Skip to main content
Top
Published in: Tumor Biology 6/2015

01-06-2015 | Research Article

MAPK and JAK/STAT pathways targeted by miR-23a and miR-23b in prostate cancer: computational and in vitro approaches

Authors: Seyed Hamid Aghaee-Bakhtiari, Ehsan Arefian, Mahmood Naderi, Farshid Noorbakhsh, Vahideh Nodouzi, Mojgan Asgari, Pezhman Fard-Esfahani, Reza Mahdian, Masoud Soleimani

Published in: Tumor Biology | Issue 6/2015

Login to get access

Abstract

The long-lasting inadequacy of existing treatments for prostate cancer has led to increasing efforts for developing novel therapies for this disease. MicroRNAs (miRNAs) are believed to have considerable therapeutic potential due to their role in regulating gene expression and cellular pathways. Identifying miRNAs that efficiently target genes and pathways is a key step in using these molecules for therapeutic purposes. Moreover, computational methods have been devised to help identify candidate miRNAs for each gene/pathway. MAPK and JAK/STAT pathways are known to have essential roles in cell proliferation and neoplastic transformation in different cancers including prostate cancer. Herein, we tried to identify miRNAs that target these pathways in the context of prostate cancer as therapeutic molecules. Genes involved in these pathways were analyzed with various algorithms to identify potentially targeting miRNAs. miR-23a and miR-23b were then selected as the best potential candidates that target a higher number of genes in these pathways with greater predictive scores. We then analyzed the expression of candidate miRNAs in LNCAP and PC3 cell lines as well as prostate cancer clinical samples. miR-23a and miR-23b showed a significant downregulation in cell line and tissue samples, a finding which is consistent with overactivation of these pathways in prostate cancer. In addition, we overexpressed miR-23a and miR-23b in LNCAP and PC3 cell lines, and these two miRNAs decreased IL-6R expression which has a critical role in these pathways. These results suggest the probability of utilizing miR-23a and miR-23b as therapeutic targets for the treatment of prostate cancer.
Literature
1.
go back to reference Ferlay J SI, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F. Globocan 2012 v1.0, cancer incidence and mortality worldwide: IARC CancerBase no. 11; in Cancer IAfRo (ed), 2013. Ferlay J SI, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F. Globocan 2012 v1.0, cancer incidence and mortality worldwide: IARC CancerBase no. 11; in Cancer IAfRo (ed), 2013.
2.
go back to reference Center MM, Jemal A, Lortet-Tieulent J, Ward E, Ferlay J, Brawley O, et al. International variation in prostate cancer incidence and mortality rates. Eur Urol. 2012;61:1079–92.CrossRefPubMed Center MM, Jemal A, Lortet-Tieulent J, Ward E, Ferlay J, Brawley O, et al. International variation in prostate cancer incidence and mortality rates. Eur Urol. 2012;61:1079–92.CrossRefPubMed
3.
go back to reference Lassi K, Dawson NA. Drug development for metastatic castration-resistant prostate cancer: current status and future perspectives. Future Oncol. 2011;7:551–8.CrossRefPubMed Lassi K, Dawson NA. Drug development for metastatic castration-resistant prostate cancer: current status and future perspectives. Future Oncol. 2011;7:551–8.CrossRefPubMed
5.
go back to reference Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011;12:99–110.CrossRefPubMed Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011;12:99–110.CrossRefPubMed
6.
go back to reference Thorsen SB, Obad S, Jensen NF, Stenvang J, Kauppinen S. The therapeutic potential of microRNAs in cancer. Cancer J. 2012;18:275–84.CrossRefPubMed Thorsen SB, Obad S, Jensen NF, Stenvang J, Kauppinen S. The therapeutic potential of microRNAs in cancer. Cancer J. 2012;18:275–84.CrossRefPubMed
7.
go back to reference Gebert LF, Rebhan MA, Crivelli SE, Denzler R, Stoffel M, Hall J. Miravirsen (spc3649) can inhibit the biogenesis of mir-122. Nucleic Acids Res. 2014;42:609–21.CrossRefPubMed Gebert LF, Rebhan MA, Crivelli SE, Denzler R, Stoffel M, Hall J. Miravirsen (spc3649) can inhibit the biogenesis of mir-122. Nucleic Acids Res. 2014;42:609–21.CrossRefPubMed
10.
go back to reference Heyn H, Schreek S, Buurman R, Focken T, Schlegelberger B, Beger C. MicroRNA mir-548d is a superior regulator in pancreatic cancer. Pancreas. 2012;41:218–21.CrossRefPubMed Heyn H, Schreek S, Buurman R, Focken T, Schlegelberger B, Beger C. MicroRNA mir-548d is a superior regulator in pancreatic cancer. Pancreas. 2012;41:218–21.CrossRefPubMed
11.
go back to reference Ritchie W, Rasko JE, Flamant S. MicroRNA target prediction and validation. Adv Exp Med Biol. 2013;774:39–53.CrossRefPubMed Ritchie W, Rasko JE, Flamant S. MicroRNA target prediction and validation. Adv Exp Med Biol. 2013;774:39–53.CrossRefPubMed
12.
go back to reference Vergoulis T, Vlachos IS, Alexiou P, Georgakilas G, Maragkakis M, Reczko M, et al. Tarbase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res. 2012;40:D222–9.CrossRefPubMed Vergoulis T, Vlachos IS, Alexiou P, Georgakilas G, Maragkakis M, Reczko M, et al. Tarbase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res. 2012;40:D222–9.CrossRefPubMed
13.
go back to reference Tan Gana NH, Victoriano AF, Okamoto T. Evaluation of online miRNA resources for biomedical applications. Genes Cells: Devoted Mol Cell Mech. 2012;17:11–27.CrossRef Tan Gana NH, Victoriano AF, Okamoto T. Evaluation of online miRNA resources for biomedical applications. Genes Cells: Devoted Mol Cell Mech. 2012;17:11–27.CrossRef
14.
go back to reference da Silva HB, Amaral EP, Nolasco EL, de Victo NC, Atique R, Jank CC, et al. Dissecting major signaling pathways throughout the development of prostate cancer. Prostate Cancer. 2013;2013:920612.CrossRefPubMedPubMedCentral da Silva HB, Amaral EP, Nolasco EL, de Victo NC, Atique R, Jank CC, et al. Dissecting major signaling pathways throughout the development of prostate cancer. Prostate Cancer. 2013;2013:920612.CrossRefPubMedPubMedCentral
15.
go back to reference Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009;9:537–49.CrossRefPubMed Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009;9:537–49.CrossRefPubMed
17.
go back to reference Kinkade CW, Castillo-Martin M, Puzio-Kuter A, Yan J, Foster TH, Gao H, et al. Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Invest. 2008;118:3051–64.PubMedPubMedCentral Kinkade CW, Castillo-Martin M, Puzio-Kuter A, Yan J, Foster TH, Gao H, et al. Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Invest. 2008;118:3051–64.PubMedPubMedCentral
18.
go back to reference Gioeli D, Mandell JW, Petroni GR, Frierson Jr HF, Weber MJ. Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res. 1999;59:279–84.PubMed Gioeli D, Mandell JW, Petroni GR, Frierson Jr HF, Weber MJ. Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res. 1999;59:279–84.PubMed
19.
go back to reference Harrison DA. The jak/stat pathway. Cold Spring Harbor perspectives in biology 2012;4 Harrison DA. The jak/stat pathway. Cold Spring Harbor perspectives in biology 2012;4
20.
go back to reference Kwon EM, Holt SK, Fu R, Kolb S, Williams G, Stanford JL, et al. Androgen metabolism and JAK/STAT pathway genes and prostate cancer risk. Cancer Epidemiol. 2012;36:347–53.CrossRefPubMedPubMedCentral Kwon EM, Holt SK, Fu R, Kolb S, Williams G, Stanford JL, et al. Androgen metabolism and JAK/STAT pathway genes and prostate cancer risk. Cancer Epidemiol. 2012;36:347–53.CrossRefPubMedPubMedCentral
21.
go back to reference Liu X, He Z, Li CH, Huang G, Ding C, Liu H. Correlation analysis of JAK-STAT pathway components on prognosis of patients with prostate cancer. Pathol Oncol Res: POR. 2012;18:17–23.CrossRefPubMed Liu X, He Z, Li CH, Huang G, Ding C, Liu H. Correlation analysis of JAK-STAT pathway components on prognosis of patients with prostate cancer. Pathol Oncol Res: POR. 2012;18:17–23.CrossRefPubMed
22.
go back to reference Aalinkeel R, Hu Z, Nair BB, Sykes DE, Reynolds JL, Mahajan SD, et al. Genomic analysis highlights the role of the JAK-STAT signaling in the anti-proliferative effects of dietary flavonoid-‘ashwagandha’ in prostate cancer cells. Evid Based Complement Alternat Med: eCAM. 2010;7:177–87.CrossRefPubMed Aalinkeel R, Hu Z, Nair BB, Sykes DE, Reynolds JL, Mahajan SD, et al. Genomic analysis highlights the role of the JAK-STAT signaling in the anti-proliferative effects of dietary flavonoid-‘ashwagandha’ in prostate cancer cells. Evid Based Complement Alternat Med: eCAM. 2010;7:177–87.CrossRefPubMed
23.
go back to reference Chiromatzo AO, Oliveira TY, Pereira G, Costa AY, Montesco CA, Gras DE, et al. miRNApath: a database of miRNAs, target genes and metabolic pathways. Genet Mol Res: GMR. 2007;6:859–65.PubMed Chiromatzo AO, Oliveira TY, Pereira G, Costa AY, Montesco CA, Gras DE, et al. miRNApath: a database of miRNAs, target genes and metabolic pathways. Genet Mol Res: GMR. 2007;6:859–65.PubMed
24.
go back to reference Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, Maragkakis M, et al. DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res. 2012;40:W498–504.CrossRefPubMedPubMedCentral Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, Maragkakis M, et al. DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res. 2012;40:W498–504.CrossRefPubMedPubMedCentral
25.
go back to reference Ritchie W, Flamant S, Rasko JE. mimiRNA: a microRNA expression profiler and classification resource designed to identify functional correlations between microRNAs and their targets. Bioinformatics. 2010;26:223–7.CrossRefPubMed Ritchie W, Flamant S, Rasko JE. mimiRNA: a microRNA expression profiler and classification resource designed to identify functional correlations between microRNAs and their targets. Bioinformatics. 2010;26:223–7.CrossRefPubMed
26.
go back to reference Mohammadi-Yeganeh S, Paryan M, Mirab Samiee S, Soleimani M, Arefian E, Azadmanesh K, et al. Development of a robust, low cost stem-loop real-time quantification PCR technique for miRNA expression analysis. Mol Biol Rep. 2013;40:3665–74.CrossRefPubMed Mohammadi-Yeganeh S, Paryan M, Mirab Samiee S, Soleimani M, Arefian E, Azadmanesh K, et al. Development of a robust, low cost stem-loop real-time quantification PCR technique for miRNA expression analysis. Mol Biol Rep. 2013;40:3665–74.CrossRefPubMed
27.
go back to reference Aghaee-Bakhtiari SH, Arefian E, Soleimani M, Noorbakhsh F, Samiee SM, Fard-Esfahani P, Mahdian R. Reproducible and reliable real-time pcr assay to measure mature form of mir-141. Appl Immunohistochem Mol Morphol 2015;Epub Ahead of Print Aghaee-Bakhtiari SH, Arefian E, Soleimani M, Noorbakhsh F, Samiee SM, Fard-Esfahani P, Mahdian R. Reproducible and reliable real-time pcr assay to measure mature form of mir-141. Appl Immunohistochem Mol Morphol 2015;Epub Ahead of Print
29.
go back to reference Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al. The microRNA mir-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17:211–5.CrossRefPubMedPubMedCentral Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al. The microRNA mir-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17:211–5.CrossRefPubMedPubMedCentral
30.
go back to reference Pulukuri SM, Gondi CS, Lakka SS, Jutla A, Estes N, Gujrati M, et al. RNA interference-directed knockdown of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion, survival, and tumorigenicity in vivo. J Biol Chem. 2005;280:36529–40.CrossRefPubMed Pulukuri SM, Gondi CS, Lakka SS, Jutla A, Estes N, Gujrati M, et al. RNA interference-directed knockdown of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion, survival, and tumorigenicity in vivo. J Biol Chem. 2005;280:36529–40.CrossRefPubMed
32.
go back to reference Coppola V, De Maria R, Bonci D. Micrornas and prostate cancer. Endocrine-related cancer 2010;17:F1-17 Coppola V, De Maria R, Bonci D. Micrornas and prostate cancer. Endocrine-related cancer 2010;17:F1-17
33.
go back to reference Majid S, Dar AA, Saini S, Arora S, Shahryari V, Zaman MS, et al. miR-23b represses proto-oncogene Src kinase and functions as methylation-silenced tumor suppressor with diagnostic and prognostic significance in prostate cancer. Cancer Res. 2012;72:6435–46.CrossRefPubMedPubMedCentral Majid S, Dar AA, Saini S, Arora S, Shahryari V, Zaman MS, et al. miR-23b represses proto-oncogene Src kinase and functions as methylation-silenced tumor suppressor with diagnostic and prognostic significance in prostate cancer. Cancer Res. 2012;72:6435–46.CrossRefPubMedPubMedCentral
34.
go back to reference Sun T, Yang M, Chen S, Balk S, Pomerantz M, Hsieh CL, et al. The altered expression of MiR-221/-222 and MiR-23b/-27b is associated with the development of human castration resistant prostate cancer. Prostate. 2012;72:1093–103.CrossRefPubMed Sun T, Yang M, Chen S, Balk S, Pomerantz M, Hsieh CL, et al. The altered expression of MiR-221/-222 and MiR-23b/-27b is associated with the development of human castration resistant prostate cancer. Prostate. 2012;72:1093–103.CrossRefPubMed
35.
go back to reference Smith PC, Hobisch A, Lin DL, Culig Z, Keller ET. Interleukin-6 and prostate cancer progression. Cytokine Growth Factor Rev. 2001;12:33–40.CrossRefPubMed Smith PC, Hobisch A, Lin DL, Culig Z, Keller ET. Interleukin-6 and prostate cancer progression. Cytokine Growth Factor Rev. 2001;12:33–40.CrossRefPubMed
36.
go back to reference Culig Z, Steiner H, Bartsch G, Hobisch A. Interleukin-6 regulation of prostate cancer cell growth. J Cell Biochem. 2005;95:497–505.CrossRefPubMed Culig Z, Steiner H, Bartsch G, Hobisch A. Interleukin-6 regulation of prostate cancer cell growth. J Cell Biochem. 2005;95:497–505.CrossRefPubMed
37.
go back to reference Sakai I, Miyake H, Terakawa T, Fujisawa M. Inhibition of tumor growth and sensitization to chemotherapy by RNA interference targeting interleukin-6 in the androgen-independent human prostate cancer PC3 model. Cancer Sci. 2011;102:769–75.CrossRefPubMed Sakai I, Miyake H, Terakawa T, Fujisawa M. Inhibition of tumor growth and sensitization to chemotherapy by RNA interference targeting interleukin-6 in the androgen-independent human prostate cancer PC3 model. Cancer Sci. 2011;102:769–75.CrossRefPubMed
38.
go back to reference Zhu LH, Liu T, Tang H, Tian RQ, Su C, Liu M, et al. MicroRNA-23a promotes the growth of gastric adenocarcinoma cell line MGC803 and downregulates interleukin-6 receptor. FEBS J. 2010;277:3726–34.CrossRefPubMed Zhu LH, Liu T, Tang H, Tian RQ, Su C, Liu M, et al. MicroRNA-23a promotes the growth of gastric adenocarcinoma cell line MGC803 and downregulates interleukin-6 receptor. FEBS J. 2010;277:3726–34.CrossRefPubMed
Metadata
Title
MAPK and JAK/STAT pathways targeted by miR-23a and miR-23b in prostate cancer: computational and in vitro approaches
Authors
Seyed Hamid Aghaee-Bakhtiari
Ehsan Arefian
Mahmood Naderi
Farshid Noorbakhsh
Vahideh Nodouzi
Mojgan Asgari
Pezhman Fard-Esfahani
Reza Mahdian
Masoud Soleimani
Publication date
01-06-2015
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 6/2015
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3057-3

Other articles of this Issue 6/2015

Tumor Biology 6/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine