Skip to main content
Top
Published in: Tumor Biology 2/2014

01-02-2014 | Research Article

Everolimus in combination with letrozole inhibit human breast cancer MCF-7/Aro stem cells via PI3K/mTOR pathway: an experimental study

Authors: Yan Liu, Xiaobei Zhang, Jingjing Liu, Guofang Hou, Sheng Zhang, Jin Zhang

Published in: Tumor Biology | Issue 2/2014

Login to get access

Abstract

This study evaluated the effects of an mTOR inhibitor everolimus alone or in combination with letrozole on MCF-7/Aro (MCF-7 cells stably transfected with CYP19) in vitro and in vivo. In vitro studies, full-length CYP19 (aromatase) was cloned in a plasmid transfer vector pH ß-Aro and then transfected into MCF-7 stem cells which were ESA+CD44+CD24−/low sorted by flow cytometry. MTT assays were used to quantify the inhibitory effect of the drugs on MCF-7/Aro stem cells (SCs) and non-stem cells (NSCs). Apoptosis and the cell cycle distributions of stem cells were examined by flow cytometry. The tumorigenicity of stem cells after treatment was investigated by soft agar colony formation assays. In vivo studies, the BALB/c mice were injected with MCF-7/Aro SCs, and the different treatments were administered. After necropsy, the expression of KI67, CD31, AKT1, phospho-AKT (Thr308), and mTOR was analyzed by immunohistochemistry. In vitro, compared with MCF-7/Aro NSCs, there were greater resistance to the standard treatment doses of letrozole and everolimus in MCF-7/Aro SCs (17- and 15-fold, respectively). Treatment with everolimus or letrozole resulted in growth inhibition of SCs in a dose-dependent manner. Compared with single-agent therapy, the combination of everolimus with letrozole was more effective in the inhibition of cell growth (P < 0.001) and tumorigenicity (P < 0.01). In addition, an increase in G1 cell cycle arrest and increases in early apoptosis were observed in the combination treatment group compared with either single-agent group. In vivo, the xenograft tumor sizes were significantly decreased in everolimus alone group compared to control group, and everolimus plus letrozole therapy was much more effective compared with either single agent alone (P < 0.01). Compared with everolimus alone, the combination of everolimus and letrozole reduced the expression of KI67, mTOR, and phospho-AKT (Thr308; P < 0.01). Everolimus has effective inhibition on aromatase-overexpressing stem cell in vitro and in vivo. The combination everolimus and letrozole could be more effective than either drug alone.
Literature
1.
go back to reference Boulay A, Rudloff J, Ye J, et al. Dual inhibition of mTOR and estrogen receptor signaling in vitro induces cell death in models of breast cancer. Clin Cancer Res. 2005;11:5319–28.PubMedCrossRef Boulay A, Rudloff J, Ye J, et al. Dual inhibition of mTOR and estrogen receptor signaling in vitro induces cell death in models of breast cancer. Clin Cancer Res. 2005;11:5319–28.PubMedCrossRef
2.
go back to reference Goldhirsch A, Glick JH, Gelber RD, et al. Meeting highlights: International consensus panel of the treatment of primary breast cancer: 7th international conference on adjuvant therapy of primary breast cancer. J Clin Oncol. 2001;19:3817–27.PubMed Goldhirsch A, Glick JH, Gelber RD, et al. Meeting highlights: International consensus panel of the treatment of primary breast cancer: 7th international conference on adjuvant therapy of primary breast cancer. J Clin Oncol. 2001;19:3817–27.PubMed
3.
go back to reference Thürlimann B, Keshaviah A, Coates AS, et al. Breast International Group (BIG) 1–98 Collaborative Group. A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N Engl J Med. 2005;353:2747–57.PubMedCrossRef Thürlimann B, Keshaviah A, Coates AS, et al. Breast International Group (BIG) 1–98 Collaborative Group. A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N Engl J Med. 2005;353:2747–57.PubMedCrossRef
4.
5.
go back to reference Ghayad SE, Cohen PA. Inhibitors of the PI3K/AKT/mTOR pathway: new hope for breast cancer patients. Recent Pat Anticancer Drug Discov. 2010;5:29–57.PubMedCrossRef Ghayad SE, Cohen PA. Inhibitors of the PI3K/AKT/mTOR pathway: new hope for breast cancer patients. Recent Pat Anticancer Drug Discov. 2010;5:29–57.PubMedCrossRef
6.
go back to reference Barone I, Cui Y, Herynk MH, et al. Expression of the K303R estrogen receptor—a breast cancer mutation induces resistance to an aromatase inhibitor via addiction to the PI3K/AKT kinase pathway. Cancer Res. 2009;69:4724–32.PubMedCentralPubMedCrossRef Barone I, Cui Y, Herynk MH, et al. Expression of the K303R estrogen receptor—a breast cancer mutation induces resistance to an aromatase inhibitor via addiction to the PI3K/AKT kinase pathway. Cancer Res. 2009;69:4724–32.PubMedCentralPubMedCrossRef
7.
go back to reference Santen RJ, Song RX, Zhang Z, et al. Adaptive hypersensitivity to estrogen: mechanisms and clinical relevance to aromatase inhibitor therapy in breast cancer treatment. J Steroid Biochem Mol Biol. 2005;95:155–65.PubMedCrossRef Santen RJ, Song RX, Zhang Z, et al. Adaptive hypersensitivity to estrogen: mechanisms and clinical relevance to aromatase inhibitor therapy in breast cancer treatment. J Steroid Biochem Mol Biol. 2005;95:155–65.PubMedCrossRef
8.
go back to reference Hynes NE, Boulay A. The mTOR pathway in breast cancer. J Mammary Gland Biol Neoplasia. 2006;11:53–61.PubMedCrossRef Hynes NE, Boulay A. The mTOR pathway in breast cancer. J Mammary Gland Biol Neoplasia. 2006;11:53–61.PubMedCrossRef
9.
go back to reference Baselga J, Semiglazov V, van Dam P, et al. Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor-positive breast cancer. J Clin Oncol. 2009;27:2630–7.PubMedCrossRef Baselga J, Semiglazov V, van Dam P, et al. Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor-positive breast cancer. J Clin Oncol. 2009;27:2630–7.PubMedCrossRef
10.
go back to reference O'Brien CA, Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.PubMedCrossRef O'Brien CA, Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.PubMedCrossRef
11.
go back to reference Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.PubMedCentralPubMedCrossRef Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.PubMedCentralPubMedCrossRef
12.
go back to reference Ma Y, Hao X, Zhang S, et al. The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells. Breast Cancer Res Treat. 2012;133:473–85.PubMedCrossRef Ma Y, Hao X, Zhang S, et al. The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells. Breast Cancer Res Treat. 2012;133:473–85.PubMedCrossRef
13.
go back to reference Zhou DJ, Pompon D, Chen SA. Stable expression of human aromatase complementary DNA in mammalian cells: a useful system for aromatase inhibitor screening. Cancer Res. 1990;50:6949–54.PubMed Zhou DJ, Pompon D, Chen SA. Stable expression of human aromatase complementary DNA in mammalian cells: a useful system for aromatase inhibitor screening. Cancer Res. 1990;50:6949–54.PubMed
14.
go back to reference Zhang X, Zhang S, Liu Y, et al. Effects of the combination of RAD001 and docetaxel on breast cancer stem cells. Eur J Cancer. 2012;48:1581–92.PubMedCrossRef Zhang X, Zhang S, Liu Y, et al. Effects of the combination of RAD001 and docetaxel on breast cancer stem cells. Eur J Cancer. 2012;48:1581–92.PubMedCrossRef
15.
go back to reference Akli S, Bui T, Wingate H, et al. Low-molecular-weight cyclin E can bypass letrozole-induced G1 arrest in human breast cancer cells and tumors. Clin Cancer Res. 2010;16:1179–90.PubMedCentralPubMedCrossRef Akli S, Bui T, Wingate H, et al. Low-molecular-weight cyclin E can bypass letrozole-induced G1 arrest in human breast cancer cells and tumors. Clin Cancer Res. 2010;16:1179–90.PubMedCentralPubMedCrossRef
16.
go back to reference Viale G, Giobbie-Hurder A, Regan MM, et al. Prognostic and predictive value of centrally reviewed Ki-67 labeling index in postmenopausal women with endocrine-responsive breast cancer: results from Breast International Group Trial 1–98 comparing adjuvant tamoxifen with letrozole. J Clin Oncol. 2008;26:5569–75.PubMedCrossRef Viale G, Giobbie-Hurder A, Regan MM, et al. Prognostic and predictive value of centrally reviewed Ki-67 labeling index in postmenopausal women with endocrine-responsive breast cancer: results from Breast International Group Trial 1–98 comparing adjuvant tamoxifen with letrozole. J Clin Oncol. 2008;26:5569–75.PubMedCrossRef
17.
go back to reference O'Regan R, Hawk NN. mTOR inhibition in breast cancer: unraveling the complex mechanisms of mTOR signal transduction and its clinical implications in therapy. Expert Opin Ther Targets. 2011;15:859–72.PubMedCrossRef O'Regan R, Hawk NN. mTOR inhibition in breast cancer: unraveling the complex mechanisms of mTOR signal transduction and its clinical implications in therapy. Expert Opin Ther Targets. 2011;15:859–72.PubMedCrossRef
18.
go back to reference Zhang X, Li XR, Zhang J. Current status and future perspectives of PI3K and mTOR inhibitor as anticancer drugs in breast cancer. Curr Cancer Drug Targets. 2013;13:175–87.PubMedCrossRef Zhang X, Li XR, Zhang J. Current status and future perspectives of PI3K and mTOR inhibitor as anticancer drugs in breast cancer. Curr Cancer Drug Targets. 2013;13:175–87.PubMedCrossRef
19.
go back to reference Xu CX, Li Y, Yue P, et al. The combination of RAD001 and NVP-BEZ235 exerts synergistic anticancer activity against non-small cell lung cancer in vitro and in vivo. PLoS One. 2011;6:e20899.PubMedCentralPubMedCrossRef Xu CX, Li Y, Yue P, et al. The combination of RAD001 and NVP-BEZ235 exerts synergistic anticancer activity against non-small cell lung cancer in vitro and in vivo. PLoS One. 2011;6:e20899.PubMedCentralPubMedCrossRef
20.
go back to reference Zhu Y, Zhang X, Liu Y, et al. Antitumor effect of the mTOR inhibitor everolimus in combination with trastuzumab on human breast cancer stem cells in vitro and in vivo. Tumour Biol. 2012;33:1349–62.PubMedCrossRef Zhu Y, Zhang X, Liu Y, et al. Antitumor effect of the mTOR inhibitor everolimus in combination with trastuzumab on human breast cancer stem cells in vitro and in vivo. Tumour Biol. 2012;33:1349–62.PubMedCrossRef
21.
go back to reference Gera JF, Mellinghoff IK, Shi Y, et al. AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J Biol Chem. 2004;279:2737–46.PubMedCrossRef Gera JF, Mellinghoff IK, Shi Y, et al. AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J Biol Chem. 2004;279:2737–46.PubMedCrossRef
24.
go back to reference O'Reilly KE, Rojo F, She QB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66:1500–8.PubMedCentralPubMedCrossRef O'Reilly KE, Rojo F, She QB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66:1500–8.PubMedCentralPubMedCrossRef
25.
go back to reference Krech T, Thiede M, Hilgenberg E, et al. Characterization of AKT independent effects of the synthetic AKT inhibitors SH-5 and SH-6 using an integrated approach combining transcriptomic profiling and signaling pathway perturbations. BMC Cancer. 2010;10:287.PubMedCentralPubMedCrossRef Krech T, Thiede M, Hilgenberg E, et al. Characterization of AKT independent effects of the synthetic AKT inhibitors SH-5 and SH-6 using an integrated approach combining transcriptomic profiling and signaling pathway perturbations. BMC Cancer. 2010;10:287.PubMedCentralPubMedCrossRef
26.
go back to reference Martin LA, Pancholi S, Farmer I, et al. Effectiveness and molecular interactions of the clinically active mTORC1 inhibitor everolimus in combination with tamoxifen or letrozole in vitro and in vivo. Breast Cancer Res. 2012;14:R132.PubMedCrossRef Martin LA, Pancholi S, Farmer I, et al. Effectiveness and molecular interactions of the clinically active mTORC1 inhibitor everolimus in combination with tamoxifen or letrozole in vitro and in vivo. Breast Cancer Res. 2012;14:R132.PubMedCrossRef
27.
go back to reference Kurokawa H, Arteaga CL. ErbB (HER) receptors can abrogate antiestrogen action in human breast cancer by multiple signaling mechanisms. Clin Cancer Res. 2003;9:511S–5S.PubMed Kurokawa H, Arteaga CL. ErbB (HER) receptors can abrogate antiestrogen action in human breast cancer by multiple signaling mechanisms. Clin Cancer Res. 2003;9:511S–5S.PubMed
28.
go back to reference de Graffenried LA, Friedrichs WE, Russell DH, et al. Inhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt Activity. Clin Cancer Res. 2004;10:8059–67.CrossRef de Graffenried LA, Friedrichs WE, Russell DH, et al. Inhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt Activity. Clin Cancer Res. 2004;10:8059–67.CrossRef
29.
go back to reference Yue W, Wang JP, Conaway MR, et al. Adaptive hypersensitivity following long-term estrogen deprivation: involvement of multiple signal pathways. J Steroid Biochem Mol Biol. 2003;86:265–74.PubMedCrossRef Yue W, Wang JP, Conaway MR, et al. Adaptive hypersensitivity following long-term estrogen deprivation: involvement of multiple signal pathways. J Steroid Biochem Mol Biol. 2003;86:265–74.PubMedCrossRef
30.
go back to reference Baselga J, van Dam PA, Greil R, et al. Improved clinical and cell cycle response with an mTOR inhibitor, daily oral RAD001 (everolimus) plus letrozole versus placebo plus letrozole in a randomized phase II neoadjuvant trial in ER+ breast cancer. J Clin Oncol. 2008;26:13s. suppl; abstr 530.CrossRef Baselga J, van Dam PA, Greil R, et al. Improved clinical and cell cycle response with an mTOR inhibitor, daily oral RAD001 (everolimus) plus letrozole versus placebo plus letrozole in a randomized phase II neoadjuvant trial in ER+ breast cancer. J Clin Oncol. 2008;26:13s. suppl; abstr 530.CrossRef
31.
go back to reference Beeram M, Tan QT, Tekmal RR, et al. Akt-induced endocrine therapy resistance is reversed by inhibition of mTOR signaling. Ann Oncol. 2007;18:1323–8.PubMedCrossRef Beeram M, Tan QT, Tekmal RR, et al. Akt-induced endocrine therapy resistance is reversed by inhibition of mTOR signaling. Ann Oncol. 2007;18:1323–8.PubMedCrossRef
32.
go back to reference Baselga J, Campone M, Piccart M, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366:520–9.PubMedCrossRef Baselga J, Campone M, Piccart M, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366:520–9.PubMedCrossRef
Metadata
Title
Everolimus in combination with letrozole inhibit human breast cancer MCF-7/Aro stem cells via PI3K/mTOR pathway: an experimental study
Authors
Yan Liu
Xiaobei Zhang
Jingjing Liu
Guofang Hou
Sheng Zhang
Jin Zhang
Publication date
01-02-2014
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 2/2014
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-013-1170-8

Other articles of this Issue 2/2014

Tumor Biology 2/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine