Skip to main content
Top
Published in: Tumor Biology 1/2010

01-01-2010 | Research Article

The role of Crk/Dock180/Rac1 pathway in the malignant behavior of human ovarian cancer cell SKOV3

Authors: Hui Wang, Hua Linghu, Jin Wang, Ya-ling Che, Ting-xiu Xiang, Wei-xue Tang, Zhen-wei Yao

Published in: Tumor Biology | Issue 1/2010

Login to get access

Abstract

Small GTPases, particularly the Rho family, are key regulators of cell motility and migration. Dock180 was well known for the main target of signal adaptor protein Crk and acted as a guanine-nucleotide exchange factor for small GTPase Rac1. In the present study, Dock180 was found to combine primarily with CrkI other than CrkII, and its association with Elmo1 was also demonstrated in ovarian cancer cell SKOV3. To evaluate the role of Dock180 in human ovarian cancer cell, we performed RNAi-mediated knockdown of Dock180 in SKOV3 cells using small interfering RNA expression vector. In Dock180 knockdown cells, we found that Elmo1 expression and Rac1 activity were decreased simultaneously. By contrast, the expressions of both another Crk-combining molecule C3G and Rap1 activity were observed to increase obviously. Accordingly, all Dock180 knockdown cells present with evident change in cell morphology, reduced cell proliferation, and attenuated cell migration. Taken together, these results suggest that signal transfer of Crk/Dock180/Rac1 is implicated in actin cytoskeleton reorganization and thus in the cell proliferation, motility, invasion, and of human ovarian cancer cell line SKOV3.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2:563–72.CrossRefPubMed Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2:563–72.CrossRefPubMed
3.
go back to reference Mayer BJ, Hamaguchi M, Hanafusa H. A novel viral oncogene with structural similarity to phospholipase C.:. Nature. 1988;332(6161):272–5.CrossRefPubMed Mayer BJ, Hamaguchi M, Hanafusa H. A novel viral oncogene with structural similarity to phospholipase C.:. Nature. 1988;332(6161):272–5.CrossRefPubMed
4.
go back to reference Matsuda M, Tanaka S, Nagata S, Kojima A, Kurata T, Shibuya M. Two species of human CRK cDNA encode proteins with distinct biological activities. Mol Cell Biol. 1992;12:3482–9.PubMed Matsuda M, Tanaka S, Nagata S, Kojima A, Kurata T, Shibuya M. Two species of human CRK cDNA encode proteins with distinct biological activities. Mol Cell Biol. 1992;12:3482–9.PubMed
5.
go back to reference Tanaka S, Hattori S, Kurata T, Nagashima K, Fukui Y, Nakamura S, et al. Both the SH2 and SH3 domains of human CRK protein are required for neuronal differentiation of PC12 cells. Mol Cell Biol. 1993;13:4409–15.PubMed Tanaka S, Hattori S, Kurata T, Nagashima K, Fukui Y, Nakamura S, et al. Both the SH2 and SH3 domains of human CRK protein are required for neuronal differentiation of PC12 cells. Mol Cell Biol. 1993;13:4409–15.PubMed
6.
go back to reference Gotoh T, Hattori S, Nakamura S, Kitayama H, Noda M, Takai Y, et al. Identification of Rap1 as a target for the Crk SH3 domain-binding guanine nucleotide-releasing factor C3G. Mol Cell Biol. 1995;15(12):6746–53.PubMed Gotoh T, Hattori S, Nakamura S, Kitayama H, Noda M, Takai Y, et al. Identification of Rap1 as a target for the Crk SH3 domain-binding guanine nucleotide-releasing factor C3G. Mol Cell Biol. 1995;15(12):6746–53.PubMed
7.
go back to reference Hasegawa H, Kiyokawa E, Tanaka S, Nagashima K, Gotoh N, Shibuya M, et al. DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol Cell Biol. 1996;4:1770–6. Hasegawa H, Kiyokawa E, Tanaka S, Nagashima K, Gotoh N, Shibuya M, et al. DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol Cell Biol. 1996;4:1770–6.
8.
go back to reference Kiyokawa E, Hashimoto Y, Kobayashi S, Sugimura H, Kurata T, Matsuda M. Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes Dev. 1998;12:3331–6.CrossRefPubMed Kiyokawa E, Hashimoto Y, Kobayashi S, Sugimura H, Kurata T, Matsuda M. Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes Dev. 1998;12:3331–6.CrossRefPubMed
9.
go back to reference Nishihara H, Tanaka S, Tsuda M, Oikawa S, Maeda M, Shimizu M, et al. Molecular and immunohistochemical analysis of signaling adaptor protein Crk in human cancers. Cancer Lett. 2002;180(1):55–61.CrossRefPubMed Nishihara H, Tanaka S, Tsuda M, Oikawa S, Maeda M, Shimizu M, et al. Molecular and immunohistochemical analysis of signaling adaptor protein Crk in human cancers. Cancer Lett. 2002;180(1):55–61.CrossRefPubMed
10.
go back to reference Miller CT, Chen G, Gharib TG, Wang H, Thomas DG, Misek DE, et al. Increased C-CRK proto-oncogene expression is associated with an aggressive phenotype in lung adenocarcinomas. Oncogene. 2003;22(39):7950–7.CrossRefPubMed Miller CT, Chen G, Gharib TG, Wang H, Thomas DG, Misek DE, et al. Increased C-CRK proto-oncogene expression is associated with an aggressive phenotype in lung adenocarcinomas. Oncogene. 2003;22(39):7950–7.CrossRefPubMed
11.
go back to reference Takino T, Nakada M, Miyamori H, Yamashita J, Yamada KM, Sato H. CrkI adapter protein modulates cell migration and invasion in glioblastoma. Cancer Res. 2003;63(9):2335–7.PubMed Takino T, Nakada M, Miyamori H, Yamashita J, Yamada KM, Sato H. CrkI adapter protein modulates cell migration and invasion in glioblastoma. Cancer Res. 2003;63(9):2335–7.PubMed
12.
go back to reference Linghu H, Tsuda M, Makino Y, Watanabe T, Ichihara S, Sawa H, et al. Involvement of adaptor protein Crk in malignant feature of human ovarian cancer cell line MCAS. Oncogene. 2006;25:3547–56.CrossRefPubMed Linghu H, Tsuda M, Makino Y, Watanabe T, Ichihara S, Sawa H, et al. Involvement of adaptor protein Crk in malignant feature of human ovarian cancer cell line MCAS. Oncogene. 2006;25:3547–56.CrossRefPubMed
13.
go back to reference Hasegawa H, Kiyokawa E, Tanaka S, et al. DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol Cell Biol. 1996;16:1770–6.PubMed Hasegawa H, Kiyokawa E, Tanaka S, et al. DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol Cell Biol. 1996;16:1770–6.PubMed
14.
go back to reference Erickson MR, Galletta BJ, Abmayr SM. Drosophila myoblast city encodes a conserved protein that is essential for myoblast fusion, dorsal closure, and cytoskeletal organization. J Cell Biol. 1997;138:589–603.CrossRefPubMed Erickson MR, Galletta BJ, Abmayr SM. Drosophila myoblast city encodes a conserved protein that is essential for myoblast fusion, dorsal closure, and cytoskeletal organization. J Cell Biol. 1997;138:589–603.CrossRefPubMed
15.
go back to reference Nolan KM, Barrett K, Lu Y, Hu K, Vincent S, Settleman J. Myoblast city, the Drosophila homolog of DOCK180/CED-5, is required in a Rac signaling pathway utilized for multiple developmental processes. Genes Dev. 1998;12:3337–42.CrossRefPubMed Nolan KM, Barrett K, Lu Y, Hu K, Vincent S, Settleman J. Myoblast city, the Drosophila homolog of DOCK180/CED-5, is required in a Rac signaling pathway utilized for multiple developmental processes. Genes Dev. 1998;12:3337–42.CrossRefPubMed
16.
go back to reference Wu YC, Horvitz HR. C. elegans phagocytosis and cellmigration protein CED-5 is similar to human DOCK180. Nature. 1998;392:501–4.CrossRefPubMed Wu YC, Horvitz HR. C. elegans phagocytosis and cellmigration protein CED-5 is similar to human DOCK180. Nature. 1998;392:501–4.CrossRefPubMed
17.
go back to reference Gumienny TL, Brugnera E, Tosello-Trampont AC, Kinchen JM, Haney LB, Nishiwaki K. CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell. 2001;107(1):27–41.CrossRefPubMed Gumienny TL, Brugnera E, Tosello-Trampont AC, Kinchen JM, Haney LB, Nishiwaki K. CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell. 2001;107(1):27–41.CrossRefPubMed
19.
go back to reference Para A, Krischke M, Merlot S, Shen Z, Oberholzer M, Lee S, et al. Dictyostelium Dock180-related RacGEFs regulate the actin cytoskeleton during cell motility. Mol Biol Cell. 2009;20(2):699–707.CrossRefPubMed Para A, Krischke M, Merlot S, Shen Z, Oberholzer M, Lee S, et al. Dictyostelium Dock180-related RacGEFs regulate the actin cytoskeleton during cell motility. Mol Biol Cell. 2009;20(2):699–707.CrossRefPubMed
20.
go back to reference Lu M, Ravichandran KS. Dock180–ELMO cooperation in Rac activation. Methods Enzymol. 2006;406:388–402.CrossRefPubMed Lu M, Ravichandran KS. Dock180–ELMO cooperation in Rac activation. Methods Enzymol. 2006;406:388–402.CrossRefPubMed
21.
go back to reference Grimsley CM, Kinchen JM, Tosello-Trampont A, Brugnera E, Haney LB, Lu M, et al. Dock180 and ELMO1 proteins cooperate to promote evolutionarily conserved Rac-dependent cell migration. J Biol Chem. 2004;279(7):6087–97.CrossRefPubMed Grimsley CM, Kinchen JM, Tosello-Trampont A, Brugnera E, Haney LB, Lu M, et al. Dock180 and ELMO1 proteins cooperate to promote evolutionarily conserved Rac-dependent cell migration. J Biol Chem. 2004;279(7):6087–97.CrossRefPubMed
22.
go back to reference Payne SL, Hendrix MJ, Kirschmann DA. Lysyl oxidase regulates actin filament formation through the p130(Cas)/Crk/DOCK180 signaling complex. J Cell Biochem. 2006;98(4):827–37.CrossRefPubMed Payne SL, Hendrix MJ, Kirschmann DA. Lysyl oxidase regulates actin filament formation through the p130(Cas)/Crk/DOCK180 signaling complex. J Cell Biochem. 2006;98(4):827–37.CrossRefPubMed
23.
go back to reference Akakura S, Kar B, Singh S, Cho L, Tibrewal N, Sanokawa-Akakura R, et al. C-terminal SH3 domain of CrkII regulates the assembly and function of the DOCK180/ELMO Rac-GEF. J Cell Physiol. 2005;204(1):344–51.CrossRefPubMed Akakura S, Kar B, Singh S, Cho L, Tibrewal N, Sanokawa-Akakura R, et al. C-terminal SH3 domain of CrkII regulates the assembly and function of the DOCK180/ELMO Rac-GEF. J Cell Physiol. 2005;204(1):344–51.CrossRefPubMed
24.
go back to reference Gumienny TL, Brugnera E, Tosello-Trampont AC, Kinchen JM, Haney LB, Nishiwaki K, et al. CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway. Is required for phagocytosis and cell migration. Cell. 2001;107(1):27–41.CrossRefPubMed Gumienny TL, Brugnera E, Tosello-Trampont AC, Kinchen JM, Haney LB, Nishiwaki K, et al. CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway. Is required for phagocytosis and cell migration. Cell. 2001;107(1):27–41.CrossRefPubMed
25.
go back to reference Brugnera E, Haney L, Grimsley C, Lu M, Walk SF, Tosello-Trampont AC, et al. Unconventional Rac-GEF activity is mediated through the Dock180–ELMO complex. Nat Cell Biol. 2002;4:574–82.PubMed Brugnera E, Haney L, Grimsley C, Lu M, Walk SF, Tosello-Trampont AC, et al. Unconventional Rac-GEF activity is mediated through the Dock180–ELMO complex. Nat Cell Biol. 2002;4:574–82.PubMed
26.
go back to reference Albert ML, Kim JI, Birge RB. Alphavbeta5 integrin recruits the CrkII–Dock180–rac1 complex for phagocytosis of apoptotic cells. Nat Cell Biol. 2000;2:899–905.CrossRefPubMed Albert ML, Kim JI, Birge RB. Alphavbeta5 integrin recruits the CrkII–Dock180–rac1 complex for phagocytosis of apoptotic cells. Nat Cell Biol. 2000;2:899–905.CrossRefPubMed
27.
go back to reference Hsia DA, Mitra SK, Hauck CR, Streblow DN, Nelson JA, Ilic D, et al. Differential regulation of cell motility and invasion by FAK. Cell Biol. 2003;160(5):753–67.CrossRef Hsia DA, Mitra SK, Hauck CR, Streblow DN, Nelson JA, Ilic D, et al. Differential regulation of cell motility and invasion by FAK. Cell Biol. 2003;160(5):753–67.CrossRef
28.
go back to reference Valle AM, Beuvin M, Boyer B. Activation of Rac1 by Paxillin–Crk–DOCK180 signaling complex is antagonized by Rap1 in migrating NBT-II cells. J Biol Chem. 2004;279(43):44940–6. Valle AM, Beuvin M, Boyer B. Activation of Rac1 by Paxillin–Crk–DOCK180 signaling complex is antagonized by Rap1 in migrating NBT-II cells. J Biol Chem. 2004;279(43):44940–6.
29.
go back to reference Gu J, Sumida Y, Sanzen N, Sekiguchi K. Laminin-10/11 and fibronectin differentially regulate integrin-dependent Rho and Rac activation via p130(Cas)–CrkII–DOCK180 pathway. J Biol Chem. 2001;276(29):27090–7.CrossRefPubMed Gu J, Sumida Y, Sanzen N, Sekiguchi K. Laminin-10/11 and fibronectin differentially regulate integrin-dependent Rho and Rac activation via p130(Cas)–CrkII–DOCK180 pathway. J Biol Chem. 2001;276(29):27090–7.CrossRefPubMed
30.
go back to reference Jarzynka MJ, Hu B, Hui KM, Bar-Joseph I, Gu W, Hirose T, et al. ELMO1 and Dock180, a bipartite Rac1 guanine nucleotide exchange factor, promote human glioma cell invasion. Cancer Res. 2007;67(15):7203–11.CrossRefPubMed Jarzynka MJ, Hu B, Hui KM, Bar-Joseph I, Gu W, Hirose T, et al. ELMO1 and Dock180, a bipartite Rac1 guanine nucleotide exchange factor, promote human glioma cell invasion. Cancer Res. 2007;67(15):7203–11.CrossRefPubMed
31.
go back to reference Kiyokawa E, Hashimoto Y, Kurata T, Sugimura H, Matsuda M. Evidence that DOCK180 up-regulates signals from the CrkII–p130(Cas) complex. J Biol Chem. 1998;273(38):24479–84.CrossRefPubMed Kiyokawa E, Hashimoto Y, Kurata T, Sugimura H, Matsuda M. Evidence that DOCK180 up-regulates signals from the CrkII–p130(Cas) complex. J Biol Chem. 1998;273(38):24479–84.CrossRefPubMed
32.
go back to reference Tanaka S, Morishita T, Hashimoto Y, Hattori S, Nakamura S, Shibuya M, et al. C3G, a guanine nucleotide-releasing protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2/ASH proteins. Proc Natl Acad Sci U S A. 1994;91(8):3443–7.CrossRefPubMed Tanaka S, Morishita T, Hashimoto Y, Hattori S, Nakamura S, Shibuya M, et al. C3G, a guanine nucleotide-releasing protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2/ASH proteins. Proc Natl Acad Sci U S A. 1994;91(8):3443–7.CrossRefPubMed
33.
go back to reference Kitayama H, Sugimoto Y, Matsuzaki T, Ikawa Y, Noda M. A ras-related gene with transformation suppressor activity. Cell. 1989;56(1):77–84.CrossRefPubMed Kitayama H, Sugimoto Y, Matsuzaki T, Ikawa Y, Noda M. A ras-related gene with transformation suppressor activity. Cell. 1989;56(1):77–84.CrossRefPubMed
34.
go back to reference Van Aelst L, Symons M. Role of Rho family GTPases in epithelial morphogenesis. Genes Dev. 2002;16(9):1032–54.CrossRefPubMed Van Aelst L, Symons M. Role of Rho family GTPases in epithelial morphogenesis. Genes Dev. 2002;16(9):1032–54.CrossRefPubMed
35.
go back to reference Bivona TG, Wiener HH, Ahearn IM, Silletti J, Chiu VK, Philips MR. Rap1 up-regulation and activation on plasma membrane regulates T cell adhesion. J Cell Biol. 2004;164(3):461–70.CrossRefPubMed Bivona TG, Wiener HH, Ahearn IM, Silletti J, Chiu VK, Philips MR. Rap1 up-regulation and activation on plasma membrane regulates T cell adhesion. J Cell Biol. 2004;164(3):461–70.CrossRefPubMed
36.
go back to reference Larue L, Bellacosa A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene. 2005;24(50):7443–54.CrossRefPubMed Larue L, Bellacosa A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene. 2005;24(50):7443–54.CrossRefPubMed
Metadata
Title
The role of Crk/Dock180/Rac1 pathway in the malignant behavior of human ovarian cancer cell SKOV3
Authors
Hui Wang
Hua Linghu
Jin Wang
Ya-ling Che
Ting-xiu Xiang
Wei-xue Tang
Zhen-wei Yao
Publication date
01-01-2010
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 1/2010
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-009-0009-9

Other articles of this Issue 1/2010

Tumor Biology 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine