Skip to main content
Top
Published in: Tumor Biology 7/2014

01-07-2014 | Research Article

MicroRNA-452 contributes to the docetaxel resistance of breast cancer cells

Authors: Qing Hu, Wei-xian Chen, Shan-liang Zhong, Jun-ying Zhang, Teng-fei Ma, Hao Ji, Meng-meng Lv, Jin-hai Tang, Jian-hua Zhao

Published in: Tumor Biology | Issue 7/2014

Login to get access

Abstract

MicroRNA-452 (miRNA-452) was overexpressed in docetaxel-resistant human breast cancer MCF-7 cells (MCF-7/DOC). However, its role in modulating the sensitivity of breast cancer cells to docetaxel (DOC) remains unclear. The aim of this study is to investigate the role of miRNA-452 in the sensitivity of breast cancer cells to DOC.
Real-time quantitative PCR (RT-qPCR) were used to identify the differential expression of miRNA-452 between MCF-7/DOC and MCF-7 cells. MiRNA-452 mimic was transfected into MCF-7 cells and miRNA-452 inhibitor was transfected into MCF-7/DOC cells. The role of miRNA-452 in these transfected cells was evaluated using RT-qPCR, MTT assay, and flow cytometry assay. The relationship of miRNA-452 and its predictive target gene “anaphase-promoting complex 4” (APC4) was analyzed by RT-qPCR and Western blot.
MiRNA-452 showed significantly higher expression (78.9-folds) in MCF-7/DOC cells compared to parental MCF-7 cells. The expression of miRNA-452 in the mimic transfected MCF-7 cells was upregulated 212.2-folds (P < 0.05) compared to its negative control (NC), and the half maximal inhibitory concentration (IC50) value of DOC (1.98 ± 0.15 μM) was significantly higher than that in its NC (0.85 ± 0.08 μM, P < 0.05) or blank control (1.01 ± 0.19 μM, P < 0.05). Furthermore, its apoptotic rate (6.3 ± 1.3 %) was distinctly decreased compared with that in its NC (23.8 ± 6.6 %, P < 0.05) or blank control (18.6 ± 4.7 %, P < 0.05). In contrast, the expression of miRNA-452 in the inhibitor-transfected MCF-7/DOC cells was downregulated 0.58-fold (P < 0.05) compared to its NC, the IC50 value of DOC (44.5 ± 3.2 μM) was significantly lower than that in its NC (107.3 ± 6.63 μM, P < 0.05) or blank control (102.22 ± 11.34 μM, P < 0.05), and the apoptotic rate (45.5 ± 10.8 %) was distinctly increased compared with its NC (9.9 ± 2.2 %, P < 0.05) and blank control (9.4 ± 2.5 %, P < 0.05). Further, there was an inverse association between miRNA-452 and APC4 expression in breast cancer cells in vitro.
Dysregulation of miRNA-452 involved in the DOC resistance formation of breast cancer cells may be, in part, via targeting APC4.
Literature
1.
2.
go back to reference Feng B, Wang R, Song HZ, Chen LB. MicroRNA-200b reverses chemoresistance of docetaxel-resistant human lung adenocarcinoma cells by targeting E2F3. Cancer. 2012;118:3365–76.CrossRefPubMed Feng B, Wang R, Song HZ, Chen LB. MicroRNA-200b reverses chemoresistance of docetaxel-resistant human lung adenocarcinoma cells by targeting E2F3. Cancer. 2012;118:3365–76.CrossRefPubMed
3.
go back to reference Kutanzi KR, Yurchenko OV, Beland FA, Checkhun VF, Pogribny IP. MicroRNA-mediated drug resistance in breast cancer. Clinical Epigenetics. 2011;2:171–85.PubMedCentralCrossRefPubMed Kutanzi KR, Yurchenko OV, Beland FA, Checkhun VF, Pogribny IP. MicroRNA-mediated drug resistance in breast cancer. Clinical Epigenetics. 2011;2:171–85.PubMedCentralCrossRefPubMed
4.
5.
go back to reference Zhong S, Li W, Chen Z, Xu J, Zhao J. Mir-222 and mir-29a contribute to the drug-resistance of breast cancer cells. Gene. 2013;531:8–14.CrossRefPubMed Zhong S, Li W, Chen Z, Xu J, Zhao J. Mir-222 and mir-29a contribute to the drug-resistance of breast cancer cells. Gene. 2013;531:8–14.CrossRefPubMed
6.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta c(t)) method. Methods. 2001;25:402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta c(t)) method. Methods. 2001;25:402–8.CrossRefPubMed
8.
go back to reference Zhu Y, Wang A, Liu MC, Zwart A, Lee RY, Gallagher A, et al. Estrogen receptor alpha positive breast tumors and breast cancer cell lines share similarities in their transcriptome data structures. International Journal Oncology. 2006;29:1581–9. Zhu Y, Wang A, Liu MC, Zwart A, Lee RY, Gallagher A, et al. Estrogen receptor alpha positive breast tumors and breast cancer cell lines share similarities in their transcriptome data structures. International Journal Oncology. 2006;29:1581–9.
9.
go back to reference Tian W, Chen J, He H, Deng Y. MicroRNAs and drug resistance of breast cancer: basic evidence and clinical applications. Clinical & translational oncology: official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico. 2013;15:335–42.CrossRef Tian W, Chen J, He H, Deng Y. MicroRNAs and drug resistance of breast cancer: basic evidence and clinical applications. Clinical & translational oncology: official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico. 2013;15:335–42.CrossRef
11.
go back to reference Liu SG, Qin XG, Zhao BS, Qi B, Yao WJ, Wang TY, et al. Differential expression of miRNAs in esophageal cancer tissue. Oncology letters. 2013;5:1639–42.PubMedCentralPubMed Liu SG, Qin XG, Zhao BS, Qi B, Yao WJ, Wang TY, et al. Differential expression of miRNAs in esophageal cancer tissue. Oncology letters. 2013;5:1639–42.PubMedCentralPubMed
12.
go back to reference Puerta-Gil P, Garcia-Baquero R, Jia AY, Ocana S, Alvarez-Mugica M, Alvarez-Ossorio JL, et al. Mir-143, mir-222, and mir-452 are useful as tumor stratification and noninvasive diagnostic biomarkers for bladder cancer. The American Journal Pathology. 2012;180:1808–15.CrossRef Puerta-Gil P, Garcia-Baquero R, Jia AY, Ocana S, Alvarez-Mugica M, Alvarez-Ossorio JL, et al. Mir-143, mir-222, and mir-452 are useful as tumor stratification and noninvasive diagnostic biomarkers for bladder cancer. The American Journal Pathology. 2012;180:1808–15.CrossRef
13.
go back to reference Liu C, Kelnar K, Vlassov AV, Brown D, Wang J, Tang DG. Distinct microRNA expression profiles in prostate cancer stem/progenitor cells and tumor-suppressive functions of let-7. Cancer Res. 2012;72:3393–404.CrossRefPubMed Liu C, Kelnar K, Vlassov AV, Brown D, Wang J, Tang DG. Distinct microRNA expression profiles in prostate cancer stem/progenitor cells and tumor-suppressive functions of let-7. Cancer Res. 2012;72:3393–404.CrossRefPubMed
14.
15.
go back to reference Sheehy NT, Cordes KR, White MP, Ivey KN, Srivastava D. The neural crest-enriched microRNA mir-452 regulates epithelial–mesenchymal signaling in the first pharyngeal arch. Development (Cambridge, England). 2010;137:4307–16.PubMedCentralCrossRef Sheehy NT, Cordes KR, White MP, Ivey KN, Srivastava D. The neural crest-enriched microRNA mir-452 regulates epithelial–mesenchymal signaling in the first pharyngeal arch. Development (Cambridge, England). 2010;137:4307–16.PubMedCentralCrossRef
16.
go back to reference Gokhale A, Kunder R, Goel A, Sarin R, Moiyadi A, Shenoy A, et al. Distinctive microRNA signature of medulloblastomas associated with the Wnt signaling pathway. Journal of Cancer Research and Therapeutics. 2010;6:521–9.CrossRefPubMed Gokhale A, Kunder R, Goel A, Sarin R, Moiyadi A, Shenoy A, et al. Distinctive microRNA signature of medulloblastomas associated with the Wnt signaling pathway. Journal of Cancer Research and Therapeutics. 2010;6:521–9.CrossRefPubMed
17.
go back to reference Kastl L, Brown I, Schofield AC. MiRNA-34a is associated with docetaxel resistance in human breast cancer cells. Breast Cancer Research and Treatment. 2012;131:445–54.CrossRefPubMed Kastl L, Brown I, Schofield AC. MiRNA-34a is associated with docetaxel resistance in human breast cancer cells. Breast Cancer Research and Treatment. 2012;131:445–54.CrossRefPubMed
18.
go back to reference Shen DY, Zhang W, Zeng X, Liu CQ. Inhibition of Wnt/beta-catenin signaling downregulates p-glycoprotein and reverses multi-drug resistance of cholangiocarcinoma. Cancer Sci. 2013;104:1303–8.CrossRefPubMed Shen DY, Zhang W, Zeng X, Liu CQ. Inhibition of Wnt/beta-catenin signaling downregulates p-glycoprotein and reverses multi-drug resistance of cholangiocarcinoma. Cancer Sci. 2013;104:1303–8.CrossRefPubMed
19.
go back to reference Dikovskaya D, Schiffmann D, Newton IP, Oakley A, Kroboth K, Sansom O, et al. Loss of APC induces polyploidy as a result of a combination of defects in mitosis and apoptosis. The Journal of Cell Biology. 2007;176:183–95.PubMedCentralCrossRefPubMed Dikovskaya D, Schiffmann D, Newton IP, Oakley A, Kroboth K, Sansom O, et al. Loss of APC induces polyploidy as a result of a combination of defects in mitosis and apoptosis. The Journal of Cell Biology. 2007;176:183–95.PubMedCentralCrossRefPubMed
20.
21.
go back to reference Fodde R, Kuipers J, Rosenberg C, Smits R, Kielman M, Gaspar C, et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol. 2001;3:433–8.CrossRefPubMed Fodde R, Kuipers J, Rosenberg C, Smits R, Kielman M, Gaspar C, et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol. 2001;3:433–8.CrossRefPubMed
22.
go back to reference Schreiber A, Stengel F, Zhang Z, Enchev RI, Kong EH, Morris EP, et al. Structural basis for the subunit assembly of the anaphase-promoting complex. Nature. 2011;470:227–32.CrossRefPubMed Schreiber A, Stengel F, Zhang Z, Enchev RI, Kong EH, Morris EP, et al. Structural basis for the subunit assembly of the anaphase-promoting complex. Nature. 2011;470:227–32.CrossRefPubMed
23.
go back to reference Kanehisa M. Molecular network analysis of diseases and drugs in KEGG. Methods in Molecular Biology (Clifton, NJ). 2013;939:263–75.CrossRef Kanehisa M. Molecular network analysis of diseases and drugs in KEGG. Methods in Molecular Biology (Clifton, NJ). 2013;939:263–75.CrossRef
Metadata
Title
MicroRNA-452 contributes to the docetaxel resistance of breast cancer cells
Authors
Qing Hu
Wei-xian Chen
Shan-liang Zhong
Jun-ying Zhang
Teng-fei Ma
Hao Ji
Meng-meng Lv
Jin-hai Tang
Jian-hua Zhao
Publication date
01-07-2014
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 7/2014
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-1834-z

Other articles of this Issue 7/2014

Tumor Biology 7/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine