Skip to main content
Top
Published in: Tumor Biology 4/2015

01-04-2015 | Research Article

Transcription factor decoy against stem cells master regulators, Nanog and Oct-4: a possible approach for differentiation therapy

Authors: Seyed Mohammad Ali Hosseini Rad, Taravat Bamdad, Majid Sadeghizadeh, Ehsan Arefian, Majid Lotfinia, Milad Ghanipour

Published in: Tumor Biology | Issue 4/2015

Login to get access

Abstract

Transcription factor decoys (TFDs) are exogenous oligonucleotides which can compete by cis-elements in promoters or enhancers for binding to TFs and downregulating gene expression in a specific manner. It is believed that tumor mass originates from cancer stem cells (CSCs) which the same with embryonic stem cells (ESCs) have the properties of both pluripotency and self-renewal (stemness). Many transcription factors such as Nanog, Oct-4, Sox2, Klf4, and Sall4 act as master regulators in the maintenance of stemness in both cell types. Differentiation therapy is based on this theory that by differentiation of CSCs, tumor mass can be eliminated with common cancer therapy methods. To our knowledge, the present study is the first report of a TFD approach against master regulator of stemness, Nanog, Oct-4, and Klf4, for downregulation purposes in P19 embryonic carcinoma stem cell. Different simple and complex decoys against Nanog, OCT-4, Sox2, and Klf4 were designed and used for this purpose. The results showed that the applied decoys especially Nanog-specific decoy decreased the expression of downstream genes.
Literature
1.
go back to reference Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet. 2007;8:173–84.CrossRefPubMed Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet. 2007;8:173–84.CrossRefPubMed
2.
go back to reference Dass CR, Choong PF. Targeting of small molecule anticancer drugs to the tumour and its vasculature using cationic liposomes: lessons from gene therapy. Cancer Cell Int. 2006;6:17.CrossRefPubMedPubMedCentral Dass CR, Choong PF. Targeting of small molecule anticancer drugs to the tumour and its vasculature using cationic liposomes: lessons from gene therapy. Cancer Cell Int. 2006;6:17.CrossRefPubMedPubMedCentral
3.
go back to reference Kumar R, Dammai V, Yadava PK, Kleinau S. Gene targeting by ribozyme against TNF-alpha mRNA inhibits autoimmune arthritis. Gene Ther. 2005;12:1486–93.CrossRefPubMed Kumar R, Dammai V, Yadava PK, Kleinau S. Gene targeting by ribozyme against TNF-alpha mRNA inhibits autoimmune arthritis. Gene Ther. 2005;12:1486–93.CrossRefPubMed
4.
go back to reference Wang DY, Lai BH, Sen D. A general strategy for effector-mediated control of RNA-cleaving ribozymes and DNA enzymes. J Mol Biol. 2002;318:33–43.CrossRefPubMed Wang DY, Lai BH, Sen D. A general strategy for effector-mediated control of RNA-cleaving ribozymes and DNA enzymes. J Mol Biol. 2002;318:33–43.CrossRefPubMed
5.
go back to reference Bielinska A, Shivdasani RA, Zhang LQ, Nabel GJ. Regulation of gene expression with double-stranded phosphorothioate oligonucleotides. Science. 1990;250:997–1000.CrossRefPubMed Bielinska A, Shivdasani RA, Zhang LQ, Nabel GJ. Regulation of gene expression with double-stranded phosphorothioate oligonucleotides. Science. 1990;250:997–1000.CrossRefPubMed
6.
go back to reference Penolazzi L, Lambertini E, Aguiari G, del Senno L, Piva R. Modulation of estrogen receptor gene expression in human breast cancer cells: a decoy strategy with specific PCR-generated DNA fragments. Breast Cancer Res Treat. 1998;49:227–35.CrossRefPubMed Penolazzi L, Lambertini E, Aguiari G, del Senno L, Piva R. Modulation of estrogen receptor gene expression in human breast cancer cells: a decoy strategy with specific PCR-generated DNA fragments. Breast Cancer Res Treat. 1998;49:227–35.CrossRefPubMed
7.
go back to reference Morishita R, Higaki J, Tomita N, Ogihara T. Application of transcription factor "decoy" strategy as means of gene therapy and study of gene expression in cardiovascular disease. Circ Res. 1998;82:1023–8.CrossRefPubMed Morishita R, Higaki J, Tomita N, Ogihara T. Application of transcription factor "decoy" strategy as means of gene therapy and study of gene expression in cardiovascular disease. Circ Res. 1998;82:1023–8.CrossRefPubMed
8.
go back to reference Khaled AR, Butfiloski EJ, Sobel ES, Schiffenbauer J. Use of phosphorothioate-modified oligodeoxynucleotides to inhibit NF-kappaB expression and lymphocyte function. Clin Immunol Immunopathol. 1998;86:170–9.CrossRefPubMed Khaled AR, Butfiloski EJ, Sobel ES, Schiffenbauer J. Use of phosphorothioate-modified oligodeoxynucleotides to inhibit NF-kappaB expression and lymphocyte function. Clin Immunol Immunopathol. 1998;86:170–9.CrossRefPubMed
9.
go back to reference Gao H, Xiao J, Sun Q, Lin H, Bai Y, Yang L, et al. A single decoy oligodeoxynucleotides targeting multiple oncoproteins produces strong anticancer effects. Mol Pharmacol. 2006;70:1621–9.CrossRefPubMed Gao H, Xiao J, Sun Q, Lin H, Bai Y, Yang L, et al. A single decoy oligodeoxynucleotides targeting multiple oncoproteins produces strong anticancer effects. Mol Pharmacol. 2006;70:1621–9.CrossRefPubMed
10.
go back to reference Morishita R, Gibbons GH, Horiuchi M, Ellison KE, Nakama M, Zhang L, et al. A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc Natl Acad Sci U S A. 1995;92:5855–9.CrossRefPubMedPubMedCentral Morishita R, Gibbons GH, Horiuchi M, Ellison KE, Nakama M, Zhang L, et al. A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc Natl Acad Sci U S A. 1995;92:5855–9.CrossRefPubMedPubMedCentral
11.
go back to reference Ahn JD, Kim CH, Magae J, Kim YH, Kim HJ, Park KK, et al. E2F decoy oligodeoxynucleotides effectively inhibit growth of human tumor cells. Biochem Biophys Res Commun. 2003;310:1048–53.CrossRefPubMed Ahn JD, Kim CH, Magae J, Kim YH, Kim HJ, Park KK, et al. E2F decoy oligodeoxynucleotides effectively inhibit growth of human tumor cells. Biochem Biophys Res Commun. 2003;310:1048–53.CrossRefPubMed
12.
go back to reference Suzuki J, Isobe M, Morishita R, Izawa A, Yamazaki S, Okubo Y, et al. E2F decoy suppresses E-selectin expression in murine cardiac allograft arteriopathy. Transplant Proc. 1999;31:2018–9.CrossRefPubMed Suzuki J, Isobe M, Morishita R, Izawa A, Yamazaki S, Okubo Y, et al. E2F decoy suppresses E-selectin expression in murine cardiac allograft arteriopathy. Transplant Proc. 1999;31:2018–9.CrossRefPubMed
13.
go back to reference Leong PL, Andrews GA, Johnson DE, Dyer KF, Xi S, Mai JC, et al. Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proc Natl Acad Sci U S A. 2003;100:4138–43.CrossRefPubMedPubMedCentral Leong PL, Andrews GA, Johnson DE, Dyer KF, Xi S, Mai JC, et al. Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proc Natl Acad Sci U S A. 2003;100:4138–43.CrossRefPubMedPubMedCentral
14.
go back to reference Zhang X, Liu P, Zhang B, Wang A, Yang M. Role of STAT3 decoy oligodeoxynucleotides on cell invasion and chemosensitivity in human epithelial ovarian cancer cells. Cancer Genet Cytogenet. 2010;197:46–53.CrossRefPubMed Zhang X, Liu P, Zhang B, Wang A, Yang M. Role of STAT3 decoy oligodeoxynucleotides on cell invasion and chemosensitivity in human epithelial ovarian cancer cells. Cancer Genet Cytogenet. 2010;197:46–53.CrossRefPubMed
15.
go back to reference Takahashi T, Togo S, Kumamoto T, Watanabe K, Kubota T, Ichikawa Y, et al. Transfection of NF-kappaB decoy oligodeoxynucleotides into macrophages reduces murine fatal liver failure after excessive hepatectomy. J Surg Res. 2009;154:179–86.CrossRefPubMed Takahashi T, Togo S, Kumamoto T, Watanabe K, Kubota T, Ichikawa Y, et al. Transfection of NF-kappaB decoy oligodeoxynucleotides into macrophages reduces murine fatal liver failure after excessive hepatectomy. J Surg Res. 2009;154:179–86.CrossRefPubMed
16.
go back to reference Ohmori K, Takeda S, Miyoshi S, Minami M, Nakane S, Ohta M, et al. Attenuation of lung injury in allograft rejection using NF-kappaB decoy transfection-novel strategy for use in lung transplantation. Eur J Cardiothorac Surg. 2005;27:23–7.CrossRefPubMed Ohmori K, Takeda S, Miyoshi S, Minami M, Nakane S, Ohta M, et al. Attenuation of lung injury in allograft rejection using NF-kappaB decoy transfection-novel strategy for use in lung transplantation. Eur J Cardiothorac Surg. 2005;27:23–7.CrossRefPubMed
17.
go back to reference Kawamura I, Morishita R, Tsujimoto S, Manda T, Tomoi M, Tomita N, et al. Intravenous injection of oligodeoxynucleotides to the NF-kappaB binding site inhibits hepatic metastasis of M5076 reticulosarcoma in mice. Gene Ther. 2001;8:905–12.CrossRefPubMed Kawamura I, Morishita R, Tsujimoto S, Manda T, Tomoi M, Tomita N, et al. Intravenous injection of oligodeoxynucleotides to the NF-kappaB binding site inhibits hepatic metastasis of M5076 reticulosarcoma in mice. Gene Ther. 2001;8:905–12.CrossRefPubMed
18.
go back to reference Chae YM, Park KK, Lee IK, Kim JK, Kim CH, Chang YC. Ring-Sp1 decoy oligonucleotide effectively suppresses extracellular matrix gene expression and fibrosis of rat kidney induced by unilateral ureteral obstruction. Gene Ther. 2006;13:430–9.CrossRefPubMed Chae YM, Park KK, Lee IK, Kim JK, Kim CH, Chang YC. Ring-Sp1 decoy oligonucleotide effectively suppresses extracellular matrix gene expression and fibrosis of rat kidney induced by unilateral ureteral obstruction. Gene Ther. 2006;13:430–9.CrossRefPubMed
19.
go back to reference Park JH, Jo JH, Kim KH, Kim SJ, Lee WR, Park KK, et al. Antifibrotic effect through the regulation of transcription factor using ring type-Sp1 decoy oligodeoxynucleotide in carbon tetrachloride-induced liver fibrosis. J Gene Med. 2009;11:824–33.CrossRefPubMed Park JH, Jo JH, Kim KH, Kim SJ, Lee WR, Park KK, et al. Antifibrotic effect through the regulation of transcription factor using ring type-Sp1 decoy oligodeoxynucleotide in carbon tetrachloride-induced liver fibrosis. J Gene Med. 2009;11:824–33.CrossRefPubMed
20.
go back to reference Alper O, Bergmann-Leitner ES, Abrams S, Cho-Chung YS. Apoptosis, growth arrest and suppression of invasiveness by CRE-decoy oligonucleotide in ovarian cancer cells: protein kinase a downregulation and cytoplasmic export of CRE-binding proteins. Mol Cell Biochem. 2001;218:55–63.CrossRefPubMed Alper O, Bergmann-Leitner ES, Abrams S, Cho-Chung YS. Apoptosis, growth arrest and suppression of invasiveness by CRE-decoy oligonucleotide in ovarian cancer cells: protein kinase a downregulation and cytoplasmic export of CRE-binding proteins. Mol Cell Biochem. 2001;218:55–63.CrossRefPubMed
21.
go back to reference Liu WM, Scott KA, Shahin S, Propper DJ. The in vitro effects of CRE-decoy oligonucleotides in combination with conventional chemotherapy in colorectal cancer cell lines. Eur J Biochem. 2004;271:2773–81.CrossRefPubMed Liu WM, Scott KA, Shahin S, Propper DJ. The in vitro effects of CRE-decoy oligonucleotides in combination with conventional chemotherapy in colorectal cancer cell lines. Eur J Biochem. 2004;271:2773–81.CrossRefPubMed
22.
go back to reference Cho WH, Kim HT, Koo JH, Lee IK. Effect of AP-1 decoy using hemagglutinating virus of Japan-liposome on the intimal hyperplasia of the autogenous vein graft in mongrel dogs. Transplant Proc. 2006;38:2161–3.CrossRefPubMed Cho WH, Kim HT, Koo JH, Lee IK. Effect of AP-1 decoy using hemagglutinating virus of Japan-liposome on the intimal hyperplasia of the autogenous vein graft in mongrel dogs. Transplant Proc. 2006;38:2161–3.CrossRefPubMed
23.
go back to reference Holschermann H, Stadlbauer TH, Wagner AH, Fingerhuth H, Muth H, Rong S, et al. STAT-1 and AP-1 decoy oligonucleotide therapy delays acute rejection and prolongs cardiac allograft survival. Cardiovasc Res. 2006;71:527–36.CrossRefPubMed Holschermann H, Stadlbauer TH, Wagner AH, Fingerhuth H, Muth H, Rong S, et al. STAT-1 and AP-1 decoy oligonucleotide therapy delays acute rejection and prolongs cardiac allograft survival. Cardiovasc Res. 2006;71:527–36.CrossRefPubMed
24.
go back to reference Nishitsuji H, Tamura Y, Fuse T, Habu Y, Miyano-Kurosaki N, Takaku H. Inhibition of HIV-1 replication by 5'LTR decoy RNA. Nucleic Acids Res Suppl. 2001;1:141–2.CrossRef Nishitsuji H, Tamura Y, Fuse T, Habu Y, Miyano-Kurosaki N, Takaku H. Inhibition of HIV-1 replication by 5'LTR decoy RNA. Nucleic Acids Res Suppl. 2001;1:141–2.CrossRef
25.
go back to reference Li MJ, Kim J, Li S, Zaia J, Yee JK, Anderson J, et al. Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCr5 ribozyme, and a nucleolar-localizing TAR decoy. Mol Ther. 2005;12:900–9.CrossRefPubMed Li MJ, Kim J, Li S, Zaia J, Yee JK, Anderson J, et al. Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCr5 ribozyme, and a nucleolar-localizing TAR decoy. Mol Ther. 2005;12:900–9.CrossRefPubMed
26.
go back to reference Zhang J, Yamada O, Sakamoto T, Yoshida H, Araki H, Murata T, et al. Inhibition of hepatitis C virus replication by pol III-directed overexpression of RNA decoys corresponding to stem-loop structures in the NS5B coding region. Virology. 2005;342:276–85.CrossRefPubMed Zhang J, Yamada O, Sakamoto T, Yoshida H, Araki H, Murata T, et al. Inhibition of hepatitis C virus replication by pol III-directed overexpression of RNA decoys corresponding to stem-loop structures in the NS5B coding region. Virology. 2005;342:276–85.CrossRefPubMed
27.
go back to reference Ward RJ, Dirks PB. Cancer stem cells: at the headwaters of tumor development. Annu Rev Pathol. 2007;2:175–89.CrossRefPubMed Ward RJ, Dirks PB. Cancer stem cells: at the headwaters of tumor development. Annu Rev Pathol. 2007;2:175–89.CrossRefPubMed
28.
go back to reference Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.CrossRefPubMed Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.CrossRefPubMed
29.
go back to reference Sell S. Leukemia: stem cells, maturation arrest, and differentiation therapy. Stem Cell Rev. 2005;1:197–205.CrossRefPubMed Sell S. Leukemia: stem cells, maturation arrest, and differentiation therapy. Stem Cell Rev. 2005;1:197–205.CrossRefPubMed
30.
go back to reference Ivanova N, Dobrin R, Lu R, Kotenko L, Levorse J, DeCoste C, et al. Dissecting self-renewal in stem cells with RNA interference. Nature. 2006;44:533–8.CrossRef Ivanova N, Dobrin R, Lu R, Kotenko L, Levorse J, DeCoste C, et al. Dissecting self-renewal in stem cells with RNA interference. Nature. 2006;44:533–8.CrossRef
31.
go back to reference Dejosez M, Krumenacker JS, Zitur LJ, Passeri M, Chu LF, Songyang Z, et al. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell. 2008;133:1162–74.CrossRefPubMedPubMedCentral Dejosez M, Krumenacker JS, Zitur LJ, Passeri M, Chu LF, Songyang Z, et al. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell. 2008;133:1162–74.CrossRefPubMedPubMedCentral
32.
go back to reference Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56.CrossRefPubMedPubMedCentral Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56.CrossRefPubMedPubMedCentral
33.
go back to reference Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 2003;113:631–42.CrossRefPubMed Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 2003;113:631–42.CrossRefPubMed
34.
go back to reference Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 2006;38:431–40.CrossRefPubMed Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 2006;38:431–40.CrossRefPubMed
35.
go back to reference Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell. 2008;133:1106–17.CrossRefPubMed Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell. 2008;133:1106–17.CrossRefPubMed
37.
go back to reference Wu Q, Chen X, Zhang J, Loh YH, Low TY, Zhang W, et al. Sall4 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells. J Biol Chem. 2006;281:24090–4.CrossRefPubMed Wu Q, Chen X, Zhang J, Loh YH, Low TY, Zhang W, et al. Sall4 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells. J Biol Chem. 2006;281:24090–4.CrossRefPubMed
38.
go back to reference Ishiguro T, Sato A, Ohata H, Sakai H, Nakagama H, Okamoto K. Differential expression of nanog1 and nanogp8 in colon cancer cells. Biochem Biophys Res Commun. 2011;418:199–204.CrossRefPubMed Ishiguro T, Sato A, Ohata H, Sakai H, Nakagama H, Okamoto K. Differential expression of nanog1 and nanogp8 in colon cancer cells. Biochem Biophys Res Commun. 2011;418:199–204.CrossRefPubMed
39.
go back to reference Bourguignon LY, Spevak CC, Wong G, Xia W, Gilad E. Hyaluronan-CD44 interaction with protein kinase C(epsilon) promotes oncogenic signaling by the stem cell marker Nanog and the production of microRNA-21, leading to down-regulation of the tumor suppressor protein PDCD4, anti-apoptosis, and chemotherapy resistance in breast tumor cells. J Biol Chem. 2009;284:26533–46.CrossRefPubMedPubMedCentral Bourguignon LY, Spevak CC, Wong G, Xia W, Gilad E. Hyaluronan-CD44 interaction with protein kinase C(epsilon) promotes oncogenic signaling by the stem cell marker Nanog and the production of microRNA-21, leading to down-regulation of the tumor suppressor protein PDCD4, anti-apoptosis, and chemotherapy resistance in breast tumor cells. J Biol Chem. 2009;284:26533–46.CrossRefPubMedPubMedCentral
40.
go back to reference Bourguignon LY, Peyrollier K, Xia W, Gilad E. Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem. 2008;283:17635–51.CrossRefPubMedPubMedCentral Bourguignon LY, Peyrollier K, Xia W, Gilad E. Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem. 2008;283:17635–51.CrossRefPubMedPubMedCentral
41.
go back to reference Zhang J, Wang X, Li M, Han J, Chen B, Wang B, et al. NANOGP8 is a retrogene expressed in cancers. FEBS J. 2006;273:1723–30.CrossRefPubMed Zhang J, Wang X, Li M, Han J, Chen B, Wang B, et al. NANOGP8 is a retrogene expressed in cancers. FEBS J. 2006;273:1723–30.CrossRefPubMed
42.
go back to reference Ambady S, Malcuit C, Kashpur O, Kole D, Holmes WF, Hedblom E, et al. Expression of NANOG and NANOGP8 in a variety of undifferentiated and differentiated human cells. Int J Dev Biol. 2010;54:1743–54.CrossRefPubMedPubMedCentral Ambady S, Malcuit C, Kashpur O, Kole D, Holmes WF, Hedblom E, et al. Expression of NANOG and NANOGP8 in a variety of undifferentiated and differentiated human cells. Int J Dev Biol. 2010;54:1743–54.CrossRefPubMedPubMedCentral
43.
go back to reference Gehring WJ, Qian YQ, Billeter M, Furukubo-Tokunaga K, Schier AF, Resendez-Perez D, et al. Homeodomain-DNA recognition. Cell. 1994;78:211–23.CrossRefPubMed Gehring WJ, Qian YQ, Billeter M, Furukubo-Tokunaga K, Schier AF, Resendez-Perez D, et al. Homeodomain-DNA recognition. Cell. 1994;78:211–23.CrossRefPubMed
44.
go back to reference Jauch R, Ng CK, Saikatendu KS, Stevens RC, Kolatkar PR. Crystal structure and DNA binding of the homeodomain of the stem cell transcription factor Nanog. J Mol Biol. 2008;376:758–70.CrossRefPubMed Jauch R, Ng CK, Saikatendu KS, Stevens RC, Kolatkar PR. Crystal structure and DNA binding of the homeodomain of the stem cell transcription factor Nanog. J Mol Biol. 2008;376:758–70.CrossRefPubMed
45.
go back to reference Klemm JD, Rould MA, Aurora R, Herr W, Pabo CO. Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules. Cell. 1994;77:21–32.CrossRefPubMed Klemm JD, Rould MA, Aurora R, Herr W, Pabo CO. Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules. Cell. 1994;77:21–32.CrossRefPubMed
46.
go back to reference Phillips K, Luisi B. The virtuoso of versatility: POU proteins that flex to fit. J Mol Biol. 2000;302:1023–39.CrossRefPubMed Phillips K, Luisi B. The virtuoso of versatility: POU proteins that flex to fit. J Mol Biol. 2000;302:1023–39.CrossRefPubMed
47.
go back to reference Yeom YI, Fuhrmann G, Ovitt CE, Brehm A, Ohbo K, Gross M, et al. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development. 1996;122:881–94.PubMed Yeom YI, Fuhrmann G, Ovitt CE, Brehm A, Ohbo K, Gross M, et al. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development. 1996;122:881–94.PubMed
48.
go back to reference Nordhoff V, Hubner K, Bauer A, Orlova I, Malapetsa A, Scholer HR. Comparative analysis of human, bovine, and murine Oct-4 upstream promoter sequences. Mamm Genome. 2001;12:309–17.CrossRefPubMed Nordhoff V, Hubner K, Bauer A, Orlova I, Malapetsa A, Scholer HR. Comparative analysis of human, bovine, and murine Oct-4 upstream promoter sequences. Mamm Genome. 2001;12:309–17.CrossRefPubMed
49.
go back to reference Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003;17:126–40.CrossRefPubMedPubMedCentral Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003;17:126–40.CrossRefPubMedPubMedCentral
50.
go back to reference Bowles J, Schepers G, Koopman P. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol. 2000;227:239–55.CrossRefPubMed Bowles J, Schepers G, Koopman P. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol. 2000;227:239–55.CrossRefPubMed
51.
go back to reference Ambrosetti DC, Basilico C, Dailey L. Synergistic activation of the fibroblast growth factor 4 enhancer by Sox2 and Oct-3 depends on protein-protein interactions facilitated by a specific spatial arrangement of factor binding sites. Mol Cell Biol. 1997;17:6321–9.CrossRefPubMedPubMedCentral Ambrosetti DC, Basilico C, Dailey L. Synergistic activation of the fibroblast growth factor 4 enhancer by Sox2 and Oct-3 depends on protein-protein interactions facilitated by a specific spatial arrangement of factor binding sites. Mol Cell Biol. 1997;17:6321–9.CrossRefPubMedPubMedCentral
52.
go back to reference Ambrosetti DC, Scholer HR, Dailey L, Basilico C. Modulation of the activity of multiple transcriptional activation domains by the DNA binding domains mediates the synergistic action of Sox2 and Oct-3 on the fibroblast growth factor-4 enhancer. J Biol Chem. 2000;275:23387–97.CrossRefPubMed Ambrosetti DC, Scholer HR, Dailey L, Basilico C. Modulation of the activity of multiple transcriptional activation domains by the DNA binding domains mediates the synergistic action of Sox2 and Oct-3 on the fibroblast growth factor-4 enhancer. J Biol Chem. 2000;275:23387–97.CrossRefPubMed
53.
go back to reference Jiang J, Chan YS, Loh YH, Cai J, Tong GQ, Lim CA, et al. A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol. 2008;10:353–60.CrossRefPubMed Jiang J, Chan YS, Loh YH, Cai J, Tong GQ, Lim CA, et al. A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol. 2008;10:353–60.CrossRefPubMed
54.
go back to reference Nakatake Y, Fukui N, Iwamatsu Y, Masui S, Takahashi K, Yagi R, et al. Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol Cell Biol. 2006;26:7772–82.CrossRefPubMedPubMedCentral Nakatake Y, Fukui N, Iwamatsu Y, Masui S, Takahashi K, Yagi R, et al. Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol Cell Biol. 2006;26:7772–82.CrossRefPubMedPubMedCentral
55.
go back to reference Chew JL, Loh YH, Zhang W, Chen X, Tam WL, Yeap LS, et al. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol. 2005;25:6031–46.CrossRefPubMedPubMedCentral Chew JL, Loh YH, Zhang W, Chen X, Tam WL, Yeap LS, et al. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol. 2005;25:6031–46.CrossRefPubMedPubMedCentral
56.
go back to reference Odom DT, Dowell RD, Jacobsen ES, Nekludova L, Rolfe PA, Danford TW, et al. Core transcriptional regulatory circuitry in human hepatocytes. Mol Syst Biol. 2006;2:2006.0017.CrossRefPubMedPubMedCentral Odom DT, Dowell RD, Jacobsen ES, Nekludova L, Rolfe PA, Danford TW, et al. Core transcriptional regulatory circuitry in human hepatocytes. Mol Syst Biol. 2006;2:2006.0017.CrossRefPubMedPubMedCentral
57.
go back to reference McBurney MW, Rogers BJ. Isolation of male embryonal carcinoma cells and their chromosome replication patterns. Dev Biol. 1982;89:503–8.CrossRefPubMed McBurney MW, Rogers BJ. Isolation of male embryonal carcinoma cells and their chromosome replication patterns. Dev Biol. 1982;89:503–8.CrossRefPubMed
58.
go back to reference McBurney MW. P19 embryonal carcinoma cells. Int J Dev Biol. 1993;37:135–40.PubMed McBurney MW. P19 embryonal carcinoma cells. Int J Dev Biol. 1993;37:135–40.PubMed
59.
go back to reference Choi SC, Choi JH, Shim WJ, Lim DS. P19 embryonal carcinoma cells: a new model for the study of endothelial cell differentiation. Biotechnol Lett. 2008;30:1169–75.CrossRefPubMed Choi SC, Choi JH, Shim WJ, Lim DS. P19 embryonal carcinoma cells: a new model for the study of endothelial cell differentiation. Biotechnol Lett. 2008;30:1169–75.CrossRefPubMed
60.
go back to reference Liour SS, Kapitonov D, Yu RK. Expression of gangliosides in neuronal development of p19 embryonal carcinoma stem cells. J Neurosci Res. 2000;62:363–73.CrossRefPubMed Liour SS, Kapitonov D, Yu RK. Expression of gangliosides in neuronal development of p19 embryonal carcinoma stem cells. J Neurosci Res. 2000;62:363–73.CrossRefPubMed
61.
go back to reference Gianakopoulos PJ, Skerjanc IS. Hedgehog signaling induces cardiomyogenesis in P19 cells. J Biol Chem. 2005;280:21022–8.CrossRefPubMed Gianakopoulos PJ, Skerjanc IS. Hedgehog signaling induces cardiomyogenesis in P19 cells. J Biol Chem. 2005;280:21022–8.CrossRefPubMed
62.
go back to reference Bakhshalizadeh S, Esmaeili F, Houshmand F, Shirzad H, Saedi M. Effects of selegiline, a monoamine oxidase B inhibitor, on differentiation of P19 embryonal carcinoma stem cells, into neuron-like cells. In Vitro Cell Dev Biol Anim. 2011;47:550–7.CrossRefPubMed Bakhshalizadeh S, Esmaeili F, Houshmand F, Shirzad H, Saedi M. Effects of selegiline, a monoamine oxidase B inhibitor, on differentiation of P19 embryonal carcinoma stem cells, into neuron-like cells. In Vitro Cell Dev Biol Anim. 2011;47:550–7.CrossRefPubMed
63.
go back to reference Xu XS, Hong X, Wang G. Induction of endogenous gamma-globin gene expression with decoy oligonucleotide targeting Oct-1 transcription factor consensus sequence. J Hematol Oncol. 2009;2:15.CrossRefPubMedPubMedCentral Xu XS, Hong X, Wang G. Induction of endogenous gamma-globin gene expression with decoy oligonucleotide targeting Oct-1 transcription factor consensus sequence. J Hematol Oncol. 2009;2:15.CrossRefPubMedPubMedCentral
64.
go back to reference Niwa H, Ogawa K, Shimosato D, Adachi K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature. 2009;460:118–22.CrossRefPubMed Niwa H, Ogawa K, Shimosato D, Adachi K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature. 2009;460:118–22.CrossRefPubMed
65.
66.
go back to reference Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS, et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol. 2006;8:1114–23.CrossRefPubMed Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS, et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol. 2006;8:1114–23.CrossRefPubMed
67.
go back to reference Omidi Y, Barar J, Heidari HR, Ahmadian S, Yazdi HA, Akhtar S. Microarray analysis of the toxicogenomics and the genotoxic potential of a cationic lipid-based gene delivery nanosystem in human alveolar epithelial a549 cells. Toxicol Mech Methods. 2008;18:369–78.CrossRefPubMed Omidi Y, Barar J, Heidari HR, Ahmadian S, Yazdi HA, Akhtar S. Microarray analysis of the toxicogenomics and the genotoxic potential of a cationic lipid-based gene delivery nanosystem in human alveolar epithelial a549 cells. Toxicol Mech Methods. 2008;18:369–78.CrossRefPubMed
68.
go back to reference Shan J, Shen J, Liu L, Xia F, Xu C, Duan G, et al. Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma. Hepatology. 2012;56:1004–14.CrossRefPubMed Shan J, Shen J, Liu L, Xia F, Xu C, Duan G, et al. Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma. Hepatology. 2012;56:1004–14.CrossRefPubMed
69.
go back to reference Chen WJ, Ho CC, Chang YL, Chen HY, Lin CA, Ling TY, et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun. 2014;5:3472.PubMed Chen WJ, Ho CC, Chang YL, Chen HY, Lin CA, Ling TY, et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun. 2014;5:3472.PubMed
70.
go back to reference Pramfalk C, Lanner J, Andersson M, Danielsson E, Kaiser C, Renstrom IM, et al. Insulin receptor activation and down-regulation by cationic lipid transfection reagents. BMC Cell Biol. 2004;5:7.CrossRefPubMedPubMedCentral Pramfalk C, Lanner J, Andersson M, Danielsson E, Kaiser C, Renstrom IM, et al. Insulin receptor activation and down-regulation by cationic lipid transfection reagents. BMC Cell Biol. 2004;5:7.CrossRefPubMedPubMedCentral
72.
go back to reference Lu R, Yang A, Jin Y. Dual functions of T-box 3 (Tbx3) in the control of self-renewal and extraembryonic endoderm differentiation in mouse embryonic stem cells. J Biol chem. 2011;286:8425–36.CrossRefPubMed Lu R, Yang A, Jin Y. Dual functions of T-box 3 (Tbx3) in the control of self-renewal and extraembryonic endoderm differentiation in mouse embryonic stem cells. J Biol chem. 2011;286:8425–36.CrossRefPubMed
73.
go back to reference Hough SR, Clements I, Welch PJ, Wiederholt KA. Differentiation of mouse embryonic stem cells after RNA interference-mediated silencing of OCT4 and Nanog. Stem Cells. 2006;24:1467–75.CrossRefPubMed Hough SR, Clements I, Welch PJ, Wiederholt KA. Differentiation of mouse embryonic stem cells after RNA interference-mediated silencing of OCT4 and Nanog. Stem Cells. 2006;24:1467–75.CrossRefPubMed
74.
go back to reference Hu G, Kim J, Xu Q, Leng Y, Orkin SH, Elledge SJ. A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev. 2009;23:837–48.CrossRefPubMedPubMedCentral Hu G, Kim J, Xu Q, Leng Y, Orkin SH, Elledge SJ. A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev. 2009;23:837–48.CrossRefPubMedPubMedCentral
Metadata
Title
Transcription factor decoy against stem cells master regulators, Nanog and Oct-4: a possible approach for differentiation therapy
Authors
Seyed Mohammad Ali Hosseini Rad
Taravat Bamdad
Majid Sadeghizadeh
Ehsan Arefian
Majid Lotfinia
Milad Ghanipour
Publication date
01-04-2015
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 4/2015
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-2884-y

Other articles of this Issue 4/2015

Tumor Biology 4/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine