Skip to main content
Top
Published in: Tumor Biology 4/2011

01-08-2011 | Research Article

Cytostatic effect of novel mTOR inhibitor, PRP-1 (galarmin) in MDA 231 (ER−) breast carcinoma cell line. PRP-1 inhibits mesenchymal tumors

Authors: Karina A. Galoian, Thomas H. Temple, Armen Galoyan

Published in: Tumor Biology | Issue 4/2011

Login to get access

Abstract

Activation of the PI3K–Akt–mTOR pathway is implicated both in the establishment of tumors and as well as a target for therapy in many types of solid malignancy, its blockade represents an opportunity to improve outcomes in patients with tumors that are associated with poor prognosis. Our experimental data indicates that proline-rich polypeptide-1 (PRP-1, galarmin) is immunomodulator cytokine, produced by hypothalamic neurosecretory cells and exerts its antiproliferative effect on the tumor cells of mesenchymal origin via inhibiting mTOR kinase activity and repressing cell cycle progression. The goal of these investigations was to elucidate the antiproliferative action of PRP-1 on the breast carcinoma cell line MDA 231 (ER−) and to compare PRP-1 action previously reported on other mesenchymal tumors. These experiments confirmed maximum inhibition of cell growth at 0.5 and 1 μg/ml PRP-1 (71% and 63%, respectively) and inhibition at 10 μg/ml of 44%. There was no inhibitory effect observed on luminal T47-D (ER+) cells. Videomicroscopy results demonstrated dividing cells in the cytokine-treated MDA 231 (ER−), suggesting that the cells were not in the state of dormancy. The flow cytometry experiments confirmed that PRP-1-treated cells were accumulated in S phase. No apoptosis, caspase activation, or senescence was detected after treatment with this cytokine. Experiments with mTOR with PRP-1 (10 μg/ml) indicated statistically significant 40% inhibition of mTOR kinase activity in immunoprecipitates of the MDA 231 (ER−) cell line. PRP-1 is a novel mTOR inhibitor with strong antiproliferative action in mesenchymal tumors mostly resistant to radiation and chemotherapy.
Literature
1.
go back to reference Galoyan AA. Brain neurosecretory cytokines: immune response and neuronal survival. NY: Kluwer Academic/Plenum Publishers; 2004. Galoyan AA. Brain neurosecretory cytokines: immune response and neuronal survival. NY: Kluwer Academic/Plenum Publishers; 2004.
2.
go back to reference Galoyan A. The brain immune system: chemistry and biology of the signal molecules. In: Abel L, editor. Handbook of neurochemistry and neurobiology. NY: Springer; 2008. p. 155–96. Galoyan A. The brain immune system: chemistry and biology of the signal molecules. In: Abel L, editor. Handbook of neurochemistry and neurobiology. NY: Springer; 2008. p. 155–96.
3.
go back to reference Galoyan AA, Grigorian SL, Badalyan CV. Treatment and prophylaxis of anthrax by brain neurosecretory cytokines. Neurochem Res. 2006;31(6):795–803.PubMedCrossRef Galoyan AA, Grigorian SL, Badalyan CV. Treatment and prophylaxis of anthrax by brain neurosecretory cytokines. Neurochem Res. 2006;31(6):795–803.PubMedCrossRef
4.
go back to reference Galoyan AA, Sarkissian JS, Chavushyan VA, et al. Neuroprotective action of hypothalamic peptide PRP-1 at various time survival following spinal cord hemisection. Neurochem Res. 2005;30(4):507–25.PubMedCrossRef Galoyan AA, Sarkissian JS, Chavushyan VA, et al. Neuroprotective action of hypothalamic peptide PRP-1 at various time survival following spinal cord hemisection. Neurochem Res. 2005;30(4):507–25.PubMedCrossRef
5.
go back to reference Galoyan AA. Neurochemistry of brain neuroendocrine immune system: signal molecules. Neurochem Res. 2000;25(9/10):1343–55.PubMedCrossRef Galoyan AA. Neurochemistry of brain neuroendocrine immune system: signal molecules. Neurochem Res. 2000;25(9/10):1343–55.PubMedCrossRef
6.
go back to reference Galoyan AA, Aprikyan VS. A new hypothalamic polypeptide is a regulator of myelopoiesis. Neurochem Res. 2002;27(4):305–12.PubMedCrossRef Galoyan AA, Aprikyan VS. A new hypothalamic polypeptide is a regulator of myelopoiesis. Neurochem Res. 2002;27(4):305–12.PubMedCrossRef
7.
go back to reference Galoyan AA, Shakhlamov VA, Kondakova LI, Altukhova VI, Polyakova GP. The influence of proline-rich polypeptide on the morphology and mitotic activity of neurinoma Hassel node of tumor cells at rats (electron microscopic investigations). PNAS (Russian Academy of Sciences). 2001;101(2):279–86. Galoyan AA, Shakhlamov VA, Kondakova LI, Altukhova VI, Polyakova GP. The influence of proline-rich polypeptide on the morphology and mitotic activity of neurinoma Hassel node of tumor cells at rats (electron microscopic investigations). PNAS (Russian Academy of Sciences). 2001;101(2):279–86.
8.
go back to reference Galoyan AA, Shakhlamov VA, Malaytsev VV. Changes in tumor cells L929 under PRP effect in vitro. Med Sci Armenia. 2001;41(1):25–9. Galoyan AA, Shakhlamov VA, Malaytsev VV. Changes in tumor cells L929 under PRP effect in vitro. Med Sci Armenia. 2001;41(1):25–9.
9.
go back to reference Galoyan AA, Margaryan KS, Hovhannisyan GG, Gasparyan GH, Aroutiounian DN, Aroutiounian RM. Study of the genotoxic effects of a proline-richpolypeptide using the comet assay. Neurochem Journal. 2009;3(2):145–8.CrossRef Galoyan AA, Margaryan KS, Hovhannisyan GG, Gasparyan GH, Aroutiounian DN, Aroutiounian RM. Study of the genotoxic effects of a proline-richpolypeptide using the comet assay. Neurochem Journal. 2009;3(2):145–8.CrossRef
10.
go back to reference Aroutiounian RM, Hovhannisyan GG, Gasparyan GH, Margaryan KS, Aroutiounian DN, Aroutiounian DN, et al. Proline-rich polypeptide-1 protects the cells in vitro from genotoxic effects of mitomycin C. Neurochem Res Apr. 2010;35(4):598–602.CrossRef Aroutiounian RM, Hovhannisyan GG, Gasparyan GH, Margaryan KS, Aroutiounian DN, Aroutiounian DN, et al. Proline-rich polypeptide-1 protects the cells in vitro from genotoxic effects of mitomycin C. Neurochem Res Apr. 2010;35(4):598–602.CrossRef
11.
go back to reference Chailakhyan RK, Gerasimov YV, Chailakhyan MR, Galoyan AA. Proline- rich hypothalamic polypeptide has opposite effects on the proliferation of human normal bone marrow stromal cells and human giant-cell tumour stromal cells. Neurochem Res. 2010;35(6):934–9.PubMedCrossRef Chailakhyan RK, Gerasimov YV, Chailakhyan MR, Galoyan AA. Proline- rich hypothalamic polypeptide has opposite effects on the proliferation of human normal bone marrow stromal cells and human giant-cell tumour stromal cells. Neurochem Res. 2010;35(6):934–9.PubMedCrossRef
12.
go back to reference Galoian K, Scully S, McNamara G, Flynn P, Galoyan A. Antitumorigenic effect of brain proline rich polypeptide-1 in human chondrosarcoma. Neurochem Res. 2009;34(Issue 12):2117–21.PubMedCrossRef Galoian K, Scully S, McNamara G, Flynn P, Galoyan A. Antitumorigenic effect of brain proline rich polypeptide-1 in human chondrosarcoma. Neurochem Res. 2009;34(Issue 12):2117–21.PubMedCrossRef
13.
go back to reference Galoian K, Scully S, Galoyan A. Myc-oncogene inactivating effect by proline rich polypeptide (PRP-1) in chondrosarcoma JJ012 cells. Neurochem Res. 2009;34(2):379–85.PubMedCrossRef Galoian K, Scully S, Galoyan A. Myc-oncogene inactivating effect by proline rich polypeptide (PRP-1) in chondrosarcoma JJ012 cells. Neurochem Res. 2009;34(2):379–85.PubMedCrossRef
14.
15.
go back to reference Hosoi H, Dilling MB, Liu LN, Danks MK, Shikata T, Sekulic A, et al. Studies on the mechanism of resistance to rapamycin in human cancer cells. Mol Pharmacol. 1998;54(5):815–24.PubMed Hosoi H, Dilling MB, Liu LN, Danks MK, Shikata T, Sekulic A, et al. Studies on the mechanism of resistance to rapamycin in human cancer cells. Mol Pharmacol. 1998;54(5):815–24.PubMed
16.
go back to reference Robert PC, Shiu PW, Dubik D. cMyc oncogene expression in estrogen dependent and independent breast cancer. Clin Chem. 1993;39(2):353–5. Robert PC, Shiu PW, Dubik D. cMyc oncogene expression in estrogen dependent and independent breast cancer. Clin Chem. 1993;39(2):353–5.
17.
go back to reference Dubik D, Shiu RP. Mechanism of estrogen activation of cMyc oncogene expression. Oncogene. 1992;7:1587–94.PubMed Dubik D, Shiu RP. Mechanism of estrogen activation of cMyc oncogene expression. Oncogene. 1992;7:1587–94.PubMed
18.
go back to reference Berns EM, Klijn JG, van Putten WL, van Staveren IL, Portengen H, Foekens JA. c-myc amplification is a better prognostic factor than HER2/neu amplification in primary breast cancer. Cancer Res. 1992;52:1107–13.PubMed Berns EM, Klijn JG, van Putten WL, van Staveren IL, Portengen H, Foekens JA. c-myc amplification is a better prognostic factor than HER2/neu amplification in primary breast cancer. Cancer Res. 1992;52:1107–13.PubMed
19.
go back to reference Collins S, Groudine M. Amplification of endogenous myc- related DNA sequences in a human myeloid leukemic cell line. Nature. 1982;298:679–81.PubMedCrossRef Collins S, Groudine M. Amplification of endogenous myc- related DNA sequences in a human myeloid leukemic cell line. Nature. 1982;298:679–81.PubMedCrossRef
20.
go back to reference Galoian K, Milne T, Brock H, Shilatifard A, Slany R, Hess JL. Deregulation of c-myc by leukemogenic MLL fusion proteins. Blood Acad Sci USA. 2000;90:8392–6. Suppl. 96, 457a. Galoian K, Milne T, Brock H, Shilatifard A, Slany R, Hess JL. Deregulation of c-myc by leukemogenic MLL fusion proteins. Blood Acad Sci USA. 2000;90:8392–6. Suppl. 96, 457a.
21.
go back to reference Martin ME, Milne TA, Bloyer S, Galoian K, Shen W, Gibbs D, et al. Dimerization of MLL fusion proteins immortalizes hematopoietic cells. Cancer Cell Sep. 2003;4(3):197–207.CrossRef Martin ME, Milne TA, Bloyer S, Galoian K, Shen W, Gibbs D, et al. Dimerization of MLL fusion proteins immortalizes hematopoietic cells. Cancer Cell Sep. 2003;4(3):197–207.CrossRef
22.
go back to reference Ar-Rushdi A, Nishikura K, Erikson J, Watt R, Rovera G, Croce CM. Differential expression of the translocated and the untranslocated cmyc oncogene in Burkitt Lymphoma. Science. 1983;222:390–3.PubMedCrossRef Ar-Rushdi A, Nishikura K, Erikson J, Watt R, Rovera G, Croce CM. Differential expression of the translocated and the untranslocated cmyc oncogene in Burkitt Lymphoma. Science. 1983;222:390–3.PubMedCrossRef
23.
go back to reference Little CD, Nau MN, Carney DN, Gazdar AF, Minna JD. Small cell carcinoma of the lung: amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature. 1984;306:194–6.CrossRef Little CD, Nau MN, Carney DN, Gazdar AF, Minna JD. Small cell carcinoma of the lung: amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature. 1984;306:194–6.CrossRef
24.
go back to reference Galoian KA, Temple HT, Galoyan AA. Cytostatic effect of the hypothalamic cytokine PRP-1 is mediated by its inhibition of mTOR and c-Myc in high grade metastatic chondrosarcoma. Neurochemical Res. 2011;36:812–8.CrossRef Galoian KA, Temple HT, Galoyan AA. Cytostatic effect of the hypothalamic cytokine PRP-1 is mediated by its inhibition of mTOR and c-Myc in high grade metastatic chondrosarcoma. Neurochemical Res. 2011;36:812–8.CrossRef
25.
go back to reference Barrios C, Castresana JS, Kreicbergs A. Clinicopathologic correlations and short-term prognosis in musculoskeletal sarcoma with c-myc oncogene amplification. Am J Clin Oncol. 1994;17:273–6.PubMedCrossRef Barrios C, Castresana JS, Kreicbergs A. Clinicopathologic correlations and short-term prognosis in musculoskeletal sarcoma with c-myc oncogene amplification. Am J Clin Oncol. 1994;17:273–6.PubMedCrossRef
26.
27.
go back to reference Hynes NE, Stoelzle T. Breast Cancer Research Key signalling nodes in mammary gland development and cancer: Myc. Breast Cancer Research. 2009;11:210.PubMedCrossRef Hynes NE, Stoelzle T. Breast Cancer Research Key signalling nodes in mammary gland development and cancer: Myc. Breast Cancer Research. 2009;11:210.PubMedCrossRef
28.
go back to reference Rhodes DR, Kalyana-Sundaram S, Tomlins SA, Mahavisno V, Kasper N, Varambally R, et al. Molecular concepts analysis links tumors, pathways, mechanisms, and drugs. Neoplasia. 2007;9:443–54.PubMedCrossRef Rhodes DR, Kalyana-Sundaram S, Tomlins SA, Mahavisno V, Kasper N, Varambally R, et al. Molecular concepts analysis links tumors, pathways, mechanisms, and drugs. Neoplasia. 2007;9:443–54.PubMedCrossRef
29.
go back to reference Alles MC, Gardiner-Garden M, Nott DJ, Wang Y, Foekens JA, Sutherland RL, et al. Meta-analysis and gene set enrichment relative to ER status reveal elevate activity of MYC and E2F in the ‘basal’ breast cancer subgroup. PLoS ONE. 2009;4:e4710.PubMedCrossRef Alles MC, Gardiner-Garden M, Nott DJ, Wang Y, Foekens JA, Sutherland RL, et al. Meta-analysis and gene set enrichment relative to ER status reveal elevate activity of MYC and E2F in the ‘basal’ breast cancer subgroup. PLoS ONE. 2009;4:e4710.PubMedCrossRef
30.
go back to reference Funasaka T, Hu H, Hogan V, Raz A. Down-regulation of phosphoglucose isomerase/autocrine motility factor expression sensitizes human fibrosarcoma cells to oxidative stress leading to cellular senescence. J Biol Chem. 2007;282(50):36362–9.PubMedCrossRef Funasaka T, Hu H, Hogan V, Raz A. Down-regulation of phosphoglucose isomerase/autocrine motility factor expression sensitizes human fibrosarcoma cells to oxidative stress leading to cellular senescence. J Biol Chem. 2007;282(50):36362–9.PubMedCrossRef
31.
go back to reference Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 2005;436(7051):725–30.PubMedCrossRef Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 2005;436(7051):725–30.PubMedCrossRef
32.
go back to reference Harper JV (2005) Synchronization of cell populations in G1/S and G2/M phases of the cell cycle. In: T. Humphrey and G. Brooks. Methods in Molecular Biology, vol 296, Cell Cycle control, pp 157–166 Harper JV (2005) Synchronization of cell populations in G1/S and G2/M phases of the cell cycle. In: T. Humphrey and G. Brooks. Methods in Molecular Biology, vol 296, Cell Cycle control, pp 157–166
33.
go back to reference Figlin RA et al. NCCN Task Force Report: mTOR inhibition in solid tumors. JNCCN. 2008;6(5):S1–S25.PubMed Figlin RA et al. NCCN Task Force Report: mTOR inhibition in solid tumors. JNCCN. 2008;6(5):S1–S25.PubMed
34.
go back to reference Korn EL, Arbuck SG, Pluda JM, Simon R, Kaplan RS, Christian MC. Clinical trial designs for cytostatic agents: are new approaches needed? J Clin Oncol. 2001;19(1):265–72.PubMed Korn EL, Arbuck SG, Pluda JM, Simon R, Kaplan RS, Christian MC. Clinical trial designs for cytostatic agents: are new approaches needed? J Clin Oncol. 2001;19(1):265–72.PubMed
35.
go back to reference Sarrió D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J. Epithelial–mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008;68(4):987–97.CrossRef Sarrió D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J. Epithelial–mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008;68(4):987–97.CrossRef
36.
go back to reference Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;2(127):679–95.CrossRef Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;2(127):679–95.CrossRef
37.
go back to reference Sheridan C, Kishimoto H, Fuchs RK, et al. CD44+/CD24 breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res. 2006;8:R59.PubMedCrossRef Sheridan C, Kishimoto H, Fuchs RK, et al. CD44+/CD24 breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res. 2006;8:R59.PubMedCrossRef
38.
go back to reference Hugo H, Ackland ML, Blick T, et al. Epithelial mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J Cell Physiol. 2007;213:374–83.PubMedCrossRef Hugo H, Ackland ML, Blick T, et al. Epithelial mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J Cell Physiol. 2007;213:374–83.PubMedCrossRef
39.
go back to reference Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.PubMedCrossRef Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.PubMedCrossRef
40.
go back to reference Thiery JP. Epithelial –mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.PubMedCrossRef Thiery JP. Epithelial –mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.PubMedCrossRef
41.
go back to reference Thompson EW, Newgreen DF, Tarin D. Carcinoma invasion and metastasis: a role for epithelial–mesenchymal transition? Cancer Res. 2005;65:5991–5. discussion 5.PubMedCrossRef Thompson EW, Newgreen DF, Tarin D. Carcinoma invasion and metastasis: a role for epithelial–mesenchymal transition? Cancer Res. 2005;65:5991–5. discussion 5.PubMedCrossRef
42.
go back to reference Savagner P. Leaving the neighborhood: molecular mechanisms involved during epithelial–mesenchymal transition. Bioessays. 2001;23:912–23.PubMedCrossRef Savagner P. Leaving the neighborhood: molecular mechanisms involved during epithelial–mesenchymal transition. Bioessays. 2001;23:912–23.PubMedCrossRef
43.
go back to reference Stingl J, Caldas. Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nat Rev Cancer. 2007;7:791–9.PubMedCrossRef Stingl J, Caldas. Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nat Rev Cancer. 2007;7:791–9.PubMedCrossRef
44.
go back to reference Laurenti E, Wilson A, Trumpp A. Mycs other life:stem cells and beyond. Curr Opin Cell Biol. 2009;21:844–54.PubMedCrossRef Laurenti E, Wilson A, Trumpp A. Mycs other life:stem cells and beyond. Curr Opin Cell Biol. 2009;21:844–54.PubMedCrossRef
Metadata
Title
Cytostatic effect of novel mTOR inhibitor, PRP-1 (galarmin) in MDA 231 (ER−) breast carcinoma cell line. PRP-1 inhibits mesenchymal tumors
Authors
Karina A. Galoian
Thomas H. Temple
Armen Galoyan
Publication date
01-08-2011
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 4/2011
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-011-0176-3

Other articles of this Issue 4/2011

Tumor Biology 4/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine