xi P, Zhou J, Wang M, Cong Y-S. Human telomerase reverse transcriptase regulates MMP expression independently of telomerase activity via NF-κB-dependent transcription. FASEB J. 2013;27(11):4375–83.CrossRefPubMed
Metadata
Title
MST-312 induces G2/M cell cycle arrest and apoptosis in APL cells through inhibition of telomerase activity and suppression of NF-κB pathway
Authors
Ahmad Fatemi
Majid Safa
Ahmad Kazemi
Publication date
01-11-2015
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 11/2015
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3575-z

Other articles of this Issue 11/2015

Tumor Biology 11/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine