Skip to main content
Top
Published in: Tumor Biology 6/2015

01-06-2015 | Review

Autophagy and its function in radiosensitivity

Authors: Yan Yang, Yuehua Yang, Xi Yang, Hongcheng Zhu, Qing Guo, Xiaochen Chen, Hao Zhang, Hongyan Cheng, Xinchen Sun

Published in: Tumor Biology | Issue 6/2015

Login to get access

Abstract

Autophagy differs from apoptosis and is independent of phagocytes by the appearance of autophagosomes, autolysosomes, and complete nuclei in the cell. This process significantly contributes to the antineoplastic effects of radiation. Radiation is an important strategy in cancer treatment; however, many types of cancer show radioresistance. The effects of radiotherapy are affected by factors, including the degree of tumor tissue hypoxia, the ability to repair DNA damage, and the presence of cancer stem cells. We review the relationships among autophagy, the three factors in cancer radiation, and the possible underlying molecular mechanisms. The therapeutic implications of these relationships and mechanisms in clinical settings are also discussed.
Literature
1.
go back to reference Dalby KN, Tekedereli I, Lopez-Berestein G, Ozpolat B. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy. 2010;6:322–9.PubMedPubMedCentralCrossRef Dalby KN, Tekedereli I, Lopez-Berestein G, Ozpolat B. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy. 2010;6:322–9.PubMedPubMedCentralCrossRef
2.
go back to reference Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan JL, et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol. 2008;181:497–510.PubMedPubMedCentralCrossRef Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan JL, et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol. 2008;181:497–510.PubMedPubMedCentralCrossRef
3.
go back to reference Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009;20:1981–91.PubMedPubMedCentralCrossRef Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009;20:1981–91.PubMedPubMedCentralCrossRef
4.
go back to reference Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy. 2009;5:973–9.PubMedCrossRef Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy. 2009;5:973–9.PubMedCrossRef
5.
go back to reference Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, et al. Phosphorylation of Ulk1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science (NY). 2011;331:456–61.CrossRef Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, et al. Phosphorylation of Ulk1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science (NY). 2011;331:456–61.CrossRef
6.
go back to reference Kihara A, Noda T, Ishihara N, Ohsumi Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol. 2001;152:519–30.PubMedPubMedCentralCrossRef Kihara A, Noda T, Ishihara N, Ohsumi Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol. 2001;152:519–30.PubMedPubMedCentralCrossRef
7.
go back to reference Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19:5720–8.PubMedPubMedCentralCrossRef Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19:5720–8.PubMedPubMedCentralCrossRef
8.
go back to reference Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell. 2008;19:2092–100.PubMedPubMedCentralCrossRef Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell. 2008;19:2092–100.PubMedPubMedCentralCrossRef
9.
go back to reference Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, et al. A ubiquitin-like system mediates protein lipidation. Nature. 2000;408:488–92.PubMedCrossRef Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, et al. A ubiquitin-like system mediates protein lipidation. Nature. 2000;408:488–92.PubMedCrossRef
10.
go back to reference Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol. 2000;151:263–76.PubMedPubMedCentralCrossRef Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol. 2000;151:263–76.PubMedPubMedCentralCrossRef
11.
go back to reference Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, et al. Dissection of autophagosome formation using APG5-deficient mouse embryonic stem cells. J Cell Biol. 2001;152:657–68.PubMedPubMedCentralCrossRef Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, et al. Dissection of autophagosome formation using APG5-deficient mouse embryonic stem cells. J Cell Biol. 2001;152:657–68.PubMedPubMedCentralCrossRef
12.
go back to reference Koritzinsky M, Wouters BG. The roles of reactive oxygen species and autophagy in mediating the tolerance of tumor cells to cycling hypoxia. Semin Radiat Oncol. 2013;23:252–61.PubMedCrossRef Koritzinsky M, Wouters BG. The roles of reactive oxygen species and autophagy in mediating the tolerance of tumor cells to cycling hypoxia. Semin Radiat Oncol. 2013;23:252–61.PubMedCrossRef
13.
go back to reference Gewirtz DA. The four faces of autophagy: implications for cancer therapy. Cancer Res. 2014;74:647–51.PubMedCrossRef Gewirtz DA. The four faces of autophagy: implications for cancer therapy. Cancer Res. 2014;74:647–51.PubMedCrossRef
14.
go back to reference Marino G, Salvador-Montoliu N, Fueyo A, Knecht E, Mizushima N, Lopez-Otin C. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in ATG4C/autophagin-3. J Biol Chem. 2007;282:18573–83.PubMedCrossRef Marino G, Salvador-Montoliu N, Fueyo A, Knecht E, Mizushima N, Lopez-Otin C. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in ATG4C/autophagin-3. J Biol Chem. 2007;282:18573–83.PubMedCrossRef
15.
go back to reference Honscheid P, Datta K, Muders MH. Autophagy: detection, regulation and its role in cancer and therapy response. Int J Radiat Biol. 2014;90:628–35.PubMedCrossRef Honscheid P, Datta K, Muders MH. Autophagy: detection, regulation and its role in cancer and therapy response. Int J Radiat Biol. 2014;90:628–35.PubMedCrossRef
16.
go back to reference Kim JJ, Tannock IF. Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer. 2005;5:516–25.PubMedCrossRef Kim JJ, Tannock IF. Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer. 2005;5:516–25.PubMedCrossRef
17.
go back to reference Chatterjee S, Willis N, Locks SM, Mott JH, Kelly CG. Dosimetric and radiobiological comparison of helical tomotherapy, forward-planned intensity-modulated radiotherapy and two-phase conformal plans for radical radiotherapy treatment of head and neck squamous cell carcinomas. Br J Radiol. 2011;84:1083–90.PubMedPubMedCentralCrossRef Chatterjee S, Willis N, Locks SM, Mott JH, Kelly CG. Dosimetric and radiobiological comparison of helical tomotherapy, forward-planned intensity-modulated radiotherapy and two-phase conformal plans for radical radiotherapy treatment of head and neck squamous cell carcinomas. Br J Radiol. 2011;84:1083–90.PubMedPubMedCentralCrossRef
18.
go back to reference Hasan M, Glees P. Ultrastructural features of the human frontal cortex neurons of maturing and hydrocephalic cerebrum. Archivio italiano di anatomia e di embriologia. Ital J Anat Embryol. 1990;95:17–26. Hasan M, Glees P. Ultrastructural features of the human frontal cortex neurons of maturing and hydrocephalic cerebrum. Archivio italiano di anatomia e di embriologia. Ital J Anat Embryol. 1990;95:17–26.
19.
go back to reference Hu YL, Jahangiri A, Delay M, Aghi MK. Tumor cell autophagy as an adaptive response mediating resistance to treatments such as antiangiogenic therapy. Cancer Res. 2012;72:4294–9.PubMedPubMedCentralCrossRef Hu YL, Jahangiri A, Delay M, Aghi MK. Tumor cell autophagy as an adaptive response mediating resistance to treatments such as antiangiogenic therapy. Cancer Res. 2012;72:4294–9.PubMedPubMedCentralCrossRef
20.
go back to reference Mo N, Lu YK, Xie WM, Liu Y, Zhou WX, Wang HX, et al. Inhibition of autophagy enhances the radiosensitivity of nasopharyngeal carcinoma by reducing Rad51 expression. Oncol Rep. 2014;32:1905–12.PubMed Mo N, Lu YK, Xie WM, Liu Y, Zhou WX, Wang HX, et al. Inhibition of autophagy enhances the radiosensitivity of nasopharyngeal carcinoma by reducing Rad51 expression. Oncol Rep. 2014;32:1905–12.PubMed
21.
go back to reference Sun Q, Liu T, Yuan Y, Guo Z, Xie G, Du S, et al. MiR-200c inhibits autophagy and enhances radiosensitivity in breast cancer cells by targeting UBQLN1. Int J Cancer J Int Cancer. 2014. Sun Q, Liu T, Yuan Y, Guo Z, Xie G, Du S, et al. MiR-200c inhibits autophagy and enhances radiosensitivity in breast cancer cells by targeting UBQLN1. Int J Cancer J Int Cancer. 2014.
22.
go back to reference Sun Y, Xing X, Liu Q, Wang Z, Xin Y, Zhang P, et al. Hypoxia-induced autophagy reduces radiosensitivity by the HIF-1alpha/miR-210/Bcl-2 pathway in colon cancer cells. Int J Oncol. 2014. Sun Y, Xing X, Liu Q, Wang Z, Xin Y, Zhang P, et al. Hypoxia-induced autophagy reduces radiosensitivity by the HIF-1alpha/miR-210/Bcl-2 pathway in colon cancer cells. Int J Oncol. 2014.
23.
go back to reference Yuan X, Du J, Hua S, Zhang H, Gu C, Wang J, et al. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells. Exp Cell Res. 2014. Yuan X, Du J, Hua S, Zhang H, Gu C, Wang J, et al. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells. Exp Cell Res. 2014.
24.
go back to reference Wu SY, Liu YW, Wang YK, Lin TH, Li YZ, Chen SH, et al. Ionizing radiation induces autophagy in human oral squamous cell carcinoma. J BUON: Off J Balkan Union Oncol. 2014;19:137–44. Wu SY, Liu YW, Wang YK, Lin TH, Li YZ, Chen SH, et al. Ionizing radiation induces autophagy in human oral squamous cell carcinoma. J BUON: Off J Balkan Union Oncol. 2014;19:137–44.
25.
go back to reference Kim KW, Mutter RW, Cao C, Albert JM, Freeman M, Hallahan DE, et al. Autophagy for cancer therapy through inhibition of pro-apoptotic proteins and mammalian target of rapamycin signaling. J Biol Chem. 2006;281:36883–90.PubMedCrossRef Kim KW, Mutter RW, Cao C, Albert JM, Freeman M, Hallahan DE, et al. Autophagy for cancer therapy through inhibition of pro-apoptotic proteins and mammalian target of rapamycin signaling. J Biol Chem. 2006;281:36883–90.PubMedCrossRef
26.
go back to reference Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer. 1955;9:539–49.PubMedPubMedCentralCrossRef Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer. 1955;9:539–49.PubMedPubMedCentralCrossRef
27.
go back to reference Wijsman R, Kaanders JH, Oyen WJ, Bussink J. Hypoxia and tumor metabolism in radiation oncology: targets visualized by positron emission tomography. Q J Nucl Med Mol Imaging: Off Publ Ital Assoc Nucl Med (AIMN) Int Assoc of Radiopharmacol (IAR) Sect So. 2013;57:244–56. Wijsman R, Kaanders JH, Oyen WJ, Bussink J. Hypoxia and tumor metabolism in radiation oncology: targets visualized by positron emission tomography. Q J Nucl Med Mol Imaging: Off Publ Ital Assoc Nucl Med (AIMN) Int Assoc of Radiopharmacol (IAR) Sect So. 2013;57:244–56.
28.
go back to reference Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest. 2010;120:127–41.PubMedCrossRef Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest. 2010;120:127–41.PubMedCrossRef
29.
go back to reference He WS, Dai XF, Jin M, Liu CW, Rent JH. Hypoxia-induced autophagy confers resistance of breast cancer cells to ionizing radiation. Oncol Res. 2012;20:251–8.PubMedCrossRef He WS, Dai XF, Jin M, Liu CW, Rent JH. Hypoxia-induced autophagy confers resistance of breast cancer cells to ionizing radiation. Oncol Res. 2012;20:251–8.PubMedCrossRef
30.
go back to reference Moeller BJ, Dreher MR, Rabbani ZN, Schroeder T, Cao Y, Li CY, et al. Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell. 2005;8:99–110.PubMedCrossRef Moeller BJ, Dreher MR, Rabbani ZN, Schroeder T, Cao Y, Li CY, et al. Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell. 2005;8:99–110.PubMedCrossRef
31.
go back to reference Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, et al. Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol. 2001;21:3436–44.PubMedPubMedCentralCrossRef Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, et al. Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol. 2001;21:3436–44.PubMedPubMedCentralCrossRef
33.
go back to reference Park CW, Hong SM, Kim ES, Kwon JH, Kim KT, Nam HG, et al. Bnip3 is degraded by Ulk1-dependent autophagy via mTORC1 and AMPK. Autophagy. 2013;9:345–60.PubMedPubMedCentralCrossRef Park CW, Hong SM, Kim ES, Kwon JH, Kim KT, Nam HG, et al. Bnip3 is degraded by Ulk1-dependent autophagy via mTORC1 and AMPK. Autophagy. 2013;9:345–60.PubMedPubMedCentralCrossRef
34.
go back to reference Vande Velde C, Cizeau J, Dubik D, Alimonti J, Brown T, Israels S, et al. Bnip3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol. 2000;20:5454–68.PubMedPubMedCentralCrossRef Vande Velde C, Cizeau J, Dubik D, Alimonti J, Brown T, Israels S, et al. Bnip3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol. 2000;20:5454–68.PubMedPubMedCentralCrossRef
35.
go back to reference Pattingre S, Levine B. Bcl-2 inhibition of autophagy: a new route to cancer? Cancer Res. 2006;66:2885–8.PubMedCrossRef Pattingre S, Levine B. Bcl-2 inhibition of autophagy: a new route to cancer? Cancer Res. 2006;66:2885–8.PubMedCrossRef
36.
go back to reference Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122:927–39.PubMedCrossRef Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122:927–39.PubMedCrossRef
37.
go back to reference Li Y, Wang Y, Kim E, Beemiller P, Wang CY, Swanson J, et al. Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J Biol Chem. 2007;282:35803–13.PubMedCrossRef Li Y, Wang Y, Kim E, Beemiller P, Wang CY, Swanson J, et al. Bnip3 mediates the hypoxia-induced inhibition on mammalian target of rapamycin by interacting with Rheb. J Biol Chem. 2007;282:35803–13.PubMedCrossRef
38.
go back to reference Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004;18:2893–904.PubMedPubMedCentralCrossRef Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004;18:2893–904.PubMedPubMedCentralCrossRef
39.
go back to reference Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell. 2006;21:521–31.PubMedPubMedCentralCrossRef Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell. 2006;21:521–31.PubMedPubMedCentralCrossRef
40.
go back to reference Schaaf MB, Cojocari D, Keulers TG, Jutten B, Starmans MH, de Jong MC, et al. The autophagy associated gene, Ulk1, promotes tolerance to chronic and acute hypoxia. Radiother Oncol: J Eur Soc Ther Radiol Oncol. 2013;108:529–34.CrossRef Schaaf MB, Cojocari D, Keulers TG, Jutten B, Starmans MH, de Jong MC, et al. The autophagy associated gene, Ulk1, promotes tolerance to chronic and acute hypoxia. Radiother Oncol: J Eur Soc Ther Radiol Oncol. 2013;108:529–34.CrossRef
42.
go back to reference Katayama M, Kawaguchi T, Berger MS, Pieper RO. DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ. 2007;14:548–58.PubMedCrossRef Katayama M, Kawaguchi T, Berger MS, Pieper RO. DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ. 2007;14:548–58.PubMedCrossRef
43.
go back to reference Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8:741–52.PubMedCrossRef Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8:741–52.PubMedCrossRef
44.
go back to reference Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283:10892–903.PubMedPubMedCentralCrossRef Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283:10892–903.PubMedPubMedCentralCrossRef
45.
go back to reference Rouschop KM, Ramaekers CH, Schaaf MB, Keulers TG, Savelkouls KG, Lambin P, et al. Autophagy is required during cycling hypoxia to lower production of reactive oxygen species. Radiother Oncol: J Eur Soc Ther Radiol Oncol. 2009;92:411–6.CrossRef Rouschop KM, Ramaekers CH, Schaaf MB, Keulers TG, Savelkouls KG, Lambin P, et al. Autophagy is required during cycling hypoxia to lower production of reactive oxygen species. Radiother Oncol: J Eur Soc Ther Radiol Oncol. 2009;92:411–6.CrossRef
46.
go back to reference Emerling BM, Weinberg F, Snyder C, Burgess Z, Mutlu GM, Viollet B, et al. Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic Biol Med. 2009;46:1386–91.PubMedPubMedCentralCrossRef Emerling BM, Weinberg F, Snyder C, Burgess Z, Mutlu GM, Viollet B, et al. Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic Biol Med. 2009;46:1386–91.PubMedPubMedCentralCrossRef
47.
go back to reference Gusarova GA, Trejo HE, Dada LA, Briva A, Welch LC, Hamanaka RB, et al. Hypoxia leads to Na, K-ATPase downregulation via Ca(2+) release-activated Ca(2+) channels and AMPK activation. Mol Cell Biol. 2011;31:3546–56.PubMedPubMedCentralCrossRef Gusarova GA, Trejo HE, Dada LA, Briva A, Welch LC, Hamanaka RB, et al. Hypoxia leads to Na, K-ATPase downregulation via Ca(2+) release-activated Ca(2+) channels and AMPK activation. Mol Cell Biol. 2011;31:3546–56.PubMedPubMedCentralCrossRef
48.
go back to reference Mungai PT, Waypa GB, Jairaman A, Prakriya M, Dokic D, Ball MK, et al. Hypoxia triggers ampk activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels. Mol Cell Biol. 2011;31:3531–45.PubMedPubMedCentralCrossRef Mungai PT, Waypa GB, Jairaman A, Prakriya M, Dokic D, Ball MK, et al. Hypoxia triggers ampk activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels. Mol Cell Biol. 2011;31:3531–45.PubMedPubMedCentralCrossRef
49.
go back to reference Papandreou I, Lim AL, Laderoute K, Denko NC. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3l. Cell Death Differ. 2008;15:1572–81.PubMedCrossRef Papandreou I, Lim AL, Laderoute K, Denko NC. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3l. Cell Death Differ. 2008;15:1572–81.PubMedCrossRef
50.
go back to reference Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115:577–90.PubMedCrossRef Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115:577–90.PubMedCrossRef
52.
53.
go back to reference Huang X, Qi Q, Hua X, Li X, Zhang W, Sun H, et al. Beclin 1, an autophagy-related gene, augments apoptosis in u87 glioblastoma cells. Oncol Rep. 2014;31:1761–7.PubMed Huang X, Qi Q, Hua X, Li X, Zhang W, Sun H, et al. Beclin 1, an autophagy-related gene, augments apoptosis in u87 glioblastoma cells. Oncol Rep. 2014;31:1761–7.PubMed
54.
55.
go back to reference Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, et al. Autophagy inhibition enhances therapy-induced apoptosis in a myc-induced model of lymphoma. J Clin Invest. 2007;117:326–36.PubMedPubMedCentralCrossRef Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, et al. Autophagy inhibition enhances therapy-induced apoptosis in a myc-induced model of lymphoma. J Clin Invest. 2007;117:326–36.PubMedPubMedCentralCrossRef
56.
go back to reference Little CD, Nau MM, Carney DN, Gazdar AF, Minna JD. Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature. 1983;306:194–6.PubMedCrossRef Little CD, Nau MM, Carney DN, Gazdar AF, Minna JD. Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature. 1983;306:194–6.PubMedCrossRef
58.
go back to reference Prise KM, Schettino G, Folkard M, Held KD. New insights on cell death from radiation exposure. Lancet Oncol. 2005;6:520–8.PubMedCrossRef Prise KM, Schettino G, Folkard M, Held KD. New insights on cell death from radiation exposure. Lancet Oncol. 2005;6:520–8.PubMedCrossRef
59.
go back to reference Selzer E, Hebar A. Basic principles of molecular effects of irradiation. Wien Med Wochenschr. 2012;162:47–54.PubMedCrossRef Selzer E, Hebar A. Basic principles of molecular effects of irradiation. Wien Med Wochenschr. 2012;162:47–54.PubMedCrossRef
61.
go back to reference Lindahl T, Wood RD. Quality control by DNA repair. Science (NY). 1999;286:1897–905.CrossRef Lindahl T, Wood RD. Quality control by DNA repair. Science (NY). 1999;286:1897–905.CrossRef
62.
go back to reference Park JM, Tougeron D, Huang S, Okamoto K, Sinicrope FA. Beclin 1 and UVRAG confer protection from radiation-induced DNA damage and maintain centrosome stability in colorectal cancer cells. PLoS One. 2014;9:e100819.PubMedCrossRef Park JM, Tougeron D, Huang S, Okamoto K, Sinicrope FA. Beclin 1 and UVRAG confer protection from radiation-induced DNA damage and maintain centrosome stability in colorectal cancer cells. PLoS One. 2014;9:e100819.PubMedCrossRef
63.
go back to reference Szabo C, Dawson VL. Role of poly(adp-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci. 1998;19:287–98.PubMedCrossRef Szabo C, Dawson VL. Role of poly(adp-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci. 1998;19:287–98.PubMedCrossRef
64.
go back to reference Calabrese CR, Almassy R, Barton S, Batey MA, Calvert AH, Canan-Koch S, et al. Anticancer chemosensitization and radiosensitization by the novel poly(adp-ribose) polymerase-1 inhibitor ag14361. J Natl Cancer Inst. 2004;96:56–67.PubMedCrossRef Calabrese CR, Almassy R, Barton S, Batey MA, Calvert AH, Canan-Koch S, et al. Anticancer chemosensitization and radiosensitization by the novel poly(adp-ribose) polymerase-1 inhibitor ag14361. J Natl Cancer Inst. 2004;96:56–67.PubMedCrossRef
65.
go back to reference Polager S, Ofir M, Ginsberg D. E2f1 regulates autophagy and the transcription of autophagy genes. Oncogene. 2008;27:4860–4.PubMedCrossRef Polager S, Ofir M, Ginsberg D. E2f1 regulates autophagy and the transcription of autophagy genes. Oncogene. 2008;27:4860–4.PubMedCrossRef
66.
go back to reference Albert JM, Cao C, Kim KW, Willey CD, Geng L, Xiao D, et al. Inhibition of poly(adp-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin Cancer Res: Off J Am Assoc Cancer Res. 2007;13:3033–42.CrossRef Albert JM, Cao C, Kim KW, Willey CD, Geng L, Xiao D, et al. Inhibition of poly(adp-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin Cancer Res: Off J Am Assoc Cancer Res. 2007;13:3033–42.CrossRef
67.
go back to reference Alexander A, Cai SL, Kim J, Nanez A, Sahin M, MacLean KH, et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci U S A. 2010;107:4153–8.PubMedPubMedCentralCrossRef Alexander A, Cai SL, Kim J, Nanez A, Sahin M, MacLean KH, et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci U S A. 2010;107:4153–8.PubMedPubMedCentralCrossRef
68.
go back to reference Munoz-Gamez JA, Rodriguez-Vargas JM, Quiles-Perez R, Aguilar-Quesada R, Martin-Oliva D, de Murcia G, et al. Parp-1 is involved in autophagy induced by DNA damage. Autophagy. 2009;5:61–74.PubMedCrossRef Munoz-Gamez JA, Rodriguez-Vargas JM, Quiles-Perez R, Aguilar-Quesada R, Martin-Oliva D, de Murcia G, et al. Parp-1 is involved in autophagy induced by DNA damage. Autophagy. 2009;5:61–74.PubMedCrossRef
69.
70.
go back to reference Huang Q, Wu YT, Tan HL, Ong CN, Shen HM. A novel function of poly(adp-ribose) polymerase-1 in modulation of autophagy and necrosis under oxidative stress. Cell Death Differ. 2009;16:264–77.PubMedCrossRef Huang Q, Wu YT, Tan HL, Ong CN, Shen HM. A novel function of poly(adp-ribose) polymerase-1 in modulation of autophagy and necrosis under oxidative stress. Cell Death Differ. 2009;16:264–77.PubMedCrossRef
71.
go back to reference Meley D, Bauvy C, Houben-Weerts JH, Dubbelhuis PF, Helmond MT, Codogno P, et al. Amp-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem. 2006;281:34870–9.PubMedCrossRef Meley D, Bauvy C, Houben-Weerts JH, Dubbelhuis PF, Helmond MT, Codogno P, et al. Amp-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem. 2006;281:34870–9.PubMedCrossRef
72.
go back to reference Walker JW, Jijon HB, Madsen KL. Amp-activated protein kinase is a positive regulator of poly(adp-ribose) polymerase. Biochem Biophys Res Commun. 2006;342:336–41.PubMedCrossRef Walker JW, Jijon HB, Madsen KL. Amp-activated protein kinase is a positive regulator of poly(adp-ribose) polymerase. Biochem Biophys Res Commun. 2006;342:336–41.PubMedCrossRef
73.
go back to reference Corradetti MN, Guan KL. Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? Oncogene. 2006;25:6347–60.PubMedCrossRef Corradetti MN, Guan KL. Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? Oncogene. 2006;25:6347–60.PubMedCrossRef
74.
go back to reference Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mtor pathway. Curr Opin Cell Biol. 2005;17:596–603.PubMedCrossRef Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mtor pathway. Curr Opin Cell Biol. 2005;17:596–603.PubMedCrossRef
75.
go back to reference Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. Ampk phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30:214–26.PubMedPubMedCentralCrossRef Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. Ampk phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30:214–26.PubMedPubMedCentralCrossRef
78.
go back to reference Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, et al. P53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003;11:577–90.PubMedCrossRef Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, et al. P53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003;11:577–90.PubMedCrossRef
80.
go back to reference Tasdemir E, Chiara Maiuri M, Morselli E, Criollo A, D'Amelio M, Djavaheri-Mergny M, et al. A dual role of p53 in the control of autophagy. Autophagy. 2008;4:810–4.PubMedCrossRef Tasdemir E, Chiara Maiuri M, Morselli E, Criollo A, D'Amelio M, Djavaheri-Mergny M, et al. A dual role of p53 in the control of autophagy. Autophagy. 2008;4:810–4.PubMedCrossRef
81.
go back to reference Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, et al. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol. 2008;10:676–87.PubMedPubMedCentralCrossRef Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, et al. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol. 2008;10:676–87.PubMedPubMedCentralCrossRef
82.
83.
go back to reference Fortini P, Dogliotti E. Mechanisms of dealing with DNA damage in terminally differentiated cells. Mutat Res. 2010;685:38–44.PubMedCrossRef Fortini P, Dogliotti E. Mechanisms of dealing with DNA damage in terminally differentiated cells. Mutat Res. 2010;685:38–44.PubMedCrossRef
85.
go back to reference Kang KB, Zhu C, Yong SK, Gao Q, Wong MC. Enhanced sensitivity of celecoxib in human glioblastoma cells: induction of DNA damage leading to p53-dependent g1 cell cycle arrest and autophagy. Mol Cancer. 2009;8:66.PubMedPubMedCentralCrossRef Kang KB, Zhu C, Yong SK, Gao Q, Wong MC. Enhanced sensitivity of celecoxib in human glioblastoma cells: induction of DNA damage leading to p53-dependent g1 cell cycle arrest and autophagy. Mol Cancer. 2009;8:66.PubMedPubMedCentralCrossRef
86.
go back to reference Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, et al. Dram, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126:121–34.PubMedCrossRef Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, et al. Dram, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126:121–34.PubMedCrossRef
87.
go back to reference Crighton D, Wilkinson S, Ryan KM. Dram links autophagy to p53 and programmed cell death. Autophagy. 2007;3:72–4.PubMedCrossRef Crighton D, Wilkinson S, Ryan KM. Dram links autophagy to p53 and programmed cell death. Autophagy. 2007;3:72–4.PubMedCrossRef
89.
go back to reference Sanchez AM, Candau RB, Bernardi H. Foxo transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci: CMLS. 2014;71:1657–71.PubMedCrossRef Sanchez AM, Candau RB, Bernardi H. Foxo transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci: CMLS. 2014;71:1657–71.PubMedCrossRef
90.
go back to reference Tran H, Brunet A, Grenier JM, Datta SR, Fornace Jr AJ, DiStefano PS, et al. DNA repair pathway stimulated by the forkhead transcription factor foxo3a through the gadd45 protein. Science (NY). 2002;296:530–4.CrossRef Tran H, Brunet A, Grenier JM, Datta SR, Fornace Jr AJ, DiStefano PS, et al. DNA repair pathway stimulated by the forkhead transcription factor foxo3a through the gadd45 protein. Science (NY). 2002;296:530–4.CrossRef
91.
go back to reference Tsai WB, Chung YM, Takahashi Y, Xu Z, Hu MC. Functional interaction between foxo3a and atm regulates DNA damage response. Nat Cell Biol. 2008;10:460–7.PubMedPubMedCentralCrossRef Tsai WB, Chung YM, Takahashi Y, Xu Z, Hu MC. Functional interaction between foxo3a and atm regulates DNA damage response. Nat Cell Biol. 2008;10:460–7.PubMedPubMedCentralCrossRef
93.
go back to reference Chiacchiera F, Simone C. The ampk-foxo3a axis as a target for cancer treatment. Cell Cycle. 2010;9:1091–6.PubMedCrossRef Chiacchiera F, Simone C. The ampk-foxo3a axis as a target for cancer treatment. Cell Cycle. 2010;9:1091–6.PubMedCrossRef
94.
go back to reference Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, et al. Foxo3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007;6:458–71.PubMedCrossRef Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, et al. Foxo3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007;6:458–71.PubMedCrossRef
95.
go back to reference Salminen A, Kaarniranta K. Regulation of the aging process by autophagy. Trends Mol Med. 2009;15:217–24.PubMedCrossRef Salminen A, Kaarniranta K. Regulation of the aging process by autophagy. Trends Mol Med. 2009;15:217–24.PubMedCrossRef
96.
go back to reference Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al. Cancer stem cells–perspectives on current status and future directions: Aacr workshop on cancer stem cells. Cancer Res. 2006;66:9339–44.PubMedCrossRef Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al. Cancer stem cells–perspectives on current status and future directions: Aacr workshop on cancer stem cells. Cancer Res. 2006;66:9339–44.PubMedCrossRef
97.
go back to reference Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer. 2008;8:545–54.PubMedCrossRef Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer. 2008;8:545–54.PubMedCrossRef
98.
go back to reference Ueda Y, Wei FY, Hide T, Michiue H, Takayama K, Kaitsuka T, et al. Induction of autophagic cell death of glioma-initiating cells by cell-penetrating d-isomer peptides consisting of pas and the p53 c-terminus. Biomaterials. 2012;33:9061–9.PubMedCrossRef Ueda Y, Wei FY, Hide T, Michiue H, Takayama K, Kaitsuka T, et al. Induction of autophagic cell death of glioma-initiating cells by cell-penetrating d-isomer peptides consisting of pas and the p53 c-terminus. Biomaterials. 2012;33:9061–9.PubMedCrossRef
99.
go back to reference Phillips TM, McBride WH, Pajonk F. The response of cd24(-/low)/cd44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 2006;98:1777–85.PubMedCrossRef Phillips TM, McBride WH, Pajonk F. The response of cd24(-/low)/cd44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 2006;98:1777–85.PubMedCrossRef
100.
go back to reference Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.PubMed Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.PubMed
101.
go back to reference Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.PubMedCrossRef Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.PubMedCrossRef
102.
go back to reference Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A. 2003;100:15178–83.PubMedPubMedCentralCrossRef Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A. 2003;100:15178–83.PubMedPubMedCentralCrossRef
103.
go back to reference Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A. 2000;97:14720–5.PubMedPubMedCentralCrossRef Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A. 2000;97:14720–5.PubMedPubMedCentralCrossRef
104.
go back to reference Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458:780–3.PubMedPubMedCentralCrossRef Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458:780–3.PubMedPubMedCentralCrossRef
105.
go back to reference Tothova Z, Gilliland DG. A radical bailout strategy for cancer stem cells. Cell Stem Cell. 2009;4:196–7.PubMedCrossRef Tothova Z, Gilliland DG. A radical bailout strategy for cancer stem cells. Cell Stem Cell. 2009;4:196–7.PubMedCrossRef
106.
go back to reference Menendez JA, Joven J. Energy metabolism and metabolic sensors in stem cells: the metabostem crossroads of aging and cancer. Adv Exp Med Biol. 2014;824:117–40.PubMedCrossRef Menendez JA, Joven J. Energy metabolism and metabolic sensors in stem cells: the metabostem crossroads of aging and cancer. Adv Exp Med Biol. 2014;824:117–40.PubMedCrossRef
107.
go back to reference Lomonaco SL, Finniss S, Xiang C, Decarvalho A, Umansky F, Kalkanis SN, et al. The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer: J Int Cancer. 2009;125:717–22.CrossRef Lomonaco SL, Finniss S, Xiang C, Decarvalho A, Umansky F, Kalkanis SN, et al. The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer: J Int Cancer. 2009;125:717–22.CrossRef
108.
go back to reference Winardi D, Tsai HP, Chai CY, Chung CL, Loh JK, Chen YH, et al. Correlation of altered expression of the autophagy marker lc3b with poor prognosis in astrocytoma. Bio Med Res Int. 2014;2014:723176. Winardi D, Tsai HP, Chai CY, Chung CL, Loh JK, Chen YH, et al. Correlation of altered expression of the autophagy marker lc3b with poor prognosis in astrocytoma. Bio Med Res Int. 2014;2014:723176.
109.
go back to reference Martinez-Outschoorn UE, Prisco M, Ertel A, Tsirigos A, Lin Z, Pavlides S, et al. Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via metabolo-genomics. Cell Cycle. 2011;10:1271–86.PubMedPubMedCentralCrossRef Martinez-Outschoorn UE, Prisco M, Ertel A, Tsirigos A, Lin Z, Pavlides S, et al. Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via metabolo-genomics. Cell Cycle. 2011;10:1271–86.PubMedPubMedCentralCrossRef
111.
go back to reference Gewirtz DA. An autophagic switch in the response of tumor cells to radiation and chemotherapy. Biochem Pharmacol. 2014;90:208–11.PubMedCrossRef Gewirtz DA. An autophagic switch in the response of tumor cells to radiation and chemotherapy. Biochem Pharmacol. 2014;90:208–11.PubMedCrossRef
Metadata
Title
Autophagy and its function in radiosensitivity
Authors
Yan Yang
Yuehua Yang
Xi Yang
Hongcheng Zhu
Qing Guo
Xiaochen Chen
Hao Zhang
Hongyan Cheng
Xinchen Sun
Publication date
01-06-2015
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 6/2015
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3496-x

Other articles of this Issue 6/2015

Tumor Biology 6/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine