Skip to main content
Top
Published in: Tumor Biology 7/2014

01-07-2014 | Review

Restoring TGFβ1 pathway-related microRNAs: possible impact in metastatic prostate cancer development

Authors: Juliana Inês Santos, Ana Luísa Teixeira, Francisca Dias, Mónica Gomes, Augusto Nogueira, Joana Assis, Rui Medeiros

Published in: Tumor Biology | Issue 7/2014

Login to get access

Abstract

In developed countries, prostate cancer (PC) is the neoplasia more frequently diagnosed in men. The signaling pathway induced by the transforming growth factor β1 (TGFβ1) has an important role in cell growth, differentiation, and development, the downregulation of this pathway being associated with cancer development. In PC, the activation of this signaling pathway is lost, resulting in favoring of tumor growth, proliferation, and evasion of apoptosis. Several studies have shown that microRNAs (miRNAs), small non-coding RNA, are closely associated with the development, invasion, and metastasis, suggesting that they have a critical role in cancer development. Recently, Smad proteins, the signal transducers of the TGFβ1 signaling pathway, were found to regulate miRNA expression, through both transcriptional and posttranscriptional mechanisms. In this review, we summarize the mechanisms underlying Smad-mediated regulation of miRNA biogenesis and the effects on cancer development, particularly in PC. We identify that TGFβ1-related miR-143, miR-145, miR-146a, and miR-199a may have a key role in the development of prostate cancer metastasis and the restoration of their expression may be a promising therapeutic strategy for PC treatment.
Literature
1.
go back to reference Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 2010;46:765–81.CrossRefPubMed Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 2010;46:765–81.CrossRefPubMed
2.
go back to reference Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: Globocan 2008. Int J Cancer. 2010;127:2893–917.CrossRefPubMed Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: Globocan 2008. Int J Cancer. 2010;127:2893–917.CrossRefPubMed
3.
go back to reference Center MM, Jemal A, Lortet-Tieulent J, Ward E, Ferlay J, Brawley O, et al. International variation in prostate cancer incidence and mortality rates. Eur Urol. 2012;61:1079–92.CrossRefPubMed Center MM, Jemal A, Lortet-Tieulent J, Ward E, Ferlay J, Brawley O, et al. International variation in prostate cancer incidence and mortality rates. Eur Urol. 2012;61:1079–92.CrossRefPubMed
4.
go back to reference Semenas J, Allegrucci C, Boorjian SA, Mongan NP, Persson JL. Overcoming drug resistance and treating advanced prostate cancer. Curr Drug Targets. 2012;13:1308–23.PubMedCentralCrossRefPubMed Semenas J, Allegrucci C, Boorjian SA, Mongan NP, Persson JL. Overcoming drug resistance and treating advanced prostate cancer. Curr Drug Targets. 2012;13:1308–23.PubMedCentralCrossRefPubMed
5.
go back to reference Kumar V, Cotran R, Collins T. Robbins and Cotran pathologic basis of disease, ed 7. 2005. Kumar V, Cotran R, Collins T. Robbins and Cotran pathologic basis of disease, ed 7. 2005.
6.
go back to reference Chen YC, Page JH, Chen R, Giovannucci E. Family history of prostate cancer and breast cancer and the risk of prostate cancer in the PSA era. Prostate. 2008;68:1582–91.PubMedCentralCrossRefPubMed Chen YC, Page JH, Chen R, Giovannucci E. Family history of prostate cancer and breast cancer and the risk of prostate cancer in the PSA era. Prostate. 2008;68:1582–91.PubMedCentralCrossRefPubMed
7.
go back to reference Heidenreich A, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur Urol. 2011;59:61–71.CrossRefPubMed Heidenreich A, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur Urol. 2011;59:61–71.CrossRefPubMed
8.
go back to reference Houlgatte A, Vincendeau S, Desfemmes F, Ramirez J, Benoist N, Bensalah K, et al. Use of [-2] pro PSA and phi index for early detection of prostate cancer: A prospective of 452 patients. Prog Urol J Assoc Fr Urol Soc Fr Urol. 2012;22:279–83. Houlgatte A, Vincendeau S, Desfemmes F, Ramirez J, Benoist N, Bensalah K, et al. Use of [-2] pro PSA and phi index for early detection of prostate cancer: A prospective of 452 patients. Prog Urol J Assoc Fr Urol Soc Fr Urol. 2012;22:279–83.
9.
go back to reference Stephan C, Vincendeau S, Houlgatte A, Cammann H, Jung K, Semjonow A. Multicenter evaluation of [-2]proprostate-specific antigen and the prostate health index for detecting prostate cancer. Clin Chem. 2013;59:306–14.CrossRefPubMed Stephan C, Vincendeau S, Houlgatte A, Cammann H, Jung K, Semjonow A. Multicenter evaluation of [-2]proprostate-specific antigen and the prostate health index for detecting prostate cancer. Clin Chem. 2013;59:306–14.CrossRefPubMed
10.
go back to reference Zhang J, Zhao H, Gao Y, Zhang W. Secretory miRNAs as novel cancer biomarkers. Biochim Biophys Acta. 1826;2012:32–43. Zhang J, Zhao H, Gao Y, Zhang W. Secretory miRNAs as novel cancer biomarkers. Biochim Biophys Acta. 1826;2012:32–43.
11.
go back to reference Hao Y, Zhao Y, Zhao X, He C, Pang X, Wu TC, et al. Improvement of prostate cancer detection by integrating the PSA test with miRNA expression profiling. Cancer Investig. 2011;29:318–24.CrossRef Hao Y, Zhao Y, Zhao X, He C, Pang X, Wu TC, et al. Improvement of prostate cancer detection by integrating the PSA test with miRNA expression profiling. Cancer Investig. 2011;29:318–24.CrossRef
12.
go back to reference Fontenete S, Silva J, Teixeira AL, Ribeiro R, Bastos E, Pina F, et al. Controversies in using urine samples for prostate cancer detection: PSA and PCA3 expression analysis. Int Braz J Urol Off J Braz Soc Urol. 2011;37:719–26.CrossRef Fontenete S, Silva J, Teixeira AL, Ribeiro R, Bastos E, Pina F, et al. Controversies in using urine samples for prostate cancer detection: PSA and PCA3 expression analysis. Int Braz J Urol Off J Braz Soc Urol. 2011;37:719–26.CrossRef
13.
go back to reference Nam RK, Zhang W, Siminovitch K, Shlien A, Kattan MW, Klotz LH, et al. New variants at 10q26 and 15q21 are associated with aggressive prostate cancer in a genome-wide association study from a prostate biopsy screening cohort. Cancer Biol Ther. 2011;12:997–1004.PubMedCentralCrossRefPubMed Nam RK, Zhang W, Siminovitch K, Shlien A, Kattan MW, Klotz LH, et al. New variants at 10q26 and 15q21 are associated with aggressive prostate cancer in a genome-wide association study from a prostate biopsy screening cohort. Cancer Biol Ther. 2011;12:997–1004.PubMedCentralCrossRefPubMed
14.
go back to reference Hirata H, Hinoda Y, Kikuno N, Kawamoto K, Dahiya AV, Suehiro Y, et al. Cxcl12 g801a polymorphism is a risk factor for sporadic prostate cancer susceptibility. Clin Cancer Res. 2007;13:5056–62.CrossRefPubMed Hirata H, Hinoda Y, Kikuno N, Kawamoto K, Dahiya AV, Suehiro Y, et al. Cxcl12 g801a polymorphism is a risk factor for sporadic prostate cancer susceptibility. Clin Cancer Res. 2007;13:5056–62.CrossRefPubMed
15.
go back to reference Wang SK, Wang ZZ, Huang YF. [Advances in researches on the relationship between single nucleotide polymorphism and prostate cancer]. Zhonghua nan ke xue =. Natl J Androl. 2005;11:605–10. Wang SK, Wang ZZ, Huang YF. [Advances in researches on the relationship between single nucleotide polymorphism and prostate cancer]. Zhonghua nan ke xue =. Natl J Androl. 2005;11:605–10.
16.
go back to reference Zhang HL, Yang LF, Zhu Y, Yao XD, Zhang SL, Dai B, et al. Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate. 2011;71:326–31.CrossRefPubMed Zhang HL, Yang LF, Zhu Y, Yao XD, Zhang SL, Dai B, et al. Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate. 2011;71:326–31.CrossRefPubMed
18.
go back to reference Nicolas Mottet JB. Michel Bolla, Steven Joniau, Malcolm Masone, et al. EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol. 2011;59:572–83.CrossRefPubMed Nicolas Mottet JB. Michel Bolla, Steven Joniau, Malcolm Masone, et al. EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol. 2011;59:572–83.CrossRefPubMed
19.
go back to reference Silva FCd (ed) Recomendações clínicas no tratamento do carcinoma da próstata, Lisboa, 2013, pp 226. Silva FCd (ed) Recomendações clínicas no tratamento do carcinoma da próstata, Lisboa, 2013, pp 226.
20.
go back to reference Saraon P, Jarvi K, Diamandis EP. Molecular alterations during progression of prostate cancer to androgen independence. Clin Chem. 2011;57:1366–75.CrossRefPubMed Saraon P, Jarvi K, Diamandis EP. Molecular alterations during progression of prostate cancer to androgen independence. Clin Chem. 2011;57:1366–75.CrossRefPubMed
21.
go back to reference Attar RM, Takimoto CH, Gottardis MM. Castration-resistant prostate cancer: locking up the molecular escape routes. Clin Cancer Res. 2009;15:3251–5.CrossRefPubMed Attar RM, Takimoto CH, Gottardis MM. Castration-resistant prostate cancer: locking up the molecular escape routes. Clin Cancer Res. 2009;15:3251–5.CrossRefPubMed
22.
go back to reference Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer. 2001;1:34–45.CrossRefPubMed Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer. 2001;1:34–45.CrossRefPubMed
23.
go back to reference Kavleen Sikand SB, Girish C. Shukla. MicroRNAs and androgen receptor 3′ untranslated region: a missing link in castration-resistant prostate cancer? Mol Cell Pharmacol. 2011;3:107–13.PubMedCentralPubMed Kavleen Sikand SB, Girish C. Shukla. MicroRNAs and androgen receptor 3′ untranslated region: a missing link in castration-resistant prostate cancer? Mol Cell Pharmacol. 2011;3:107–13.PubMedCentralPubMed
24.
go back to reference Keith F. Decker DZ, Yuhong He, Tamara Bowman, John R. Edwards and Li Jia. Persistent androgen receptor-mediated transcription in castration-resistant prostate cancer under androgen-deprived conditions. Nucleic Acids Res. 2012:1–15. Keith F. Decker DZ, Yuhong He, Tamara Bowman, John R. Edwards and Li Jia. Persistent androgen receptor-mediated transcription in castration-resistant prostate cancer under androgen-deprived conditions. Nucleic Acids Res. 2012:1–15.
25.
26.
go back to reference Myles C, Hodgson IA, Anthony N. Hollenberg. Prostate cancer cells is independent of NCoR and SMRT activity of androgen receptor antagonist bicalutamide in corepressors. Cancer Res. 2007;67:8388–95.CrossRef Myles C, Hodgson IA, Anthony N. Hollenberg. Prostate cancer cells is independent of NCoR and SMRT activity of androgen receptor antagonist bicalutamide in corepressors. Cancer Res. 2007;67:8388–95.CrossRef
27.
go back to reference Amaral TM, Macedo D, Fernandes I, Costa L. Castration-resistant prostate cancer: mechanisms, targets, and treatment. Prostate Cancer. 2012;2012:327253.PubMedCentralCrossRefPubMed Amaral TM, Macedo D, Fernandes I, Costa L. Castration-resistant prostate cancer: mechanisms, targets, and treatment. Prostate Cancer. 2012;2012:327253.PubMedCentralCrossRefPubMed
28.
go back to reference Pienta KJ, Bradley D. Mechanisms underlying the development of androgen-independent prostate cancer. Clin Cancer Res. 2006;12:1665–71.CrossRefPubMed Pienta KJ, Bradley D. Mechanisms underlying the development of androgen-independent prostate cancer. Clin Cancer Res. 2006;12:1665–71.CrossRefPubMed
29.
go back to reference Sen A, De Castro I, Defranco DB, Deng FM, Melamed J, Kapur P, et al. Paxillin mediates extranuclear and intranuclear signaling in prostate cancer proliferation. J Clin Invest. 2012;122:2469–81.PubMedCentralCrossRefPubMed Sen A, De Castro I, Defranco DB, Deng FM, Melamed J, Kapur P, et al. Paxillin mediates extranuclear and intranuclear signaling in prostate cancer proliferation. J Clin Invest. 2012;122:2469–81.PubMedCentralCrossRefPubMed
30.
go back to reference Zhu B, Kyprianou N. Transforming growth factor beta and prostate cancer. Cancer Treat Res. 2005;126:157–73.CrossRefPubMed Zhu B, Kyprianou N. Transforming growth factor beta and prostate cancer. Cancer Treat Res. 2005;126:157–73.CrossRefPubMed
31.
go back to reference Rojas A, Padidam M, Cress D, Grady WM. TGF-beta receptor levels regulate the specificity of signaling pathway activation and biological effects of TGF-beta. Biochim Biophys Acta. 2009;1793:1165–73.PubMedCentralCrossRefPubMed Rojas A, Padidam M, Cress D, Grady WM. TGF-beta receptor levels regulate the specificity of signaling pathway activation and biological effects of TGF-beta. Biochim Biophys Acta. 2009;1793:1165–73.PubMedCentralCrossRefPubMed
32.
go back to reference Li Z, Habuchi T, Tsuchiya N, Mitsumori K, Wang L, Ohyama C, et al. Increased risk of prostate cancer and benign prostatic hyperplasia associated with transforming growth factor-beta 1 gene polymorphism at codon10. Carcinogenesis. 2004;25:237–40.CrossRefPubMed Li Z, Habuchi T, Tsuchiya N, Mitsumori K, Wang L, Ohyama C, et al. Increased risk of prostate cancer and benign prostatic hyperplasia associated with transforming growth factor-beta 1 gene polymorphism at codon10. Carcinogenesis. 2004;25:237–40.CrossRefPubMed
33.
go back to reference Wikstrom P, Damber J, Bergh A. Role of transforming growth factor-beta1 in prostate cancer. Microsc Res Tech. 2001;52:411–9.CrossRefPubMed Wikstrom P, Damber J, Bergh A. Role of transforming growth factor-beta1 in prostate cancer. Microsc Res Tech. 2001;52:411–9.CrossRefPubMed
36.
38.
go back to reference Itatani Y, Kawada K, Fujishita T, Kakizaki F, Hirai H, Matsumoto T, et al. Loss of SMAD4 from colorectal cancer cells promotes CCL15 expression to recruit CCR1(+) myeloid cells and facilitate liver metastasis. Gastroenterology. 2013;145:1064–75. e1011.CrossRefPubMed Itatani Y, Kawada K, Fujishita T, Kakizaki F, Hirai H, Matsumoto T, et al. Loss of SMAD4 from colorectal cancer cells promotes CCL15 expression to recruit CCR1(+) myeloid cells and facilitate liver metastasis. Gastroenterology. 2013;145:1064–75. e1011.CrossRefPubMed
39.
go back to reference Fleming NI, Jorissen RN, Mouradov D, Christie M, Sakthianandeswaren A, Palmieri M, et al. SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res. 2013;73:725–35.CrossRefPubMed Fleming NI, Jorissen RN, Mouradov D, Christie M, Sakthianandeswaren A, Palmieri M, et al. SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res. 2013;73:725–35.CrossRefPubMed
40.
go back to reference Bacman D, Merkel S, Croner R, Papadopoulos T, Brueckl W, Dimmler A. TGF-beta receptor 2 downregulation in tumour-associated stroma worsens prognosis and high-grade tumours show more tumour-associated macrophages and lower TGF-beta1 expression in colon carcinoma: a retrospective study. BMC Cancer. 2007;7:156.PubMedCentralCrossRefPubMed Bacman D, Merkel S, Croner R, Papadopoulos T, Brueckl W, Dimmler A. TGF-beta receptor 2 downregulation in tumour-associated stroma worsens prognosis and high-grade tumours show more tumour-associated macrophages and lower TGF-beta1 expression in colon carcinoma: a retrospective study. BMC Cancer. 2007;7:156.PubMedCentralCrossRefPubMed
41.
go back to reference Dong M, How T, Kirkbride KC, Gordon KJ, Lee JD, Hempel N, et al. The type III TGF-β receptor suppresses breast cancer progression. J Clin Invest. 2007;117:206–17.PubMedCentralCrossRefPubMed Dong M, How T, Kirkbride KC, Gordon KJ, Lee JD, Hempel N, et al. The type III TGF-β receptor suppresses breast cancer progression. J Clin Invest. 2007;117:206–17.PubMedCentralCrossRefPubMed
43.
go back to reference Teixeira AL, Gomes M, Nogueira A, Azevedo AS, Assis J, Dias F, et al. Improvement of a predictive model of castration-resistant prostate cancer: functional genetic variants in TGFbeta1 signaling pathway modulation. PLoS One. 2013;8:e72419.PubMedCentralCrossRefPubMed Teixeira AL, Gomes M, Nogueira A, Azevedo AS, Assis J, Dias F, et al. Improvement of a predictive model of castration-resistant prostate cancer: functional genetic variants in TGFbeta1 signaling pathway modulation. PLoS One. 2013;8:e72419.PubMedCentralCrossRefPubMed
44.
go back to reference Kim SJ, Im YH, Markowitz SD, Bang YJ. Molecular mechanisms of inactivation of TGF-beta receptors during carcinogenesis. Cytokine Growth Factor Rev. 2000;11:159–68.CrossRefPubMed Kim SJ, Im YH, Markowitz SD, Bang YJ. Molecular mechanisms of inactivation of TGF-beta receptors during carcinogenesis. Cytokine Growth Factor Rev. 2000;11:159–68.CrossRefPubMed
45.
go back to reference Wikstrom P, Stattin P, Franck-Lissbrant I, Damber JE, Bergh A. Transforming growth factor beta1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate. 1998;37:19–29.CrossRefPubMed Wikstrom P, Stattin P, Franck-Lissbrant I, Damber JE, Bergh A. Transforming growth factor beta1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate. 1998;37:19–29.CrossRefPubMed
46.
go back to reference Butz H, Racz K, Hunyady L, Patocs A. Crosstalk between TGF-beta signaling and the microRNA machinery. Trends Pharmacol Sci. 2012;33:382–93.CrossRefPubMed Butz H, Racz K, Hunyady L, Patocs A. Crosstalk between TGF-beta signaling and the microRNA machinery. Trends Pharmacol Sci. 2012;33:382–93.CrossRefPubMed
48.
go back to reference Hata A, Davis BN. Control of microRNA biogenesis by TGFbeta signaling pathway-a novel role of Smads in the nucleus. Cytokine Growth Factor Rev. 2009;20:517–21.PubMedCentralCrossRefPubMed Hata A, Davis BN. Control of microRNA biogenesis by TGFbeta signaling pathway-a novel role of Smads in the nucleus. Cytokine Growth Factor Rev. 2009;20:517–21.PubMedCentralCrossRefPubMed
49.
go back to reference Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A. Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell. 2010;39:373–84.PubMedCentralCrossRefPubMed Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A. Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell. 2010;39:373–84.PubMedCentralCrossRefPubMed
50.
go back to reference Long X, Miano JM. Transforming growth factor-beta1 (TGF-beta1) utilizes distinct pathways for the transcriptional activation of microRNA 143/145 in human coronary artery smooth muscle cells. J Biol Chem. 2011;286:30119–29.PubMedCentralCrossRefPubMed Long X, Miano JM. Transforming growth factor-beta1 (TGF-beta1) utilizes distinct pathways for the transcriptional activation of microRNA 143/145 in human coronary artery smooth muscle cells. J Biol Chem. 2011;286:30119–29.PubMedCentralCrossRefPubMed
51.
go back to reference Ma S, Chan YP, Kwan PS, Lee TK, Yan M, Tang KH, et al. MicroRNA-616 induces androgen-independent growth of prostate cancer cells by suppressing expression of tissue factor pathway inhibitor TFPI-2. Cancer Res. 2011;71:583–92.CrossRefPubMed Ma S, Chan YP, Kwan PS, Lee TK, Yan M, Tang KH, et al. MicroRNA-616 induces androgen-independent growth of prostate cancer cells by suppressing expression of tissue factor pathway inhibitor TFPI-2. Cancer Res. 2011;71:583–92.CrossRefPubMed
52.
go back to reference Shi XB, Tepper CG. deVere White RW. Cancerous miRNAs and their regulation. Cell Cycle. 2008;7:1529–38.CrossRefPubMed Shi XB, Tepper CG. deVere White RW. Cancerous miRNAs and their regulation. Cell Cycle. 2008;7:1529–38.CrossRefPubMed
53.
go back to reference Sk A. Circulating microRNAs as biomarkers, therapeutic targets, and signaling molecules. Sensors. 2012;12:3359–69.CrossRef Sk A. Circulating microRNAs as biomarkers, therapeutic targets, and signaling molecules. Sensors. 2012;12:3359–69.CrossRef
54.
go back to reference Vasudevan S. Posttranscriptional upregulation by microRNAs. Wiley Interdiscip Rev RNA. 2012;3:311–30.CrossRefPubMed Vasudevan S. Posttranscriptional upregulation by microRNAs. Wiley Interdiscip Rev RNA. 2012;3:311–30.CrossRefPubMed
56.
go back to reference Teixeira AL, Ferreira M, Silva J, Gomes M, Dias F, Santos JI, Mauricio J, Lobo F, Medeiros R. Higher circulating expression levels of mir-221 associated with poor overall survival in renal cell carcinoma patients. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2013. Teixeira AL, Ferreira M, Silva J, Gomes M, Dias F, Santos JI, Mauricio J, Lobo F, Medeiros R. Higher circulating expression levels of mir-221 associated with poor overall survival in renal cell carcinoma patients. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2013.
58.
go back to reference Davis BN, Hata A. Regulation of microRNA biogenesis: a miRiad of mechanisms. Cell Commun Signal CCS. 2009;7:18.CrossRefPubMed Davis BN, Hata A. Regulation of microRNA biogenesis: a miRiad of mechanisms. Cell Commun Signal CCS. 2009;7:18.CrossRefPubMed
60.
go back to reference McDonald RA, Hata A, MacLean MR, Morrell NW, Baker AH. MicroRNA and vascular remodelling in acute vascular injury and pulmonary vascular remodelling. Cardiovasc Res. 2012;93:594–604.PubMedCentralCrossRefPubMed McDonald RA, Hata A, MacLean MR, Morrell NW, Baker AH. MicroRNA and vascular remodelling in acute vascular injury and pulmonary vascular remodelling. Cardiovasc Res. 2012;93:594–604.PubMedCentralCrossRefPubMed
61.
go back to reference Bowen T, Jenkins RH, Fraser DJ. MicroRNAs, transforming growth factor beta-1, and tissue fibrosis. J Pathol. 2013;229:274–85.CrossRefPubMed Bowen T, Jenkins RH, Fraser DJ. MicroRNAs, transforming growth factor beta-1, and tissue fibrosis. J Pathol. 2013;229:274–85.CrossRefPubMed
62.
go back to reference Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS, et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol. 2008;28:6773–84.PubMedCentralCrossRefPubMed Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS, et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol. 2008;28:6773–84.PubMedCentralCrossRefPubMed
63.
go back to reference Kato M, Putta S, Wang M, Yuan H, Lanting L, Nair I, et al. TGF-beta activates akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol. 2009;11:881–9.PubMedCentralCrossRefPubMed Kato M, Putta S, Wang M, Yuan H, Lanting L, Nair I, et al. TGF-beta activates akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol. 2009;11:881–9.PubMedCentralCrossRefPubMed
64.
go back to reference Kato M, Wang L, Putta S, Wang M, Yuan H, Sun G, et al. Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-{beta}-induced collagen expression in kidney cells. J Biol Chem. 2010;285:34004–15.PubMedCentralCrossRefPubMed Kato M, Wang L, Putta S, Wang M, Yuan H, Sun G, et al. Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-{beta}-induced collagen expression in kidney cells. J Biol Chem. 2010;285:34004–15.PubMedCentralCrossRefPubMed
65.
go back to reference Wang B, Koh P, Winbanks C, Coughlan MT, McClelland A, Watson A, et al. miR-200a prevents renal fibrogenesis through repression of TGF-beta2 expression. Diabetes. 2011;60:280–7.PubMedCentralCrossRefPubMed Wang B, Koh P, Winbanks C, Coughlan MT, McClelland A, Watson A, et al. miR-200a prevents renal fibrogenesis through repression of TGF-beta2 expression. Diabetes. 2011;60:280–7.PubMedCentralCrossRefPubMed
66.
go back to reference Dogar AM, Towbin H, Hall J. Suppression of latent transforming growth factor (TGF)-beta1 restores growth inhibitory TGF-beta signaling through microRNAs. J Biol Chem. 2011;286:16447–58.PubMedCentralCrossRefPubMed Dogar AM, Towbin H, Hall J. Suppression of latent transforming growth factor (TGF)-beta1 restores growth inhibitory TGF-beta signaling through microRNAs. J Biol Chem. 2011;286:16447–58.PubMedCentralCrossRefPubMed
67.
go back to reference Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22:894–907.PubMedCentralCrossRefPubMed Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22:894–907.PubMedCentralCrossRefPubMed
68.
go back to reference Korpal M, Kang Y. The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol. 2008;5:115–9.PubMedCentralCrossRefPubMed Korpal M, Kang Y. The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol. 2008;5:115–9.PubMedCentralCrossRefPubMed
69.
go back to reference Davis-Dusenbery BN, Chan MC, Reno KE, Weisman AS, Layne MD, Lagna G, et al. Down-regulation of Kruppel-like factor-4 (klf4) by microRNA-143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor-beta and bone morphogenetic protein 4. J Biol Chem. 2011;286:28097–110.PubMedCentralCrossRefPubMed Davis-Dusenbery BN, Chan MC, Reno KE, Weisman AS, Layne MD, Lagna G, et al. Down-regulation of Kruppel-like factor-4 (klf4) by microRNA-143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor-beta and bone morphogenetic protein 4. J Biol Chem. 2011;286:28097–110.PubMedCentralCrossRefPubMed
70.
go back to reference Jurkin J, Schichl YM, Koeffel R, Bauer T, Richter S, Konradi S, et al. miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. J Immunol. 2010;184:4955–65.CrossRefPubMed Jurkin J, Schichl YM, Koeffel R, Bauer T, Richter S, Konradi S, et al. miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. J Immunol. 2010;184:4955–65.CrossRefPubMed
71.
go back to reference Bello-DeOcampo D, Tindall DJ. TGF-betal/Smad signaling in prostate cancer. Curr Drug Targets. 2003;4:197–207.CrossRefPubMed Bello-DeOcampo D, Tindall DJ. TGF-betal/Smad signaling in prostate cancer. Curr Drug Targets. 2003;4:197–207.CrossRefPubMed
72.
go back to reference Paolo Fuzio PD. Monica Rutigliano, Michele Battaglia, et al. Regulation of TGF-b1 expression by androgen deprivation therapy of prostate cancer. Cancer Lett. 2012;318:135–44.CrossRefPubMed Paolo Fuzio PD. Monica Rutigliano, Michele Battaglia, et al. Regulation of TGF-b1 expression by androgen deprivation therapy of prostate cancer. Cancer Lett. 2012;318:135–44.CrossRefPubMed
73.
go back to reference Zhang H, Cai X, Wang Y, Tang H, Tong D, Ji F. microRNA-143, down-regulated in osteosarcoma, promotes apoptosis and suppresses tumorigenicity by targeting Bcl-2. Oncol Rep. 2010;24:1363–9.PubMed Zhang H, Cai X, Wang Y, Tang H, Tong D, Ji F. microRNA-143, down-regulated in osteosarcoma, promotes apoptosis and suppresses tumorigenicity by targeting Bcl-2. Oncol Rep. 2010;24:1363–9.PubMed
74.
go back to reference Akao Y, Nakagawa Y, Iio A, Naoe T. Role of microRNA-143 in Fas-mediated apoptosis in human T-cell leukemia Jurkat cells. Leuk Res. 2009;33:1530–8.CrossRefPubMed Akao Y, Nakagawa Y, Iio A, Naoe T. Role of microRNA-143 in Fas-mediated apoptosis in human T-cell leukemia Jurkat cells. Leuk Res. 2009;33:1530–8.CrossRefPubMed
75.
go back to reference Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460:705–10.PubMedCentralPubMed Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460:705–10.PubMedCentralPubMed
76.
go back to reference Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene. 2009;28:1385–92.CrossRefPubMed Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene. 2009;28:1385–92.CrossRefPubMed
77.
go back to reference Ni Y, Meng L, Wang L, Dong W, Shen H, Wang G, et al. MicroRNA-143 functions as a tumor suppressor in human esophageal squamous cell carcinoma. Gene. 2013;517:197–204.CrossRefPubMed Ni Y, Meng L, Wang L, Dong W, Shen H, Wang G, et al. MicroRNA-143 functions as a tumor suppressor in human esophageal squamous cell carcinoma. Gene. 2013;517:197–204.CrossRefPubMed
78.
go back to reference Fuse M, Nohata N, Kojima S, Sakamoto S, Chiyomaru T, Kawakami K, et al. Restoration of miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1. Int J Oncol. 2011;38:1093–101.PubMed Fuse M, Nohata N, Kojima S, Sakamoto S, Chiyomaru T, Kawakami K, et al. Restoration of miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1. Int J Oncol. 2011;38:1093–101.PubMed
79.
go back to reference Szczyrba J, Loprich E, Wach S, Jung V, Unteregger G, Barth S, et al. The microRNA profile of prostate carcinoma obtained by deep sequencing. Molecular Cancer Res MCR. 2010;8:529–38.CrossRefPubMed Szczyrba J, Loprich E, Wach S, Jung V, Unteregger G, Barth S, et al. The microRNA profile of prostate carcinoma obtained by deep sequencing. Molecular Cancer Res MCR. 2010;8:529–38.CrossRefPubMed
80.
go back to reference Yin Y, Yan ZP, Lu NN, Xu Q, He J, Qian X, et al. Downregulation of miR-145 associated with cancer progression and VEGF transcriptional activation by targeting N-RAS and IRS1. Biochim Biophys Acta. 1829;2013:239–47. Yin Y, Yan ZP, Lu NN, Xu Q, He J, Qian X, et al. Downregulation of miR-145 associated with cancer progression and VEGF transcriptional activation by targeting N-RAS and IRS1. Biochim Biophys Acta. 1829;2013:239–47.
82.
go back to reference Lo U-G, Yang D, Hsieh J-T. The role of microRNAs in prostate cancer progression. Transl Androl Urol. 2013;2:228–41. Lo U-G, Yang D, Hsieh J-T. The role of microRNAs in prostate cancer progression. Transl Androl Urol. 2013;2:228–41.
84.
go back to reference Xu B, Wang N, Wang X, Tong N, Shao N, Tao J, et al. Mir-146a suppresses tumor growth and progression by targeting EGFR pathway and in a p-ERK-dependent manner in castration-resistant prostate cancer. Prostate. 2012;72:1171–8.CrossRefPubMed Xu B, Wang N, Wang X, Tong N, Shao N, Tao J, et al. Mir-146a suppresses tumor growth and progression by targeting EGFR pathway and in a p-ERK-dependent manner in castration-resistant prostate cancer. Prostate. 2012;72:1171–8.CrossRefPubMed
85.
go back to reference Zhang J, Zhang D, Wu GQ, Feng ZY, Zhu SM. Propofol inhibits the adhesion of hepatocellular carcinoma cells by upregulating microRNA-199a and downregulating MMP-9 expression. Hepatobiliary Pancreat Dis Int. 2013;12:305–9. Zhang J, Zhang D, Wu GQ, Feng ZY, Zhu SM. Propofol inhibits the adhesion of hepatocellular carcinoma cells by upregulating microRNA-199a and downregulating MMP-9 expression. Hepatobiliary Pancreat Dis Int. 2013;12:305–9.
86.
go back to reference Daneshmand S, Quek ML, Lin E, Lee C, Cote RJ, Hawes D, et al. Glucose-regulated protein GRP78 is up-regulated in prostate cancer and correlates with recurrence and survival. Hum Pathol. 2007;38:1547–52.CrossRefPubMed Daneshmand S, Quek ML, Lin E, Lee C, Cote RJ, Hawes D, et al. Glucose-regulated protein GRP78 is up-regulated in prostate cancer and correlates with recurrence and survival. Hum Pathol. 2007;38:1547–52.CrossRefPubMed
87.
88.
89.
go back to reference Carrion-Salip D, Panosa C, Menendez JA, Puig T, Oliveras G, Pandiella A, et al. Androgen-independent prostate cancer cells circumvent EGFR inhibition by overexpression of alternative her receptors and ligands. Int J Oncol. 2012;41:1128–38.PubMed Carrion-Salip D, Panosa C, Menendez JA, Puig T, Oliveras G, Pandiella A, et al. Androgen-independent prostate cancer cells circumvent EGFR inhibition by overexpression of alternative her receptors and ligands. Int J Oncol. 2012;41:1128–38.PubMed
90.
go back to reference Baek KH, Hong ME, Jung YY, Lee CH, Lee TJ, Park ES, et al. Correlation of AR, EGFR, and HER2 expression levels in prostate cancer: immunohistochemical analysis and chromogenic in situ hybridization. Cancer Res Treat Off J Korean Cancer Assoc. 2012;44:50–6. Baek KH, Hong ME, Jung YY, Lee CH, Lee TJ, Park ES, et al. Correlation of AR, EGFR, and HER2 expression levels in prostate cancer: immunohistochemical analysis and chromogenic in situ hybridization. Cancer Res Treat Off J Korean Cancer Assoc. 2012;44:50–6.
91.
go back to reference Wu D, Huang HJ, He CN, Wang KY. MicroRNA-199a-3p regulates endometrial cancer cell proliferation by targeting mammalian target of rapamycin (mTOR). Int J Gynecol Cancer Off J Int Gynecol Cancer Soc. 2013;23:1191–7.CrossRef Wu D, Huang HJ, He CN, Wang KY. MicroRNA-199a-3p regulates endometrial cancer cell proliferation by targeting mammalian target of rapamycin (mTOR). Int J Gynecol Cancer Off J Int Gynecol Cancer Soc. 2013;23:1191–7.CrossRef
92.
go back to reference Fornari F, Milazzo M, Chieco P, Negrini M, Calin GA, Grazi GL, et al. Mir-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 2010;70:5184–93.CrossRefPubMed Fornari F, Milazzo M, Chieco P, Negrini M, Calin GA, Grazi GL, et al. Mir-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 2010;70:5184–93.CrossRefPubMed
Metadata
Title
Restoring TGFβ1 pathway-related microRNAs: possible impact in metastatic prostate cancer development
Authors
Juliana Inês Santos
Ana Luísa Teixeira
Francisca Dias
Mónica Gomes
Augusto Nogueira
Joana Assis
Rui Medeiros
Publication date
01-07-2014
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 7/2014
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-1887-z

Other articles of this Issue 7/2014

Tumor Biology 7/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine