Skip to main content
Top
Published in: Tumor Biology 1/2015

01-01-2015 | Review

Small nucleolar RNAs functioning and potential roles in cancer

Authors: Nithyananda Thorenoor, Ondrej Slaby

Published in: Tumor Biology | Issue 1/2015

Login to get access

Abstract

Non-coding RNAs (ncRNAs) are important regulatory molecules involved in various physiological and pathological cellular processes. Small nucleolar RNAs (snoRNAs), subclass of small ncRNAs, have been considered important but unglamorous elements in the production of protein synthesis machinery of cells. However, recent evidence has indicated that these non-coding RNAs might have a crucial role also in controlling cell behavior, and snoRNAs dysfunction could significantly contribute to carcinogenesis. Here, we summarize the most important aspects of snoRNAs biology, their functioning in cancer cell, and potential usage in diagnosis or as a new class of therapeutic targets in cancer.
Literature
1.
go back to reference Kiss T. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell. 2002;109:145–8.CrossRefPubMed Kiss T. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell. 2002;109:145–8.CrossRefPubMed
2.
go back to reference Bachellerie JP, Cavaille J, Huttenhofer A. The expanding snoRNA world. Biochimie. 2002;84:775–90.CrossRefPubMed Bachellerie JP, Cavaille J, Huttenhofer A. The expanding snoRNA world. Biochimie. 2002;84:775–90.CrossRefPubMed
3.
go back to reference Cavaille J, Bachellerie JP. SnoRNA-guided ribose methylation of rRNA: structural features of the guide RNA duplex influencing the extent of the reaction. Nucleic Acids Res. 1998;26:1576–87.CrossRefPubMedPubMedCentral Cavaille J, Bachellerie JP. SnoRNA-guided ribose methylation of rRNA: structural features of the guide RNA duplex influencing the extent of the reaction. Nucleic Acids Res. 1998;26:1576–87.CrossRefPubMedPubMedCentral
4.
go back to reference Maden BE. The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog Nucleic Acid Res Mol Biol. 1990;39:241–303.CrossRefPubMed Maden BE. The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog Nucleic Acid Res Mol Biol. 1990;39:241–303.CrossRefPubMed
5.
go back to reference Tollervey D, Kiss T. Function and synthesis of small nucleolar RNAs. Curr Opin Cell Biol. 1997;9:337–42.CrossRefPubMed Tollervey D, Kiss T. Function and synthesis of small nucleolar RNAs. Curr Opin Cell Biol. 1997;9:337–42.CrossRefPubMed
6.
go back to reference Brimacombe R, Mitchell P, Osswald M, Stade K, Bochkariov D. Clustering of modified nucleotides at the functional center of bacterial ribosomal RNA. FASEB J. 1993;7:161–7.PubMed Brimacombe R, Mitchell P, Osswald M, Stade K, Bochkariov D. Clustering of modified nucleotides at the functional center of bacterial ribosomal RNA. FASEB J. 1993;7:161–7.PubMed
7.
go back to reference Kiss-Laszlo Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell. 1996;85:1077–88.CrossRefPubMed Kiss-Laszlo Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell. 1996;85:1077–88.CrossRefPubMed
8.
go back to reference Weinstein LB, Steitz JA. Guided tours: from precursor snoRNA to functional snoRNP. Curr Opin Cell Biol. 1999;11:378–84.CrossRefPubMed Weinstein LB, Steitz JA. Guided tours: from precursor snoRNA to functional snoRNP. Curr Opin Cell Biol. 1999;11:378–84.CrossRefPubMed
9.
go back to reference Williams GT, Hughes JP, Stoneman V, Anderson CL, McCarthy NJ, Mourtada-Maarabouni M, et al. Isolation of genes controlling apoptosis through their effects on cell survival. Gene Ther Mol Biol. 2006;10:255–62.PubMedPubMedCentral Williams GT, Hughes JP, Stoneman V, Anderson CL, McCarthy NJ, Mourtada-Maarabouni M, et al. Isolation of genes controlling apoptosis through their effects on cell survival. Gene Ther Mol Biol. 2006;10:255–62.PubMedPubMedCentral
11.
go back to reference Dong XY, Rodriguez C, Guo P, Sun X, Talbot JT, Zhou W, et al. SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Hum Mol Genet. 2008;17:1031–42.CrossRefPubMedPubMedCentral Dong XY, Rodriguez C, Guo P, Sun X, Talbot JT, Zhou W, et al. SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Hum Mol Genet. 2008;17:1031–42.CrossRefPubMedPubMedCentral
12.
go back to reference Gee HE, Buffa FM, Camps C, Ramachandran A, Leek R, Taylor M, et al. The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis. Br J Cancer. 2011;104:1168–77.CrossRefPubMedPubMedCentral Gee HE, Buffa FM, Camps C, Ramachandran A, Leek R, Taylor M, et al. The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis. Br J Cancer. 2011;104:1168–77.CrossRefPubMedPubMedCentral
13.
go back to reference Liao J, Yu L, Mei Y, Guarnera M, Shen J, Li R, et al. Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer. Mol Cancer. 2010;9:198.CrossRefPubMedPubMedCentral Liao J, Yu L, Mei Y, Guarnera M, Shen J, Li R, et al. Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer. Mol Cancer. 2010;9:198.CrossRefPubMedPubMedCentral
14.
go back to reference Martens-Uzunova ES, Jalava SE, Dits NF, van Leenders GJ, Moller S, Trapman J, et al. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene. 2012;31:978–91.CrossRefPubMed Martens-Uzunova ES, Jalava SE, Dits NF, van Leenders GJ, Moller S, Trapman J, et al. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene. 2012;31:978–91.CrossRefPubMed
15.
go back to reference Mourtada-Maarabouni M, Hedge VL, Kirkham L, Farzaneh F, Williams GT. Growth arrest in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5 (GAS5). J Cell Sci. 2008;121:939–46.CrossRefPubMed Mourtada-Maarabouni M, Hedge VL, Kirkham L, Farzaneh F, Williams GT. Growth arrest in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5 (GAS5). J Cell Sci. 2008;121:939–46.CrossRefPubMed
16.
go back to reference Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene. 2009;28:195–208.CrossRefPubMed Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene. 2009;28:195–208.CrossRefPubMed
17.
go back to reference Dieci G, Preti M, Montanini B. Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics. 2009;94:83–8.CrossRefPubMed Dieci G, Preti M, Montanini B. Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics. 2009;94:83–8.CrossRefPubMed
18.
go back to reference Filipowicz W, Pogacic V. Biogenesis of small nucleolar ribonucleoproteins. Curr Opin Cell Biol. 2002;14:319–27.CrossRefPubMed Filipowicz W, Pogacic V. Biogenesis of small nucleolar ribonucleoproteins. Curr Opin Cell Biol. 2002;14:319–27.CrossRefPubMed
19.
go back to reference Watkins NJ, Bohnsack MT. The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. Wiley Interdiscip Rev RNA. 2012;3:397–414.CrossRefPubMed Watkins NJ, Bohnsack MT. The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. Wiley Interdiscip Rev RNA. 2012;3:397–414.CrossRefPubMed
20.
go back to reference Giorgi C, Fatica A, Nagel R, Bozzoni I. Release of U18 snoRNA from its host intron requires interaction of Nop1p with the Rnt1p endonuclease. EMBO J. 2001;20:6856–65.CrossRefPubMedPubMedCentral Giorgi C, Fatica A, Nagel R, Bozzoni I. Release of U18 snoRNA from its host intron requires interaction of Nop1p with the Rnt1p endonuclease. EMBO J. 2001;20:6856–65.CrossRefPubMedPubMedCentral
21.
go back to reference Reichow SL, Hamma T, Ferre-D’Amare AR, Varani G. The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res. 2007;35:1452–64.CrossRefPubMedPubMedCentral Reichow SL, Hamma T, Ferre-D’Amare AR, Varani G. The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res. 2007;35:1452–64.CrossRefPubMedPubMedCentral
22.
go back to reference Boulon S, Verheggen C, Jady BE, Girard C, Pescia C, Paul C, et al. PHAX and CRM1 are required sequentially to transport U3 snoRNA to nucleoli. Mol Cell. 2004;16:777–87.CrossRefPubMed Boulon S, Verheggen C, Jady BE, Girard C, Pescia C, Paul C, et al. PHAX and CRM1 are required sequentially to transport U3 snoRNA to nucleoli. Mol Cell. 2004;16:777–87.CrossRefPubMed
23.
go back to reference Pradet-Balade B, Girard C, Boulon S, Paul C, Azzag K, Bordonne R, et al. CRM1 controls the composition of nucleoplasmic pre-snoRNA complexes to licence them for nucleolar transport. EMBO J. 2011;30:2205–18.CrossRefPubMedPubMedCentral Pradet-Balade B, Girard C, Boulon S, Paul C, Azzag K, Bordonne R, et al. CRM1 controls the composition of nucleoplasmic pre-snoRNA complexes to licence them for nucleolar transport. EMBO J. 2011;30:2205–18.CrossRefPubMedPubMedCentral
24.
go back to reference Bortolin ML, Kiss T. Human U19 intron-encoded snoRNA is processed from a long primary transcript that possesses little potential for protein coding. RNA. 1998;4:445–54.PubMedPubMedCentral Bortolin ML, Kiss T. Human U19 intron-encoded snoRNA is processed from a long primary transcript that possesses little potential for protein coding. RNA. 1998;4:445–54.PubMedPubMedCentral
25.
go back to reference Smith CM, Steitz JA. Sno storm in the nucleolus: new roles for myriad small RNPs. Cell. 1997;89:669–72.CrossRefPubMed Smith CM, Steitz JA. Sno storm in the nucleolus: new roles for myriad small RNPs. Cell. 1997;89:669–72.CrossRefPubMed
26.
go back to reference Smith CM, Steitz JA. Classification of GAS5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5′-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Mol Cell Biol. 1998;18:6897–909.CrossRefPubMedPubMedCentral Smith CM, Steitz JA. Classification of GAS5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5′-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Mol Cell Biol. 1998;18:6897–909.CrossRefPubMedPubMedCentral
27.
go back to reference Mannoor K, Liao J, Jiang F. Small nucleolar RNAs in cancer. Biochim Biophys Acta. 2012;1826:121–8. Mannoor K, Liao J, Jiang F. Small nucleolar RNAs in cancer. Biochim Biophys Acta. 2012;1826:121–8.
29.
go back to reference Cavaille J, Bachellerie JP. Processing of fibrillarin-associated snoRNAs from pre-mRNA introns: an exonucleolytic process exclusively directed by the common stem-box terminal structure. Biochimie. 1996;78:443–56.CrossRefPubMed Cavaille J, Bachellerie JP. Processing of fibrillarin-associated snoRNAs from pre-mRNA introns: an exonucleolytic process exclusively directed by the common stem-box terminal structure. Biochimie. 1996;78:443–56.CrossRefPubMed
30.
go back to reference Caffarelli E, Fatica A, Prislei S, De Gregorio E, Fragapane P, Bozzoni I. Processing of the intron-encoded U16 and U18 snoRNAs: the conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA. EMBO J. 1996;15:1121–31.PubMedPubMedCentral Caffarelli E, Fatica A, Prislei S, De Gregorio E, Fragapane P, Bozzoni I. Processing of the intron-encoded U16 and U18 snoRNAs: the conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA. EMBO J. 1996;15:1121–31.PubMedPubMedCentral
31.
go back to reference Lange TS, Borovjagin A, Maxwell ES, Gerbi SA. Conserved boxes C and D are essential nucleolar localization elements of U14 and U8 snoRNAs. EMBO J. 1998;17:3176–87.CrossRefPubMedPubMedCentral Lange TS, Borovjagin A, Maxwell ES, Gerbi SA. Conserved boxes C and D are essential nucleolar localization elements of U14 and U8 snoRNAs. EMBO J. 1998;17:3176–87.CrossRefPubMedPubMedCentral
32.
go back to reference Samarsky DA, Fournier MJ, Singer RH, Bertrand E. The snoRNA box C/D motif directs nucleolar targeting and also couples snoRNA synthesis and localization. EMBO J. 1998;17:3747–57.CrossRefPubMedPubMedCentral Samarsky DA, Fournier MJ, Singer RH, Bertrand E. The snoRNA box C/D motif directs nucleolar targeting and also couples snoRNA synthesis and localization. EMBO J. 1998;17:3747–57.CrossRefPubMedPubMedCentral
33.
go back to reference Villa T, Ceradini F, Bozzoni I. Identification of a novel element required for processing of intron-encoded box C/D small nucleolar RNAs in Saccharomyces cerevisiae. Mol Cell Biol. 2000;20:1311–20.CrossRefPubMedPubMedCentral Villa T, Ceradini F, Bozzoni I. Identification of a novel element required for processing of intron-encoded box C/D small nucleolar RNAs in Saccharomyces cerevisiae. Mol Cell Biol. 2000;20:1311–20.CrossRefPubMedPubMedCentral
34.
go back to reference Kiss-Laszlo Z, Henry Y, Kiss T. Sequence and structural elements of methylation guide snoRNAs essential for site-specific ribose methylation of pre-rRNA. EMBO J. 1998;17:797–807.CrossRefPubMedPubMedCentral Kiss-Laszlo Z, Henry Y, Kiss T. Sequence and structural elements of methylation guide snoRNAs essential for site-specific ribose methylation of pre-rRNA. EMBO J. 1998;17:797–807.CrossRefPubMedPubMedCentral
35.
go back to reference Tycowski KT, Shu MD, Steitz JA. A mammalian gene with introns instead of exons generating stable RNA products. Nature. 1996;379:464–6.CrossRefPubMed Tycowski KT, Shu MD, Steitz JA. A mammalian gene with introns instead of exons generating stable RNA products. Nature. 1996;379:464–6.CrossRefPubMed
37.
go back to reference Cavaille J, Nicoloso M, Bachellerie JP. Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature. 1996;383:732–5.CrossRefPubMed Cavaille J, Nicoloso M, Bachellerie JP. Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature. 1996;383:732–5.CrossRefPubMed
38.
go back to reference Nicoloso M, Qu LH, Michot B, Bachellerie JP. Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2′-O-ribose methylation of rRNAs. J Mol Biol. 1996;260:178–95.CrossRefPubMed Nicoloso M, Qu LH, Michot B, Bachellerie JP. Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2′-O-ribose methylation of rRNAs. J Mol Biol. 1996;260:178–95.CrossRefPubMed
39.
go back to reference Makarova JA, Ivanova SM, Tonevitsky AG, Grigoriev AI. New functions of small nucleolar RNAs. Biochemistry (Mosc). 2013;78:638–50.CrossRef Makarova JA, Ivanova SM, Tonevitsky AG, Grigoriev AI. New functions of small nucleolar RNAs. Biochemistry (Mosc). 2013;78:638–50.CrossRef
40.
go back to reference Borovjagin AV, Gerbi SA. U3 small nucleolar RNA is essential for cleavage at sites 1, 2 and 3 in pre-rRNA and determines which rRNA processing pathway is taken in Xenopus oocytes. J Mol Biol. 1999;286:1347–63.CrossRefPubMed Borovjagin AV, Gerbi SA. U3 small nucleolar RNA is essential for cleavage at sites 1, 2 and 3 in pre-rRNA and determines which rRNA processing pathway is taken in Xenopus oocytes. J Mol Biol. 1999;286:1347–63.CrossRefPubMed
41.
go back to reference Enright CA, Maxwell ES, Eliceiri GL, Sollner-Webb B. 5′ETS rRNA processing facilitated by four small RNAs: U14, E3, U17, and U3. RNA. 1996;2:1094–9.PubMedPubMedCentral Enright CA, Maxwell ES, Eliceiri GL, Sollner-Webb B. 5′ETS rRNA processing facilitated by four small RNAs: U14, E3, U17, and U3. RNA. 1996;2:1094–9.PubMedPubMedCentral
42.
go back to reference Tycowski KT, Shu MD, Steitz JA. Requirement for intron-encoded U22 small nucleolar RNA in 18 s ribosomal RNA maturation. Science. 1994;266:1558–61.CrossRefPubMed Tycowski KT, Shu MD, Steitz JA. Requirement for intron-encoded U22 small nucleolar RNA in 18 s ribosomal RNA maturation. Science. 1994;266:1558–61.CrossRefPubMed
43.
go back to reference Peculis BA, Steitz JA. Disruption of U8 nucleolar snRNA inhibits 5.8s and 28s rRNA processing in the Xenopus oocyte. Cell. 1993;73:1233–45.CrossRefPubMed Peculis BA, Steitz JA. Disruption of U8 nucleolar snRNA inhibits 5.8s and 28s rRNA processing in the Xenopus oocyte. Cell. 1993;73:1233–45.CrossRefPubMed
44.
go back to reference Cavaille J, Hadjiolov AA, Bachellerie JP. Processing of mammalian rRNA precursors at the 3′ end of 18s rRNA. Identification of cis-acting signals suggests the involvement of U13 small nucleolar RNA. Eur J Biochem. 1996;242:206–13.CrossRefPubMed Cavaille J, Hadjiolov AA, Bachellerie JP. Processing of mammalian rRNA precursors at the 3′ end of 18s rRNA. Identification of cis-acting signals suggests the involvement of U13 small nucleolar RNA. Eur J Biochem. 1996;242:206–13.CrossRefPubMed
45.
go back to reference Balakin AG, Smith L, Fournier MJ. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell. 1996;86:823–34.CrossRefPubMed Balakin AG, Smith L, Fournier MJ. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell. 1996;86:823–34.CrossRefPubMed
46.
go back to reference Ganot P, Caizergues-Ferrer M, Kiss T. The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev. 1997;11:941–56.CrossRefPubMed Ganot P, Caizergues-Ferrer M, Kiss T. The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev. 1997;11:941–56.CrossRefPubMed
47.
go back to reference Ganot P, Bortolin ML, Kiss T. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell. 1997;89:799–809.CrossRefPubMed Ganot P, Bortolin ML, Kiss T. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell. 1997;89:799–809.CrossRefPubMed
48.
go back to reference Lafontaine DL, Bousquet-Antonelli C, Henry Y, Caizergues-Ferrer M, Tollervey D. The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 1998;12:527–37.CrossRefPubMedPubMedCentral Lafontaine DL, Bousquet-Antonelli C, Henry Y, Caizergues-Ferrer M, Tollervey D. The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 1998;12:527–37.CrossRefPubMedPubMedCentral
49.
go back to reference Rashid R, Liang B, Baker DL, Youssef OA, He Y, Phipps K, et al. Crystal structure of a Cbf5-Nop10-Gar1 complex and implications in RNA-guided pseudouridylation and dyskeratosis congenita. Mol Cell. 2006;21:249–60.CrossRefPubMed Rashid R, Liang B, Baker DL, Youssef OA, He Y, Phipps K, et al. Crystal structure of a Cbf5-Nop10-Gar1 complex and implications in RNA-guided pseudouridylation and dyskeratosis congenita. Mol Cell. 2006;21:249–60.CrossRefPubMed
53.
go back to reference Liu B, Liang XH, Piekna-Przybylska D, Liu Q, Fournier MJ. Mis-targeted methylation in rRNA can severely impair ribosome synthesis and activity. RNA Biol. 2008;5:249–54.CrossRefPubMed Liu B, Liang XH, Piekna-Przybylska D, Liu Q, Fournier MJ. Mis-targeted methylation in rRNA can severely impair ribosome synthesis and activity. RNA Biol. 2008;5:249–54.CrossRefPubMed
54.
go back to reference Basu A, Das P, Chaudhuri S, Bevilacqua E, Andrews J, Barik S, et al. Requirement of rRNA methylation for 80s ribosome assembly on a cohort of cellular internal ribosome entry sites. Mol Cell Biol. 2011;31:4482–99.CrossRefPubMedPubMedCentral Basu A, Das P, Chaudhuri S, Bevilacqua E, Andrews J, Barik S, et al. Requirement of rRNA methylation for 80s ribosome assembly on a cohort of cellular internal ribosome entry sites. Mol Cell Biol. 2011;31:4482–99.CrossRefPubMedPubMedCentral
55.
go back to reference Henras AK, Dez C, Henry Y. RNA structure and function in C/D and H/ACA s(no) RNPs. Curr Opin Struct Biol. 2004;14:335–43.CrossRefPubMed Henras AK, Dez C, Henry Y. RNA structure and function in C/D and H/ACA s(no) RNPs. Curr Opin Struct Biol. 2004;14:335–43.CrossRefPubMed
56.
go back to reference Darzacq X, Jady BE, Verheggen C, Kiss AM, Bertrand E, Kiss T. Cajal body-specific small nuclear RNAs: a novel class of 2′-o-methylation and pseudouridylation guide RNAs. EMBO J. 2002;21:2746–56.CrossRefPubMedPubMedCentral Darzacq X, Jady BE, Verheggen C, Kiss AM, Bertrand E, Kiss T. Cajal body-specific small nuclear RNAs: a novel class of 2′-o-methylation and pseudouridylation guide RNAs. EMBO J. 2002;21:2746–56.CrossRefPubMedPubMedCentral
57.
go back to reference Tycowski KT, You ZH, Graham PJ, Steitz JA. Modification of U6 spliceosomal RNA is guided by other small RNAs. Mol Cell. 1998;2:629–38.CrossRefPubMed Tycowski KT, You ZH, Graham PJ, Steitz JA. Modification of U6 spliceosomal RNA is guided by other small RNAs. Mol Cell. 1998;2:629–38.CrossRefPubMed
58.
go back to reference Decatur WA, Fournier MJ. rRNA modifications and ribosome function. Trends Biochem Sci. 2002;27:344–51.CrossRefPubMed Decatur WA, Fournier MJ. rRNA modifications and ribosome function. Trends Biochem Sci. 2002;27:344–51.CrossRefPubMed
59.
go back to reference Williams GT, Farzaneh F. Are snoRNAs and snoRNA host genes new players in cancer? Nat Rev Cancer. 2012;12:84–8.PubMed Williams GT, Farzaneh F. Are snoRNAs and snoRNA host genes new players in cancer? Nat Rev Cancer. 2012;12:84–8.PubMed
60.
go back to reference Ender C, Krek A, Friedlander MR, Beitzinger M, Weinmann L, Chen W, et al. A human snoRNA with microRNA-like functions. Mol Cell. 2008;32:519–28.CrossRefPubMed Ender C, Krek A, Friedlander MR, Beitzinger M, Weinmann L, Chen W, et al. A human snoRNA with microRNA-like functions. Mol Cell. 2008;32:519–28.CrossRefPubMed
61.
go back to reference Brameier M, Herwig A, Reinhardt R, Walter L, Gruber J. Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Res. 2011;39:675–86.CrossRefPubMed Brameier M, Herwig A, Reinhardt R, Walter L, Gruber J. Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Res. 2011;39:675–86.CrossRefPubMed
64.
go back to reference Ono M, Scott MS, Yamada K, Avolio F, Barton GJ, Lamond AI. Identification of human miRNA precursors that resemble box C/D snoRNAs. Nucleic Acids Res. 2011;39:3879–91.CrossRefPubMedPubMedCentral Ono M, Scott MS, Yamada K, Avolio F, Barton GJ, Lamond AI. Identification of human miRNA precursors that resemble box C/D snoRNAs. Nucleic Acids Res. 2011;39:3879–91.CrossRefPubMedPubMedCentral
66.
go back to reference Dez C, Henras A, Faucon B, Lafontaine D, Caizergues-Ferrer M, Henry Y. Stable expression in yeast of the mature form of human telomerase RNA depends on its association with the box H/ACA small nucleolar RNP proteins Cbf5p, Nhp2p and Nop10p. Nucleic Acids Res. 2001;29:598–603.CrossRefPubMedPubMedCentral Dez C, Henras A, Faucon B, Lafontaine D, Caizergues-Ferrer M, Henry Y. Stable expression in yeast of the mature form of human telomerase RNA depends on its association with the box H/ACA small nucleolar RNP proteins Cbf5p, Nhp2p and Nop10p. Nucleic Acids Res. 2001;29:598–603.CrossRefPubMedPubMedCentral
67.
68.
go back to reference Pogacic V, Dragon F, Filipowicz W. Human H/ACA small nucleolar RNPs and telomerase share evolutionarily conserved proteins Nhp2 and Nop10. Mol Cell Biol. 2000;20:9028–40.CrossRefPubMedPubMedCentral Pogacic V, Dragon F, Filipowicz W. Human H/ACA small nucleolar RNPs and telomerase share evolutionarily conserved proteins Nhp2 and Nop10. Mol Cell Biol. 2000;20:9028–40.CrossRefPubMedPubMedCentral
69.
go back to reference Kishore S, Khanna A, Zhang Z, Hui J, Balwierz PJ, Stefan M, et al. The snoRNA MBII-52 (Snord 115) is processed into smaller RNAs and regulates alternative splicing. Hum Mol Genet. 2010;19:1153–64.CrossRefPubMedPubMedCentral Kishore S, Khanna A, Zhang Z, Hui J, Balwierz PJ, Stefan M, et al. The snoRNA MBII-52 (Snord 115) is processed into smaller RNAs and regulates alternative splicing. Hum Mol Genet. 2010;19:1153–64.CrossRefPubMedPubMedCentral
70.
go back to reference Kishore S, Stamm S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2c. Science. 2006;311:230–2.CrossRefPubMed Kishore S, Stamm S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2c. Science. 2006;311:230–2.CrossRefPubMed
71.
go back to reference Cavaille J, Buiting K, Kiefmann M, Lalande M, Brannan CI, Horsthemke B, et al. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci U S A. 2000;97:14311–6.CrossRefPubMedPubMedCentral Cavaille J, Buiting K, Kiefmann M, Lalande M, Brannan CI, Horsthemke B, et al. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci U S A. 2000;97:14311–6.CrossRefPubMedPubMedCentral
72.
go back to reference Canton H, Emeson RB, Barker EL, Backstrom JR, Lu JT, Chang MS, et al. Identification, molecular cloning, and distribution of a short variant of the 5-hydroxytryptamine2C receptor produced by alternative splicing. Mol Pharmacol. 1996;50:799–807.PubMed Canton H, Emeson RB, Barker EL, Backstrom JR, Lu JT, Chang MS, et al. Identification, molecular cloning, and distribution of a short variant of the 5-hydroxytryptamine2C receptor produced by alternative splicing. Mol Pharmacol. 1996;50:799–807.PubMed
73.
go back to reference Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders-Bush E, et al. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature. 1997;387:303–8.CrossRefPubMed Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders-Bush E, et al. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature. 1997;387:303–8.CrossRefPubMed
74.
go back to reference Suzuki A, Kogo R, Kawahara K, Sasaki M, Nishio M, Maehama T, et al. A new picture of nucleolar stress. Cancer Sci. 2012;103:632–7.CrossRefPubMed Suzuki A, Kogo R, Kawahara K, Sasaki M, Nishio M, Maehama T, et al. A new picture of nucleolar stress. Cancer Sci. 2012;103:632–7.CrossRefPubMed
75.
go back to reference Scott MS, Ono M. From snoRNA to miRNA: dual function regulatory non-coding RNAs. Biochimie. 1987;93:1987–92.CrossRef Scott MS, Ono M. From snoRNA to miRNA: dual function regulatory non-coding RNAs. Biochimie. 1987;93:1987–92.CrossRef
76.
go back to reference Liu ZH, Yang G, Zhao T, Cao GJ, Xiong L, Xia W, et al. Small ncRNA expression and regulation under hypoxia in neural progenitor cells. Cell Mol Neurobiol. 2011;31:1–5.CrossRefPubMed Liu ZH, Yang G, Zhao T, Cao GJ, Xiong L, Xia W, et al. Small ncRNA expression and regulation under hypoxia in neural progenitor cells. Cell Mol Neurobiol. 2011;31:1–5.CrossRefPubMed
77.
go back to reference Michel CI, Holley CL, Scruggs BS, Sidhu R, Brookheart RT, Listenberger LL, et al. Small nucleolar RNAs U32a, U33, and U35a are critical mediators of metabolic stress. Cell Metab. 2011;14:33–44.CrossRefPubMedPubMedCentral Michel CI, Holley CL, Scruggs BS, Sidhu R, Brookheart RT, Listenberger LL, et al. Small nucleolar RNAs U32a, U33, and U35a are critical mediators of metabolic stress. Cell Metab. 2011;14:33–44.CrossRefPubMedPubMedCentral
78.
go back to reference Chu L, Su MY, Maggi Jr LB, Lu L, Mullins C, Crosby S, et al. Multiple myeloma-associated chromosomal translocation activates orphan snoRNA ACA11 to suppress oxidative stress. J Clin Invest. 2012;122:2793–806.CrossRefPubMedPubMedCentral Chu L, Su MY, Maggi Jr LB, Lu L, Mullins C, Crosby S, et al. Multiple myeloma-associated chromosomal translocation activates orphan snoRNA ACA11 to suppress oxidative stress. J Clin Invest. 2012;122:2793–806.CrossRefPubMedPubMedCentral
79.
go back to reference Tanaka R, Satoh H, Moriyama M, Satoh K, Morishita Y, Yoshida S, et al. Intronic U50 small-nucleolar-RNA (snoRNA) host gene of no protein-coding potential is mapped at the chromosome breakpoint t (3;6) (q27;q15) of human B-cell lymphoma. Genes to cells : devoted to mol & cell mech. 2000;5:277–87.CrossRef Tanaka R, Satoh H, Moriyama M, Satoh K, Morishita Y, Yoshida S, et al. Intronic U50 small-nucleolar-RNA (snoRNA) host gene of no protein-coding potential is mapped at the chromosome breakpoint t (3;6) (q27;q15) of human B-cell lymphoma. Genes to cells : devoted to mol & cell mech. 2000;5:277–87.CrossRef
80.
go back to reference Goeze A, Schluns K, Wolf G, Thasler Z, Petersen S, Petersen I. Chromosomal imbalances of primary and metastatic lung adenocarcinomas. J Pathol. 2002;196:8–16.CrossRefPubMed Goeze A, Schluns K, Wolf G, Thasler Z, Petersen S, Petersen I. Chromosomal imbalances of primary and metastatic lung adenocarcinomas. J Pathol. 2002;196:8–16.CrossRefPubMed
81.
go back to reference Mei YP, Liao JP, Shen J, Yu L, Liu BL, Liu L, et al. Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene. 2012;31:2794–804.CrossRefPubMed Mei YP, Liao JP, Shen J, Yu L, Liu BL, Liu L, et al. Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene. 2012;31:2794–804.CrossRefPubMed
82.
go back to reference Thompson DM, Lu C, Green PJ, Parker R. tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA (New York, NY). 2008;14:2095–103.CrossRef Thompson DM, Lu C, Green PJ, Parker R. tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA (New York, NY). 2008;14:2095–103.CrossRef
83.
go back to reference Chang LS, Lin SY, Lieu AS, Wu TL. Differential expression of human 5s snoRNA genes. Biochem Biophys Res Commun. 2002;299:196–200.CrossRefPubMed Chang LS, Lin SY, Lieu AS, Wu TL. Differential expression of human 5s snoRNA genes. Biochem Biophys Res Commun. 2002;299:196–200.CrossRefPubMed
84.
go back to reference Li R, Wang H, Bekele BN, Yin Z, Caraway NP, Katz RL, et al. Identification of putative oncogenes in lung adenocarcinoma by a comprehensive functional genomic approach. Oncogene. 2006;25:2628–35.CrossRefPubMed Li R, Wang H, Bekele BN, Yin Z, Caraway NP, Katz RL, et al. Identification of putative oncogenes in lung adenocarcinoma by a comprehensive functional genomic approach. Oncogene. 2006;25:2628–35.CrossRefPubMed
85.
go back to reference Jiang F, Yin Z, Caraway NP, Li R, Katz RL. Genomic profiles in stage I primary non small cell lung cancer using comparative genomic hybridization analysis of cDNA microarrays. Neoplasia (New York, NY). 2004;6:623–35.CrossRef Jiang F, Yin Z, Caraway NP, Li R, Katz RL. Genomic profiles in stage I primary non small cell lung cancer using comparative genomic hybridization analysis of cDNA microarrays. Neoplasia (New York, NY). 2004;6:623–35.CrossRef
86.
go back to reference Gebhart E. Double minutes, cytogenetic equivalents of gene amplification, in human neoplasia—a review. Clin Transl Oncol. 2005;7:477–85.CrossRefPubMed Gebhart E. Double minutes, cytogenetic equivalents of gene amplification, in human neoplasia—a review. Clin Transl Oncol. 2005;7:477–85.CrossRefPubMed
89.
go back to reference Xu G, Yang F, Ding CL, Zhao LJ, Ren H, Zhao P, et al. Small nucleolar RNA 113–1 suppresses tumorigenesis in hepatocellular carcinoma. Mol Cancer. 2014;13:216.CrossRefPubMedPubMedCentral Xu G, Yang F, Ding CL, Zhao LJ, Ren H, Zhao P, et al. Small nucleolar RNA 113–1 suppresses tumorigenesis in hepatocellular carcinoma. Mol Cancer. 2014;13:216.CrossRefPubMedPubMedCentral
90.
go back to reference Schneider C, King RM, Philipson L. Genes specifically expressed at growth arrest of mammalian cells. Cell. 1988;54:787–93.CrossRefPubMed Schneider C, King RM, Philipson L. Genes specifically expressed at growth arrest of mammalian cells. Cell. 1988;54:787–93.CrossRefPubMed
91.
go back to reference Amaldi F, Pierandrei-Amaldi P. Top genes: a translationally controlled class of genes including those coding for ribosomal proteins. Prog Mol Subcell Biol. 1997;18:1–17.CrossRefPubMed Amaldi F, Pierandrei-Amaldi P. Top genes: a translationally controlled class of genes including those coding for ribosomal proteins. Prog Mol Subcell Biol. 1997;18:1–17.CrossRefPubMed
92.
go back to reference Nakamura Y, Takahashi N, Kakegawa E, Yoshida K, Ito Y, Kayano H, et al. The GAS5 (growth arrest-specific transcript 5) gene fuses to BCL6 as a result of t (1;3) (q25;q27) in a patient with B-cell lymphoma. Cancer Genet Cytogenet. 2008;182:144–9.CrossRefPubMed Nakamura Y, Takahashi N, Kakegawa E, Yoshida K, Ito Y, Kayano H, et al. The GAS5 (growth arrest-specific transcript 5) gene fuses to BCL6 as a result of t (1;3) (q25;q27) in a patient with B-cell lymphoma. Cancer Genet Cytogenet. 2008;182:144–9.CrossRefPubMed
93.
go back to reference Yamashita A, Izumi N, Kashima I, Ohnishi T, Saari B, Katsuhata Y, et al. SMG-8 and SMG-9, two novel subunits of the SMG-1 complex, regulate remodeling of the mRNA surveillance complex during nonsense-mediated mRNA decay. Genes Dev. 2009;23:1091–105.CrossRefPubMedPubMedCentral Yamashita A, Izumi N, Kashima I, Ohnishi T, Saari B, Katsuhata Y, et al. SMG-8 and SMG-9, two novel subunits of the SMG-1 complex, regulate remodeling of the mRNA surveillance complex during nonsense-mediated mRNA decay. Genes Dev. 2009;23:1091–105.CrossRefPubMedPubMedCentral
94.
go back to reference Askarian-Amiri ME, Crawford J, French JD, Smart CE, Smith MA, Clark MB, et al. SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA (New York, NY). 2011;17:878–91.CrossRef Askarian-Amiri ME, Crawford J, French JD, Smart CE, Smith MA, Clark MB, et al. SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA (New York, NY). 2011;17:878–91.CrossRef
95.
go back to reference Xiao J, Lin H, Luo X, Wang Z. Mir-605 joins p53 network to form a p53:Mir-605:Mdm2 positive feedback loop in response to stress. EMBO J. 2010;30:524–32.CrossRef Xiao J, Lin H, Luo X, Wang Z. Mir-605 joins p53 network to form a p53:Mir-605:Mdm2 positive feedback loop in response to stress. EMBO J. 2010;30:524–32.CrossRef
96.
go back to reference Montanaro L. Dyskerin and cancer: more than telomerase. The defect in mRNA translation helps in explaining how a proliferative defect leads to cancer. J Pathol. 2010;222:345–9.CrossRefPubMed Montanaro L. Dyskerin and cancer: more than telomerase. The defect in mRNA translation helps in explaining how a proliferative defect leads to cancer. J Pathol. 2010;222:345–9.CrossRefPubMed
98.
go back to reference Ruggero D, Grisendi S, Piazza F, Rego E, Mari F, Rao PH, et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Sci (New York, NY). 2003;299:259–62.CrossRef Ruggero D, Grisendi S, Piazza F, Rego E, Mari F, Rao PH, et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Sci (New York, NY). 2003;299:259–62.CrossRef
99.
go back to reference Appaiah HN, Goswami CP, Mina LA, Badve S, Sledge Jr GW, Liu Y, et al. Persistent upregulation of U6:Snord44 small RNA ratio in the serum of breast cancer patients. Breast Cancer Res. 2011;13:R86.CrossRefPubMedPubMedCentral Appaiah HN, Goswami CP, Mina LA, Badve S, Sledge Jr GW, Liu Y, et al. Persistent upregulation of U6:Snord44 small RNA ratio in the serum of breast cancer patients. Breast Cancer Res. 2011;13:R86.CrossRefPubMedPubMedCentral
101.
go back to reference Di Leva G, Garofalo M (2013) Non-coding RNAs and cancer. In: Oncogene and cancer—from bench to clinic. License InTech. Di Leva G, Garofalo M (2013) Non-coding RNAs and cancer. In: Oncogene and cancer—from bench to clinic. License InTech.
Metadata
Title
Small nucleolar RNAs functioning and potential roles in cancer
Authors
Nithyananda Thorenoor
Ondrej Slaby
Publication date
01-01-2015
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 1/2015
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-2818-8

Other articles of this Issue 1/2015

Tumor Biology 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine