Skip to main content
Top
Published in: Tumor Biology 4/2014

01-04-2014 | Research Article

RETRACTED ARTICLE: Steroid receptor co-activator-3 promotes osteosarcoma progression through up-regulation of FoxM1

Authors: Shuo Geng, Xiaoyu Wang, Xiaoyan Xu, Hepeng Zhang, Yan Ma, Yunqi Zhang, Baoxin Li, Zhenggang Bi, Chenglin Yang

Published in: Tumor Biology | Issue 4/2014

Login to get access

Abstract

Increasing evidence suggests that the three homologous members of steroid receptor co-activator (SRC) family (SRC-1, SRC-2, and SRC-3) play key roles in enhancing cell proliferation in various human cancers, such as breast, prostate, and hepatocellular carcinoma. However, the function of SRC-3 in osteosarcoma remains largely unexplored. In the current study, we found that SRC-3, but not SRC-1 and SRC-2, was dramatically up-regulated in human osteosarcoma tissues, compared with adjacent normal tissues. To explore the functions of SRC-3 in osteosarcoma, in vitro studies were performed in MG63 and U2OS cells. SRC-3 overexpression promoted osteosarcoma cell proliferation, whereas knockdown of SRC-3 inhibits its proliferation. In support of these findings, we further demonstrated that SRC-3 up-regulated FoxM1 expression through co-activation of C/EBPγ. Together our results show that SRC-3 drives osteosarcoma progression and imply it as a therapeutic target to abrogate osteosarcoma.
Appendix
Available only for authorised users
Literature
1.
go back to reference Luo Y, Deng Z, Chen J. Pivotal regulatory network and genes in osteosarcoma. Arch Med Sci. 2013;9:569–75.CrossRefPubMed Luo Y, Deng Z, Chen J. Pivotal regulatory network and genes in osteosarcoma. Arch Med Sci. 2013;9:569–75.CrossRefPubMed
2.
go back to reference Poos K, Smida J, Nathrath M, Maugg D, Baumhoer D, et al. How microRNA and transcription factor co-regulatory networks affect osteosarcoma cell proliferation. PLoS Comput Biol. 2013;9:e1003210.CrossRefPubMedPubMedCentral Poos K, Smida J, Nathrath M, Maugg D, Baumhoer D, et al. How microRNA and transcription factor co-regulatory networks affect osteosarcoma cell proliferation. PLoS Comput Biol. 2013;9:e1003210.CrossRefPubMedPubMedCentral
3.
4.
go back to reference Gojis O, Rudraraju B, Gudi M, Hogben K, Sousha S, et al. The role of SRC-3 in human breast cancer. Nat Rev Clin Oncol. 2010;7:83–9.CrossRefPubMed Gojis O, Rudraraju B, Gudi M, Hogben K, Sousha S, et al. The role of SRC-3 in human breast cancer. Nat Rev Clin Oncol. 2010;7:83–9.CrossRefPubMed
5.
go back to reference York B, Yu C, Sagen JV, Liu Z, Nikolai BC, et al. Reprogramming the posttranslational code of SRC-3 confers a switch in mammalian systems biology. Proc Natl Acad Sci U S A. 2010;107:11122–7.CrossRefPubMedPubMedCentral York B, Yu C, Sagen JV, Liu Z, Nikolai BC, et al. Reprogramming the posttranslational code of SRC-3 confers a switch in mammalian systems biology. Proc Natl Acad Sci U S A. 2010;107:11122–7.CrossRefPubMedPubMedCentral
7.
go back to reference Johnson AB, O'Malley BW. Steroid receptor coactivators 1, 2, and 3: critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy. Mol Cell Endocrinol. 2012;348:430–9.CrossRefPubMed Johnson AB, O'Malley BW. Steroid receptor coactivators 1, 2, and 3: critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy. Mol Cell Endocrinol. 2012;348:430–9.CrossRefPubMed
8.
go back to reference Walsh CA, Qin L, Tien JC, Young LS, Xu J. The function of steroid receptor coactivator-1 in normal tissues and cancer. Int J Biol Sci. 2012;8:470–85.CrossRefPubMedPubMedCentral Walsh CA, Qin L, Tien JC, Young LS, Xu J. The function of steroid receptor coactivator-1 in normal tissues and cancer. Int J Biol Sci. 2012;8:470–85.CrossRefPubMedPubMedCentral
9.
go back to reference McBryan J, Theissen SM, Byrne C, Hughes E, Cocchiglia S, et al. Metastatic progression with resistance to aromatase inhibitors is driven by the steroid receptor coactivator SRC-1. Cancer Res. 2012;72:548–59.CrossRefPubMed McBryan J, Theissen SM, Byrne C, Hughes E, Cocchiglia S, et al. Metastatic progression with resistance to aromatase inhibitors is driven by the steroid receptor coactivator SRC-1. Cancer Res. 2012;72:548–59.CrossRefPubMed
10.
go back to reference Agoulnik IU, Weigel NL. Androgen receptor coactivators and prostate cancer. Adv Exp Med Biol. 2008;617:245–55.CrossRefPubMed Agoulnik IU, Weigel NL. Androgen receptor coactivators and prostate cancer. Adv Exp Med Biol. 2008;617:245–55.CrossRefPubMed
11.
go back to reference Long W, Foulds CE, Qin J, Liu J, Ding C, et al. ERK3 signals through SRC-3 coactivator to promote human lung cancer cell invasion. J Clin Invest. 2012;122:1869–80.CrossRefPubMedPubMedCentral Long W, Foulds CE, Qin J, Liu J, Ding C, et al. ERK3 signals through SRC-3 coactivator to promote human lung cancer cell invasion. J Clin Invest. 2012;122:1869–80.CrossRefPubMedPubMedCentral
12.
go back to reference Wang Y, Lonard DM, Yu Y, Chow DC, Palzkill TG, et al. Small molecule inhibition of the steroid receptor coactivators, SRC-3 and SRC-1. Mol Endocrinol. 2011;25:2041–53.CrossRefPubMedPubMedCentral Wang Y, Lonard DM, Yu Y, Chow DC, Palzkill TG, et al. Small molecule inhibition of the steroid receptor coactivators, SRC-3 and SRC-1. Mol Endocrinol. 2011;25:2041–53.CrossRefPubMedPubMedCentral
13.
go back to reference Mussi P, Yu C, O'Malley BW, Xu J. Stimulation of steroid receptor coactivator-3 (SRC-3) gene overexpression by a positive regulatory loop of E2F1 and SRC-3. Mol Endocrinol. 2006;20:3105–19.CrossRefPubMed Mussi P, Yu C, O'Malley BW, Xu J. Stimulation of steroid receptor coactivator-3 (SRC-3) gene overexpression by a positive regulatory loop of E2F1 and SRC-3. Mol Endocrinol. 2006;20:3105–19.CrossRefPubMed
14.
go back to reference Liontos M, Niforou K, Velimezi G, Vougas K, Evangelou K, et al. Modulation of the E2F1-driven cancer cell fate by the DNA damage response machinery and potential novel E2F1 targets in osteosarcomas. Am J Pathol. 2009;175:376–91.CrossRefPubMedPubMedCentral Liontos M, Niforou K, Velimezi G, Vougas K, Evangelou K, et al. Modulation of the E2F1-driven cancer cell fate by the DNA damage response machinery and potential novel E2F1 targets in osteosarcomas. Am J Pathol. 2009;175:376–91.CrossRefPubMedPubMedCentral
15.
go back to reference Jin R, Sun Y, Qi X, Zhang H, Zhang Y, et al. E2F1 is involved in DNA single-strand break repair through cell-cycle-dependent upregulation of XRCC1 expression. DNA Repair (Amst). 2011;10:926–33.CrossRef Jin R, Sun Y, Qi X, Zhang H, Zhang Y, et al. E2F1 is involved in DNA single-strand break repair through cell-cycle-dependent upregulation of XRCC1 expression. DNA Repair (Amst). 2011;10:926–33.CrossRef
16.
go back to reference Wu RC, Qin J, Yi P, Wong J, Tsai SY, et al. Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic reponses to multiple cellular signaling pathways. Mol Cell. 2004;15:937–49.CrossRefPubMed Wu RC, Qin J, Yi P, Wong J, Tsai SY, et al. Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic reponses to multiple cellular signaling pathways. Mol Cell. 2004;15:937–49.CrossRefPubMed
17.
go back to reference Li S, Shang Y. Regulation of SRC family coactivators by post-translational modifications. Cell Signal. 2007;19:1101–12.CrossRefPubMed Li S, Shang Y. Regulation of SRC family coactivators by post-translational modifications. Cell Signal. 2007;19:1101–12.CrossRefPubMed
18.
go back to reference Li X, Lonard DM, Jung SY, Malovannaya A, Feng Q, et al. The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGgamma proteasome. Cell. 2006;124:381–92.CrossRefPubMed Li X, Lonard DM, Jung SY, Malovannaya A, Feng Q, et al. The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGgamma proteasome. Cell. 2006;124:381–92.CrossRefPubMed
19.
go back to reference Wu RC, Feng Q, Lonard DM, O'Malley BW. SRC-3 coactivator functional lifetime is regulated by a phospho-dependent ubiquitin time clock. Cell. 2007;129:1125–40.CrossRefPubMed Wu RC, Feng Q, Lonard DM, O'Malley BW. SRC-3 coactivator functional lifetime is regulated by a phospho-dependent ubiquitin time clock. Cell. 2007;129:1125–40.CrossRefPubMed
20.
go back to reference Radhakrishnan SK, Bhat UG, Hughes DE, Wang IC, Costa RH, et al. Identification of a chemical inhibitor of the oncogenic transcription factor forkhead box M1. Cancer Res. 2006;66:9731–5.CrossRefPubMed Radhakrishnan SK, Bhat UG, Hughes DE, Wang IC, Costa RH, et al. Identification of a chemical inhibitor of the oncogenic transcription factor forkhead box M1. Cancer Res. 2006;66:9731–5.CrossRefPubMed
21.
go back to reference Teh MT, Gemenetzidis E, Chaplin T, Young BD, Philpott MP. Upregulation of FOXM1 induces genomic instability in human epidermal keratinocytes. Mol Cancer. 2010;9:45.CrossRefPubMedPubMedCentral Teh MT, Gemenetzidis E, Chaplin T, Young BD, Philpott MP. Upregulation of FOXM1 induces genomic instability in human epidermal keratinocytes. Mol Cancer. 2010;9:45.CrossRefPubMedPubMedCentral
22.
go back to reference Li Q, Zhang N, Jia Z, Le X, Dai B, et al. Critical role and regulation of transcription factor FoxM1 in human gastric cancer angiogenesis and progression. Cancer Res. 2009;69:3501–9.CrossRefPubMedPubMedCentral Li Q, Zhang N, Jia Z, Le X, Dai B, et al. Critical role and regulation of transcription factor FoxM1 in human gastric cancer angiogenesis and progression. Cancer Res. 2009;69:3501–9.CrossRefPubMedPubMedCentral
23.
go back to reference Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, et al. Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol. 2005;25:10875–94.CrossRefPubMedPubMedCentral Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, et al. Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol. 2005;25:10875–94.CrossRefPubMedPubMedCentral
24.
go back to reference Wang IC, Chen YJ, Hughes DE, Ackerson T, Major ML, et al. FoxM1 regulates transcription of JNK1 to promote the G1/S transition and tumor cell invasiveness. J Biol Chem. 2008;283:20770–8.CrossRefPubMedPubMedCentral Wang IC, Chen YJ, Hughes DE, Ackerson T, Major ML, et al. FoxM1 regulates transcription of JNK1 to promote the G1/S transition and tumor cell invasiveness. J Biol Chem. 2008;283:20770–8.CrossRefPubMedPubMedCentral
Metadata
Title
RETRACTED ARTICLE: Steroid receptor co-activator-3 promotes osteosarcoma progression through up-regulation of FoxM1
Authors
Shuo Geng
Xiaoyu Wang
Xiaoyan Xu
Hepeng Zhang
Yan Ma
Yunqi Zhang
Baoxin Li
Zhenggang Bi
Chenglin Yang
Publication date
01-04-2014
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 4/2014
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-013-1406-7

Other articles of this Issue 4/2014

Tumor Biology 4/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine