Skip to main content
Top
Published in: Tumor Biology 2/2012

01-04-2012 | Research Article

System review and metaanalysis of the relationships between five metabolic gene polymorphisms and colorectal adenoma risk

Authors: Zhi-Qiang Zhao, Qing-Kai Guan, Fei-Yun Yang, Peng Zhao, Bing Zhou, Zhi-Jun Chen

Published in: Tumor Biology | Issue 2/2012

Login to get access

Abstract

The relationships between some metabolic (including EPHX1, GSTs and NQO1) gene polymorphisms and colorectal adenoma (CRA) risk have been commonly studied, and no conclusions are available up to now. Therefore, we quantitatively studied the relationships by a metaanalysis. The databases of Medline and Embase were retrieved updated to June 15th, 2011. Crude or adjusted odds ratio (crude OR or adjusted OR) and 95% confidence interval (95%CI) were calculated to present the strength of the associations. Overall, nine case–control studies for EPHX1 Tyr113His and His139Arg, five case–control studies for GSTM1, four studies for GSTP1 Ile105Val, two studies for GSTP1 Ala114Val, six studies for GSTT1 and four studies for NQO1 Pro187Ser were included in this metaanalysis. The results of combined analyses indicated that EPHX1 Tyr113His and His139Arg, GSTT1, GSTM1, GSTP1 Ile105Val and Ala114Val were not associated with CRA risk [crude OR (95%CI): 0.98 (0.90–1.07) and P z-test = 0.65 for EPHX1 His carriers vs. Tyr/Tyr; 1.05 (0.97–1.15) and P z-test = 0.21 for EPHX1 Arg carriers vs. His/His; 1.05 (0.92–1.20) and P z-test = 0.47 for GSTT1 Null vs. Present; 1.01 (0.90–1.13) and P z-test = 0.90 for GSTM1 Null vs. Present; 1.04 (0.92–1.17) and P z-test = 0.56 for G carriers vs. AA for GSTP1 Ile105Val; 0.88 (0.70–1.11) and P z-test = 0.28 for T carriers vs. CC for GSTP1 Ala114Val]. In contrast, Ser allele of NQO1 Ser187Pro might be a modest risk factor for CRA development [1.19 (1.06–1.33) and P z-test = 0.003 for Ser carriers vs. Pro/Pro]. To get more precise evidences, adjusted ORs (95%CI) for EPHX1 Tyr113His, His139Arg, GSTP1 Ile105Val and NQO1 Ser187Pro were also calculated based on adjusted ORs (95%CIs) reported in primary studies. The results still indicated that EPHX1 Tyr113His, His139Arg and GSTP1 Ile105Val were not associated with CRA risk except for NQO1 Ser187Pro. When subgroup analyses were performed for population-based case–control studies or studies in HWE for EPHX1 Tyr113His and His139Arg, and NQO1 Ser187Pro polymorphisms, the results were persistent. Although with modest limitations and biases, this metaanalysis suggests that EPHX1 Tyr113His and His139Arg, GSTT1, GSTM1, GSTP1 Ile105Val and Ala114Val polymorphisms may be not risk factors for CRA development, while Ser allele of NQO1 Ser187 Pro may be a modest risk factor for CRA development, and may be used with other genetic markers for screening CRA in the future.
Literature
1.
3.
go back to reference Nothlings U, Yamamoto JF, Wilkens LR, Murphy SP, Park SY, Henderson BE, et al. Meat and heterocyclic amine intake, smoking, NAT1 and NAT2 polymorphisms, and colorectal cancer risk in the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev. 2009;18:2098–106.PubMedCrossRef Nothlings U, Yamamoto JF, Wilkens LR, Murphy SP, Park SY, Henderson BE, et al. Meat and heterocyclic amine intake, smoking, NAT1 and NAT2 polymorphisms, and colorectal cancer risk in the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev. 2009;18:2098–106.PubMedCrossRef
4.
go back to reference Northwood EL, Elliott F, Forman D, Barrett JH, Wilkie MJ, Carey FA, et al. Polymorphisms in xenobiotic metabolizing enzymes and diet influence colorectal adenoma risk. Pharmacogenet Genomics. 2010;20:315–26.PubMedCrossRef Northwood EL, Elliott F, Forman D, Barrett JH, Wilkie MJ, Carey FA, et al. Polymorphisms in xenobiotic metabolizing enzymes and diet influence colorectal adenoma risk. Pharmacogenet Genomics. 2010;20:315–26.PubMedCrossRef
5.
go back to reference Armstrong B, Doll R. Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices. Int J Cancer. 1975;15:617–31.PubMedCrossRef Armstrong B, Doll R. Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices. Int J Cancer. 1975;15:617–31.PubMedCrossRef
6.
go back to reference Randi G, Edefonti V, Ferraroni M, La Vecchia C, Decarli A. Dietary patterns and the risk of colorectal cancer and adenomas. Nutr Rev. 2010;68:389–408.PubMedCrossRef Randi G, Edefonti V, Ferraroni M, La Vecchia C, Decarli A. Dietary patterns and the risk of colorectal cancer and adenomas. Nutr Rev. 2010;68:389–408.PubMedCrossRef
7.
go back to reference Onega T, Goodrich M, Dietrich A, Butterly L. The influence of smoking, gender, and family history on colorectal adenomas. J Cancer Epidemiol. 2010;2010:509347.PubMed Onega T, Goodrich M, Dietrich A, Butterly L. The influence of smoking, gender, and family history on colorectal adenomas. J Cancer Epidemiol. 2010;2010:509347.PubMed
8.
go back to reference Skjelbred CF, Saebo M, Hjartaker A, Grotmol T, Hansteen IL, Tveit KM, et al. Meat, vegetables and genetic polymorphisms and the risk of colorectal carcinomas and adenomas. BMC Cancer. 2007;7:228.PubMedCrossRef Skjelbred CF, Saebo M, Hjartaker A, Grotmol T, Hansteen IL, Tveit KM, et al. Meat, vegetables and genetic polymorphisms and the risk of colorectal carcinomas and adenomas. BMC Cancer. 2007;7:228.PubMedCrossRef
9.
go back to reference Huang WY, Chatterjee N, Chanock S, Dean M, Yeager M, Schoen RE, et al. Microsomal epoxide hydrolase polymorphisms and risk for advanced colorectal adenoma. Cancer Epidemiol Biomarkers Prev. 2005;14:152–7.PubMedCrossRef Huang WY, Chatterjee N, Chanock S, Dean M, Yeager M, Schoen RE, et al. Microsomal epoxide hydrolase polymorphisms and risk for advanced colorectal adenoma. Cancer Epidemiol Biomarkers Prev. 2005;14:152–7.PubMedCrossRef
10.
go back to reference Inoue H, Kiyohara C, Marugame T, Shinomiya S, Tsuji E, Handa K, et al. Cigarette smoking, CYP1A1 MspI and GSTM1 genotypes, and colorectal adenomas. Cancer Res. 2000;60:3749–52.PubMed Inoue H, Kiyohara C, Marugame T, Shinomiya S, Tsuji E, Handa K, et al. Cigarette smoking, CYP1A1 MspI and GSTM1 genotypes, and colorectal adenomas. Cancer Res. 2000;60:3749–52.PubMed
11.
go back to reference Roberts-Thomson IC, Butler WJ, Ryan P. Meat, metabolic genotypes and risk for colorectal cancer. Eur J Cancer Prev. 1999;8:207–11.PubMedCrossRef Roberts-Thomson IC, Butler WJ, Ryan P. Meat, metabolic genotypes and risk for colorectal cancer. Eur J Cancer Prev. 1999;8:207–11.PubMedCrossRef
12.
go back to reference Mitrou PN, Watson MA, Loktionov AS, Cardwell C, Gunter MJ, Atkin WS, et al. Role of NQO1C609T and EPHX1 gene polymorphisms in the association of smoking and alcohol with sporadic distal colorectal adenomas: results from the UKFSS Study. Carcinogenesis. 2007;28:875–82.PubMedCrossRef Mitrou PN, Watson MA, Loktionov AS, Cardwell C, Gunter MJ, Atkin WS, et al. Role of NQO1C609T and EPHX1 gene polymorphisms in the association of smoking and alcohol with sporadic distal colorectal adenomas: results from the UKFSS Study. Carcinogenesis. 2007;28:875–82.PubMedCrossRef
13.
go back to reference Ulrich CM, Bigler J, Whitton JA, Bostick R, Fosdick L, Potter JD. Epoxide hydrolase Tyr113His polymorphism is associated with elevated risk of colorectal polyps in the presence of smoking and high meat intake. Cancer Epidemiol Biomarkers Prev. 2001;10:875–82.PubMed Ulrich CM, Bigler J, Whitton JA, Bostick R, Fosdick L, Potter JD. Epoxide hydrolase Tyr113His polymorphism is associated with elevated risk of colorectal polyps in the presence of smoking and high meat intake. Cancer Epidemiol Biomarkers Prev. 2001;10:875–82.PubMed
14.
go back to reference Inoue H, Kiyohara C, Shinomiya S, Marugame T, Tsuji E, Handa K, et al. Glutathione S-transferase polymorphisms and risk of colorectal adenomas. Cancer Lett. 2001;163:201–6.PubMedCrossRef Inoue H, Kiyohara C, Shinomiya S, Marugame T, Tsuji E, Handa K, et al. Glutathione S-transferase polymorphisms and risk of colorectal adenomas. Cancer Lett. 2001;163:201–6.PubMedCrossRef
15.
go back to reference Zhuang W, Wu XT, Zhou Y, Liu L, Liu GJ, Wu TX, et al. Interleukin10–592 promoter polymorphism associated with gastric cancer among Asians: a meta-analysis of epidemiologic studies. Dig Dis Sci. 2010;55:1525–32.PubMedCrossRef Zhuang W, Wu XT, Zhou Y, Liu L, Liu GJ, Wu TX, et al. Interleukin10–592 promoter polymorphism associated with gastric cancer among Asians: a meta-analysis of epidemiologic studies. Dig Dis Sci. 2010;55:1525–32.PubMedCrossRef
16.
go back to reference Luchtenborg M, Weijenberg MP, Kampman E, van Muijen GN, Roemen GM, Zeegers MP, et al. Cigarette smoking and colorectal cancer: APC mutations, hMLH1 expression, and GSTM1 and GSTT1 polymorphisms. Am J Epidemiol. 2005;161:806–15.PubMedCrossRef Luchtenborg M, Weijenberg MP, Kampman E, van Muijen GN, Roemen GM, Zeegers MP, et al. Cigarette smoking and colorectal cancer: APC mutations, hMLH1 expression, and GSTM1 and GSTT1 polymorphisms. Am J Epidemiol. 2005;161:806–15.PubMedCrossRef
17.
go back to reference Barker HJ, Alpert LC, Compton CC, Maslen A, Kirby GM. Loss of glutathione S-transferase (GST) mu phenotype in colorectal adenocarcinomas from patients with a GSTM1 positive genotype. Cancer Lett. 2002;177:65–74.PubMedCrossRef Barker HJ, Alpert LC, Compton CC, Maslen A, Kirby GM. Loss of glutathione S-transferase (GST) mu phenotype in colorectal adenocarcinomas from patients with a GSTM1 positive genotype. Cancer Lett. 2002;177:65–74.PubMedCrossRef
18.
go back to reference Tiemersma EW, Kloosterman J, Bunschoten A, Kok FJ, Kampman E. Role of EPHX genotype in the associations of smoking and diet with colorectal adenomas. IARC Sci Publ. 2002;156:491–3.PubMed Tiemersma EW, Kloosterman J, Bunschoten A, Kok FJ, Kampman E. Role of EPHX genotype in the associations of smoking and diet with colorectal adenomas. IARC Sci Publ. 2002;156:491–3.PubMed
19.
go back to reference Lin HJ, Probst-Hensch NM, Louie AD, Kau IH, Witte JS, Ingles SA, et al. Glutathione transferase null genotype, broccoli, and lower prevalence of colorectal adenomas. Cancer Epidemiol Biomarkers Prev. 1998;7:647–52.PubMed Lin HJ, Probst-Hensch NM, Louie AD, Kau IH, Witte JS, Ingles SA, et al. Glutathione transferase null genotype, broccoli, and lower prevalence of colorectal adenomas. Cancer Epidemiol Biomarkers Prev. 1998;7:647–52.PubMed
20.
go back to reference Lin HJ, Zhou H, Dai A, Huang HF, Lin JH, Frankl HD, et al. Glutathione transferase GSTT1, broccoli, and prevalence of colorectal adenomas. Pharmacogenetics. 2002;12:175–9.PubMedCrossRef Lin HJ, Zhou H, Dai A, Huang HF, Lin JH, Frankl HD, et al. Glutathione transferase GSTT1, broccoli, and prevalence of colorectal adenomas. Pharmacogenetics. 2002;12:175–9.PubMedCrossRef
21.
go back to reference Lin HJ, Probst-Hensch NM, Ingles SA, Han CY, Lin BK, Lee DB, et al. Glutathione transferase (GSTM1) null genotype, smoking, and prevalence of colorectal adenomas. Cancer Res. 1995;55:1224–6.PubMed Lin HJ, Probst-Hensch NM, Ingles SA, Han CY, Lin BK, Lee DB, et al. Glutathione transferase (GSTM1) null genotype, smoking, and prevalence of colorectal adenomas. Cancer Res. 1995;55:1224–6.PubMed
22.
go back to reference Tiemersma EW, Bunschoten A, Kok FJ, Glatt H, de Boer SY, Kampman E. Effect of SULT1A1 and NAT2 genetic polymorphism on the association between cigarette smoking and colorectal adenomas. Int J Cancer. 2004;108:97–103.PubMedCrossRef Tiemersma EW, Bunschoten A, Kok FJ, Glatt H, de Boer SY, Kampman E. Effect of SULT1A1 and NAT2 genetic polymorphism on the association between cigarette smoking and colorectal adenomas. Int J Cancer. 2004;108:97–103.PubMedCrossRef
23.
go back to reference Tijhuis MJ, Visker MH, Aarts JM, Laan W, de Boer SY, Kok FJ, et al. NQO1 and NFE2L2 polymorphisms, fruit and vegetable intake and smoking and the risk of colorectal adenomas in an endoscopy-based population. Int J Cancer. 2008;122:1842–8.PubMedCrossRef Tijhuis MJ, Visker MH, Aarts JM, Laan W, de Boer SY, Kok FJ, et al. NQO1 and NFE2L2 polymorphisms, fruit and vegetable intake and smoking and the risk of colorectal adenomas in an endoscopy-based population. Int J Cancer. 2008;122:1842–8.PubMedCrossRef
24.
go back to reference Tijhuis MJ, Wark PA, Aarts JM, Visker MH, Nagengast FM, Kok FJ, et al. GSTP1 and GSTA1 polymorphisms interact with cruciferous vegetable intake in colorectal adenoma risk. Cancer Epidemiol Biomarkers Prev. 2005;14:2943–51.PubMedCrossRef Tijhuis MJ, Wark PA, Aarts JM, Visker MH, Nagengast FM, Kok FJ, et al. GSTP1 and GSTA1 polymorphisms interact with cruciferous vegetable intake in colorectal adenoma risk. Cancer Epidemiol Biomarkers Prev. 2005;14:2943–51.PubMedCrossRef
25.
go back to reference Moore LE, Huang WY, Chatterjee N, Gunter M, Chanock S, Yeager M, et al. GSTM1, GSTT1, and GSTP1 polymorphisms and risk of advanced colorectal adenoma. Cancer Epidemiol Biomarkers Prev. 2005;14:1823–7.PubMedCrossRef Moore LE, Huang WY, Chatterjee N, Gunter M, Chanock S, Yeager M, et al. GSTM1, GSTT1, and GSTP1 polymorphisms and risk of advanced colorectal adenoma. Cancer Epidemiol Biomarkers Prev. 2005;14:1823–7.PubMedCrossRef
26.
go back to reference Hou L, Chatterjee N, Huang WY, Baccarelli A, Yadavalli S, Yeager M, et al. CYP1A1 Val462 and NQO1 Ser187 polymorphisms, cigarette use, and risk for colorectal adenoma. Carcinogenesis. 2005;26:1122–8.PubMedCrossRef Hou L, Chatterjee N, Huang WY, Baccarelli A, Yadavalli S, Yeager M, et al. CYP1A1 Val462 and NQO1 Ser187 polymorphisms, cigarette use, and risk for colorectal adenoma. Carcinogenesis. 2005;26:1122–8.PubMedCrossRef
27.
go back to reference Tranah GJ, Giovannucci E, Ma J, Fuchs C, Hankinson SE, Hunter DJ. Epoxide hydrolase polymorphisms, cigarette smoking and risk of colorectal adenoma in the Nurses' Health Study and the Health Professionals Follow-up Study. Carcinogenesis. 2004;25:1211–8.PubMedCrossRef Tranah GJ, Giovannucci E, Ma J, Fuchs C, Hankinson SE, Hunter DJ. Epoxide hydrolase polymorphisms, cigarette smoking and risk of colorectal adenoma in the Nurses' Health Study and the Health Professionals Follow-up Study. Carcinogenesis. 2004;25:1211–8.PubMedCrossRef
28.
go back to reference Cortessis V, Siegmund K, Chen Q, Zhou N, Diep A, Frankl H, et al. A case–control study of microsomal epoxide hydrolase, smoking, meat consumption, glutathione S-transferase M3, and risk of colorectal adenomas. Cancer Res. 2001;61:2381–5.PubMed Cortessis V, Siegmund K, Chen Q, Zhou N, Diep A, Frankl H, et al. A case–control study of microsomal epoxide hydrolase, smoking, meat consumption, glutathione S-transferase M3, and risk of colorectal adenomas. Cancer Res. 2001;61:2381–5.PubMed
29.
go back to reference Liu L, Zeng F, Wang K, Huang J, Xin L, Zhu PQ. Meta-analysis of the association between VEGF-634 G > C and risk of malignancy based on 23 case–control studies. J Cancer Res Clin Oncol. 2011;137:1027–36.PubMedCrossRef Liu L, Zeng F, Wang K, Huang J, Xin L, Zhu PQ. Meta-analysis of the association between VEGF-634 G > C and risk of malignancy based on 23 case–control studies. J Cancer Res Clin Oncol. 2011;137:1027–36.PubMedCrossRef
30.
go back to reference Attia J, Thakkinstian A, D'Este C. Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology. J Clin Epidemiol. 2003;56:297–303.PubMedCrossRef Attia J, Thakkinstian A, D'Este C. Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology. J Clin Epidemiol. 2003;56:297–303.PubMedCrossRef
31.
go back to reference Liu L, Zhuang W, Wang RQ, Mukherjee R, Xiao SM, Chen Z, et al. Is dietary fat associated with the risk of colorectal cancer? A meta-analysis of 13 prospective cohort studies. Eur J Nutr. 2011;50:173–84.PubMedCrossRef Liu L, Zhuang W, Wang RQ, Mukherjee R, Xiao SM, Chen Z, et al. Is dietary fat associated with the risk of colorectal cancer? A meta-analysis of 13 prospective cohort studies. Eur J Nutr. 2011;50:173–84.PubMedCrossRef
32.
33.
go back to reference Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.PubMed Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.PubMed
34.
go back to reference Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.PubMedCrossRef Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.PubMedCrossRef
35.
go back to reference Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.PubMedCrossRef Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.PubMedCrossRef
36.
go back to reference Omiecinski CJ, Hassett C, Hosagrahara V. Epoxide hydrolase—polymorphism and role in toxicology. Toxicol Lett. 2000;112–113:365–70.PubMedCrossRef Omiecinski CJ, Hassett C, Hosagrahara V. Epoxide hydrolase—polymorphism and role in toxicology. Toxicol Lett. 2000;112–113:365–70.PubMedCrossRef
37.
go back to reference Li X, Hu Z, Qu X, Zhu J, Li L, Ring BZ, et al. Putative EPHX1 enzyme activity is related with risk of lung and upper aerodigestive tract cancers: a comprehensive meta-analysis. PLoS One. 2011;6:e14749.PubMedCrossRef Li X, Hu Z, Qu X, Zhu J, Li L, Ring BZ, et al. Putative EPHX1 enzyme activity is related with risk of lung and upper aerodigestive tract cancers: a comprehensive meta-analysis. PLoS One. 2011;6:e14749.PubMedCrossRef
38.
go back to reference Sims P, Grover PL, Swaisland A, Pal K, Hewer A. Metabolic activation of benzo(a)pyrene proceeds by a diol-epoxide. Nature. 1974;252:326–8.PubMedCrossRef Sims P, Grover PL, Swaisland A, Pal K, Hewer A. Metabolic activation of benzo(a)pyrene proceeds by a diol-epoxide. Nature. 1974;252:326–8.PubMedCrossRef
39.
go back to reference Brown B, Avalos J, Lee C, Doolittle D. The effect of tobacco smoke, nicotine, and cotinine on the mutagenicity of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). Mutat Res. 2001;494:21–9.PubMed Brown B, Avalos J, Lee C, Doolittle D. The effect of tobacco smoke, nicotine, and cotinine on the mutagenicity of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). Mutat Res. 2001;494:21–9.PubMed
40.
go back to reference Hassett C, Aicher L, Sidhu JS, Omiecinski CJ. Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum Mol Genet. 1994;3:421–8.PubMedCrossRef Hassett C, Aicher L, Sidhu JS, Omiecinski CJ. Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum Mol Genet. 1994;3:421–8.PubMedCrossRef
41.
go back to reference Hosagrahara VP, Rettie AE, Hassett C, Omiecinski CJ. Functional analysis of human microsomal epoxide hydrolase genetic variants. Chem Biol Interact. 2004;150:149–59.PubMedCrossRef Hosagrahara VP, Rettie AE, Hassett C, Omiecinski CJ. Functional analysis of human microsomal epoxide hydrolase genetic variants. Chem Biol Interact. 2004;150:149–59.PubMedCrossRef
42.
go back to reference Hassett C, Lin J, Carty CL, Laurenzana EM, Omiecinski CJ. Human hepatic microsomal epoxide hydrolase: comparative analysis of polymorphic expression. Arch Biochem Biophys. 1997;337:275–83.PubMedCrossRef Hassett C, Lin J, Carty CL, Laurenzana EM, Omiecinski CJ. Human hepatic microsomal epoxide hydrolase: comparative analysis of polymorphic expression. Arch Biochem Biophys. 1997;337:275–83.PubMedCrossRef
43.
go back to reference Yang X, Liang SH, Weyant DM, Lazarus P, Gallagher CJ, Omiecinski CJ. The expression of human microsomal epoxide hydrolase is predominantly driven by a genetically polymorphic far upstream promoter. J Pharmacol Exp Ther. 2009;330:23–30.PubMedCrossRef Yang X, Liang SH, Weyant DM, Lazarus P, Gallagher CJ, Omiecinski CJ. The expression of human microsomal epoxide hydrolase is predominantly driven by a genetically polymorphic far upstream promoter. J Pharmacol Exp Ther. 2009;330:23–30.PubMedCrossRef
44.
go back to reference Kiyohara C, Otsu A, Shirakawa T, Fukuda S, Hopkin JM. Genetic polymorphisms and lung cancer susceptibility: a review. Lung Cancer. 2002;37:241–56.PubMedCrossRef Kiyohara C, Otsu A, Shirakawa T, Fukuda S, Hopkin JM. Genetic polymorphisms and lung cancer susceptibility: a review. Lung Cancer. 2002;37:241–56.PubMedCrossRef
45.
go back to reference Lampe JW. Interindividual differences in response to plant-based diets: implications for cancer risk. Am J Clin Nutr. 2009;89:1553S–7.PubMedCrossRef Lampe JW. Interindividual differences in response to plant-based diets: implications for cancer risk. Am J Clin Nutr. 2009;89:1553S–7.PubMedCrossRef
46.
go back to reference Ross D, Kepa JK, Winski SL, Beall HD, Anwar A, Siegel D. NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem Biol Interact. 2000;129:77–97.PubMedCrossRef Ross D, Kepa JK, Winski SL, Beall HD, Anwar A, Siegel D. NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem Biol Interact. 2000;129:77–97.PubMedCrossRef
47.
go back to reference Joseph P, Jaiswal AK. NAD(P)H:quinone oxidoreductase1 (DT diaphorase) specifically prevents the formation of benzo[a]pyrene quinone-DNA adducts generated by cytochrome P4501A1 and P450 reductase. Proc Natl Acad Sci USA. 1994;91:8413–7.PubMedCrossRef Joseph P, Jaiswal AK. NAD(P)H:quinone oxidoreductase1 (DT diaphorase) specifically prevents the formation of benzo[a]pyrene quinone-DNA adducts generated by cytochrome P4501A1 and P450 reductase. Proc Natl Acad Sci USA. 1994;91:8413–7.PubMedCrossRef
48.
go back to reference Kuehl BL, Paterson JW, Peacock JW, Paterson MC, Rauth AM. Presence of a heterozygous substitution and its relationship to DT-diaphorase activity. Br J Cancer. 1995;72:555–61.PubMedCrossRef Kuehl BL, Paterson JW, Peacock JW, Paterson MC, Rauth AM. Presence of a heterozygous substitution and its relationship to DT-diaphorase activity. Br J Cancer. 1995;72:555–61.PubMedCrossRef
49.
go back to reference Xue H, Ni P, Lin B, Xu H, Huang G. X-ray repair cross-complementing group 1 (XRCC1) genetic polymorphisms and gastric cancer risk: a HuGE review and meta-analysis. Am J Epidemiol. 2011;173:363–75.PubMedCrossRef Xue H, Ni P, Lin B, Xu H, Huang G. X-ray repair cross-complementing group 1 (XRCC1) genetic polymorphisms and gastric cancer risk: a HuGE review and meta-analysis. Am J Epidemiol. 2011;173:363–75.PubMedCrossRef
Metadata
Title
System review and metaanalysis of the relationships between five metabolic gene polymorphisms and colorectal adenoma risk
Authors
Zhi-Qiang Zhao
Qing-Kai Guan
Fei-Yun Yang
Peng Zhao
Bing Zhou
Zhi-Jun Chen
Publication date
01-04-2012
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 2/2012
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-011-0287-x

Other articles of this Issue 2/2012

Tumor Biology 2/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine