Skip to main content
Top
Published in: Tumor Biology 4/2015

01-04-2015 | Research Article

Staurosporine analogs promote distinct patterns of process outgrowth and polyploidy in small cell lung carcinoma cells

Authors: Hichem Gallala, Jochen Winter, Nadine Veit, Michael Nowak, Sven Perner, Cornelius Courts, Dominik Kraus, Viktor Janzen, Rainer Probstmeier

Published in: Tumor Biology | Issue 4/2015

Login to get access

Abstract

We have recently shown that staurosporine mediates the conversion of small cell lung carcinoma (SCLC) cells into a neuron-like process-bearing phenotype. Here, we have extended these studies to the staurosporine analogs K252a, lestaurtinib, PKC412, stauprimide, and UCN-01 and analyzed their influence on process extension, cell cycle distribution, and induction of polyploidy in four SCLC cell lines. In GLC-2 cells, all compounds provoked extensive process formation with the exception of PKC412 that showed no response. In H1184 cells, process formation was predominantly induced by staurosporine and, to lesser extent, in lestaurtinib-, stauprimide-, and UCN-01-treated cells. In the presence of K252a or PKC412, cells became bipolar and spindle shaped or showed pronounced cell flattening. In GLC-36 and SCLC-24H cells, only cell flattening was detectable. Process formation was reversible upon drug removal as shown for GLC-2 and H1184 cells. Fluorescence-activated cell sorting (FACS) and fluorescence in situ hybridization (FISH) analysis indicated the induction of polyploidy in all staurosporine and in two out of four stauprimide-treated SCLC cell lines. For other staurosporine analogs, polyploidy was observed only in UCN-01-treated GLC-36 cells and in K252a-treated H1184 and GLC-36 cells. The presence of staurosporine or its analogs did not alter the constitutive activation pattern of the canonical Akt/PI3K or MEK/extracellular signal-regulated kinase (ERK)1/2 signaling pathways nor could we detect an influence of stauprimide application on the expression level of the c-Myc oncogene. These data demonstrate that in SCLC cells, albeit a higher substrate specificity, staurosporine analogs can induce staurosporine-comparable effects.
Literature
1.
go back to reference Riaz SP, Lüchtenborg M, Coupland VH, Spicer J, Peake MD, Moller H. Trends in incidence of small cell lung cancer and all lung cancer. Lung Cancer. 2012;75:280–4.CrossRefPubMed Riaz SP, Lüchtenborg M, Coupland VH, Spicer J, Peake MD, Moller H. Trends in incidence of small cell lung cancer and all lung cancer. Lung Cancer. 2012;75:280–4.CrossRefPubMed
3.
go back to reference Gani OA, Engh RA. Protein kinase inhibition of clinically important staurosporine analogues. Nat Prod Rep. 2010;27:489–98.CrossRefPubMed Gani OA, Engh RA. Protein kinase inhibition of clinically important staurosporine analogues. Nat Prod Rep. 2010;27:489–98.CrossRefPubMed
4.
go back to reference Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol. 2008;26:127–32.CrossRefPubMed Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol. 2008;26:127–32.CrossRefPubMed
5.
go back to reference Park BS, Abdel-Azeem AZ, Al-Sanea MM, Yoo KH, Tae JS, Lee SH. Staurosporine analogues from microbial and synthetic sources and their biological activities. Curr Med Chem. 2013;20:3872–902.CrossRefPubMed Park BS, Abdel-Azeem AZ, Al-Sanea MM, Yoo KH, Tae JS, Lee SH. Staurosporine analogues from microbial and synthetic sources and their biological activities. Curr Med Chem. 2013;20:3872–902.CrossRefPubMed
6.
go back to reference Wu CF, Howard BD. K252a-potentiation of EGF-induced neurite outgrowth from PC12 cells is not mimicked or blocked by other protein kinase activators or inhibitors. Brain Res Dev Brain Res. 1995;86:217–26.CrossRefPubMed Wu CF, Howard BD. K252a-potentiation of EGF-induced neurite outgrowth from PC12 cells is not mimicked or blocked by other protein kinase activators or inhibitors. Brain Res Dev Brain Res. 1995;86:217–26.CrossRefPubMed
8.
go back to reference Diaz T, Navarro A, Ferrer G, Gel B, Gaya A, Artells R, et al. Lestaurtinib inhibition of the Jak/STAT signaling pathway in Hodgkin lymphoma inhibits proliferation and induces apoptosis. PLoS One. 2011;6:e18856.CrossRefPubMedPubMedCentral Diaz T, Navarro A, Ferrer G, Gel B, Gaya A, Artells R, et al. Lestaurtinib inhibition of the Jak/STAT signaling pathway in Hodgkin lymphoma inhibits proliferation and induces apoptosis. PLoS One. 2011;6:e18856.CrossRefPubMedPubMedCentral
10.
go back to reference Shabbir M, Stuart R. Lestaurtinib, a multitargeted tyrosine kinase inhibitor: from bench to bedside. Expert Opin Invest Drugs. 2010;19:427–36.CrossRef Shabbir M, Stuart R. Lestaurtinib, a multitargeted tyrosine kinase inhibitor: from bench to bedside. Expert Opin Invest Drugs. 2010;19:427–36.CrossRef
11.
go back to reference Fabbro D, Ruetz S, Bodis S, Pruschy M, Csermak K, Man A, et al. PKC412—a protein kinase inhibitor with a broad therapeutic potential. Anticancer Drug Des. 2000;15:17–28.PubMed Fabbro D, Ruetz S, Bodis S, Pruschy M, Csermak K, Man A, et al. PKC412—a protein kinase inhibitor with a broad therapeutic potential. Anticancer Drug Des. 2000;15:17–28.PubMed
13.
go back to reference Fischer T, Stone RM, Deangelo DJ, Galinsky I, Estey E, Lanza C, et al. Phase IIB trial of oral midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol. 2010;28:4339–45.CrossRefPubMedPubMedCentral Fischer T, Stone RM, Deangelo DJ, Galinsky I, Estey E, Lanza C, et al. Phase IIB trial of oral midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol. 2010;28:4339–45.CrossRefPubMedPubMedCentral
14.
go back to reference Zhu S, Wurdak H, Wang J, Lyssiotis CA, Peters EC, Cho CY, et al. A small molecule primes embryonic stem cells for differentiation. Cell Stem Cell. 2009;4:416–26.CrossRefPubMed Zhu S, Wurdak H, Wang J, Lyssiotis CA, Peters EC, Cho CY, et al. A small molecule primes embryonic stem cells for differentiation. Cell Stem Cell. 2009;4:416–26.CrossRefPubMed
15.
go back to reference Graves PR, Yu L, Schwarz JK, Gales J, Sausville EA, O’Connor PM, et al. The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem. 2000;275:5600–5.CrossRefPubMed Graves PR, Yu L, Schwarz JK, Gales J, Sausville EA, O’Connor PM, et al. The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem. 2000;275:5600–5.CrossRefPubMed
16.
go back to reference On KF, Chen Y, Ma HT, Chow JP, Poon RY. Determinants of mitotic catastrophe on abrogation of the G2 DNA damage checkpoint by UCN-01. Mol Cancer Ther. 2011;10:784–94.CrossRefPubMed On KF, Chen Y, Ma HT, Chow JP, Poon RY. Determinants of mitotic catastrophe on abrogation of the G2 DNA damage checkpoint by UCN-01. Mol Cancer Ther. 2011;10:784–94.CrossRefPubMed
17.
go back to reference Fracasso PM, Williams KJ, Chen RC, Picus J, Ma CX, Ellis MJ, et al. A Phase 1 study of UCN-01 in combination with irinotecan in patients with resistant solid tumor malignancies. Cancer Chemother Pharmacol. 2011;67:1225–37.CrossRefPubMed Fracasso PM, Williams KJ, Chen RC, Picus J, Ma CX, Ellis MJ, et al. A Phase 1 study of UCN-01 in combination with irinotecan in patients with resistant solid tumor malignancies. Cancer Chemother Pharmacol. 2011;67:1225–37.CrossRefPubMed
18.
go back to reference Ma CX, Ellis MJ, Petroni GR, Guo Z, Cai SR, Ryan CE, et al. A phase II study of UCN-01 in combination with irinotecan in patients with metastatic triple negative breast cancer. Breast Cancer Res Treat. 2013;137:483–92.CrossRefPubMed Ma CX, Ellis MJ, Petroni GR, Guo Z, Cai SR, Ryan CE, et al. A phase II study of UCN-01 in combination with irinotecan in patients with metastatic triple negative breast cancer. Breast Cancer Res Treat. 2013;137:483–92.CrossRefPubMed
19.
go back to reference Scheble VJ, Braun M, Beroukhim R, Mermel CH, Ruiz C, Wilbertz T, et al. ERG rearrangement is specific to prostate cancer and does not occur in any other common tumor. Mod Pathol. 2010;23:1061–7.CrossRefPubMedPubMedCentral Scheble VJ, Braun M, Beroukhim R, Mermel CH, Ruiz C, Wilbertz T, et al. ERG rearrangement is specific to prostate cancer and does not occur in any other common tumor. Mod Pathol. 2010;23:1061–7.CrossRefPubMedPubMedCentral
20.
go back to reference Kraus AC, Ferber I, Bachmann SO, Specht H, Wimmel A, Gross MW, et al. In vitro chemo- and radio-resistance in small cell lung cancer correlates with cell adhesion and constitutive activation of AKT and MAP kinase pathways. Oncogene. 2002;21:8683–95.CrossRefPubMed Kraus AC, Ferber I, Bachmann SO, Specht H, Wimmel A, Gross MW, et al. In vitro chemo- and radio-resistance in small cell lung cancer correlates with cell adhesion and constitutive activation of AKT and MAP kinase pathways. Oncogene. 2002;21:8683–95.CrossRefPubMed
21.
go back to reference Toledo LM, Lydon NB. Structures of staurosporine bound to CDK2 and cAPK—new tools for structure-based design of protein kinase inhibitors. Structure. 1997;5:1551–6.CrossRefPubMed Toledo LM, Lydon NB. Structures of staurosporine bound to CDK2 and cAPK—new tools for structure-based design of protein kinase inhibitors. Structure. 1997;5:1551–6.CrossRefPubMed
22.
go back to reference Bruno S, Ardelt B, Skierski JS, Traganos F, Darzynkiewicz Z. Different effects of staurosporine, an inhibitor of protein kinases, on the cell cycle and chromatin structure of normal and leukemic lymphocytes. Cancer Res. 1992;52:470–3.PubMed Bruno S, Ardelt B, Skierski JS, Traganos F, Darzynkiewicz Z. Different effects of staurosporine, an inhibitor of protein kinases, on the cell cycle and chromatin structure of normal and leukemic lymphocytes. Cancer Res. 1992;52:470–3.PubMed
23.
go back to reference Fujikawa-Yamamoto K, Wang S, Yamagishi H, Ohdoi C, Murano H, Ikeda T. Establishment of a tetraploid Meth-A cell line through polyploidization by demecolcine but not by staurosporine, K-252A and paclitaxel. Cell Prolif. 2001;34:211–22.CrossRefPubMed Fujikawa-Yamamoto K, Wang S, Yamagishi H, Ohdoi C, Murano H, Ikeda T. Establishment of a tetraploid Meth-A cell line through polyploidization by demecolcine but not by staurosporine, K-252A and paclitaxel. Cell Prolif. 2001;34:211–22.CrossRefPubMed
24.
go back to reference Quentmeier H, Zaborski M, Drexler HG. Effects of thrombopoietin, interleukin-3 and the kinase inhibitor K-252a on growth and polyploidization of the megakaryocytic cell line M-07e. Leukemia. 1998;12:1603–11.CrossRefPubMed Quentmeier H, Zaborski M, Drexler HG. Effects of thrombopoietin, interleukin-3 and the kinase inhibitor K-252a on growth and polyploidization of the megakaryocytic cell line M-07e. Leukemia. 1998;12:1603–11.CrossRefPubMed
25.
go back to reference Akiyama T, Shimizu M, Okabe M, Tamaoki T, Akinaga S. Differential effects of UCN-01, staurosporine and CGP 41 251 on cell cycle progression and CDC2/cyclin B1 regulation in A431 cells synchronized at M phase by nocodazole. Anticancer Drugs. 1999;10:67–78.CrossRefPubMed Akiyama T, Shimizu M, Okabe M, Tamaoki T, Akinaga S. Differential effects of UCN-01, staurosporine and CGP 41 251 on cell cycle progression and CDC2/cyclin B1 regulation in A431 cells synchronized at M phase by nocodazole. Anticancer Drugs. 1999;10:67–78.CrossRefPubMed
26.
go back to reference Chitikova ZV, Gordeev SA, Bykova TV, Zubova SG, Pospelov VA, Pospelova TV. Sustained activation of DNA damage response in irradiated apoptosis-resistant cells induces reversible senescence associated with mTOR downregulation and expression of stem cell markers. Cell Cycle. 2014;1:1424–39.CrossRef Chitikova ZV, Gordeev SA, Bykova TV, Zubova SG, Pospelov VA, Pospelova TV. Sustained activation of DNA damage response in irradiated apoptosis-resistant cells induces reversible senescence associated with mTOR downregulation and expression of stem cell markers. Cell Cycle. 2014;1:1424–39.CrossRef
27.
go back to reference Puig PE, Guilly MN, Bouchot A, Droin N, Cathelin D, Bouyer F, et al. Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. Cell Biol Int. 2008;3:1031–43.CrossRef Puig PE, Guilly MN, Bouchot A, Droin N, Cathelin D, Bouyer F, et al. Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. Cell Biol Int. 2008;3:1031–43.CrossRef
29.
go back to reference Illidge TM, Cragg MS, Fringes B, Olive P, Erenpreisa JA. Polyploid giant cells provide a survival mechanism for p53 mutant cells after DNA damage. Cell Biol Int. 2000;24:621–33.CrossRefPubMed Illidge TM, Cragg MS, Fringes B, Olive P, Erenpreisa JA. Polyploid giant cells provide a survival mechanism for p53 mutant cells after DNA damage. Cell Biol Int. 2000;24:621–33.CrossRefPubMed
30.
go back to reference Salmina K, Jankevics E, Huna A, Perminov D, Radovica I, Klymenko T, et al. Up-regulation of the embryonic self-renewal network through reversible polyploidy in irradiated p53-mutant tumour cells. Exp Cell Res. 2010;316:2099–112.CrossRefPubMed Salmina K, Jankevics E, Huna A, Perminov D, Radovica I, Klymenko T, et al. Up-regulation of the embryonic self-renewal network through reversible polyploidy in irradiated p53-mutant tumour cells. Exp Cell Res. 2010;316:2099–112.CrossRefPubMed
31.
32.
go back to reference Ke CC, Liu RS, Yang AH, Liu CS, Chi CW, Tseng LM, et al. CD133-expressing thyroid cancer cells are undifferentiated, radioresistant and survive radioiodide therapy. Eur J Nucl Med Mol Imaging. 2013;40:61–71.CrossRefPubMed Ke CC, Liu RS, Yang AH, Liu CS, Chi CW, Tseng LM, et al. CD133-expressing thyroid cancer cells are undifferentiated, radioresistant and survive radioiodide therapy. Eur J Nucl Med Mol Imaging. 2013;40:61–71.CrossRefPubMed
33.
go back to reference López J, Poitevin A, Mendoza-Martínez V, Pérez-Plasencia C, García-Carrancá A. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance. BMC Cancer. 2012. doi:10.1186/1471-2407-12-48. López J, Poitevin A, Mendoza-Martínez V, Pérez-Plasencia C, García-Carrancá A. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance. BMC Cancer. 2012. doi:10.​1186/​1471-2407-12-48.
34.
go back to reference Sarvi S, Mackinnon AC, Avlonitis N, Bradley M, Rintoul RC, Rassl DM, et al. CD133+ cancer stem-like cells in small cell lung cancer are highly tumorigenic and chemoresistant but sensitive to a novel neuropeptide antagonist. Cancer Res. 2014;74:1554–65.CrossRefPubMed Sarvi S, Mackinnon AC, Avlonitis N, Bradley M, Rintoul RC, Rassl DM, et al. CD133+ cancer stem-like cells in small cell lung cancer are highly tumorigenic and chemoresistant but sensitive to a novel neuropeptide antagonist. Cancer Res. 2014;74:1554–65.CrossRefPubMed
35.
go back to reference Wouters J, Stas M, Gremeaux L, Govaere O, Van den Broeck A, Maes H, et al. The human melanoma side population displays molecular and functional characteristics of enriched chemoresistance and tumorigenesis. PLoS One. 2013. doi:10.1371/journal.pone.0076550. Wouters J, Stas M, Gremeaux L, Govaere O, Van den Broeck A, Maes H, et al. The human melanoma side population displays molecular and functional characteristics of enriched chemoresistance and tumorigenesis. PLoS One. 2013. doi:10.​1371/​journal.​pone.​0076550.
36.
go back to reference Zhang S, Mercado-Uribe I, Xing Z, Sun B, Kuang J, Liu J. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene. 2014;33:116–28. Zhang S, Mercado-Uribe I, Xing Z, Sun B, Kuang J, Liu J. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene. 2014;33:116–28.
Metadata
Title
Staurosporine analogs promote distinct patterns of process outgrowth and polyploidy in small cell lung carcinoma cells
Authors
Hichem Gallala
Jochen Winter
Nadine Veit
Michael Nowak
Sven Perner
Cornelius Courts
Dominik Kraus
Viktor Janzen
Rainer Probstmeier
Publication date
01-04-2015
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 4/2015
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-2897-6

Other articles of this Issue 4/2015

Tumor Biology 4/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine