Skip to main content
Top
Published in: Insights into Imaging 6/2018

Open Access 01-12-2018 | Review

Radiomics and liquid biopsy in oncology: the holons of systems medicine

Authors: Emanuele Neri, Marzia Del Re, Fabiola Paiar, Paola Erba, Paola Cocuzza, Daniele Regge, Romano Danesi

Published in: Insights into Imaging | Issue 6/2018

Login to get access

Abstract

Radiomics is a process of extraction and analysis of quantitative features from diagnostic images. Liquid biopsy is a test done on a sample of blood to look for cancer cells or for pieces of tumourigenic DNA circulating in the blood. Radiomics and liquid biopsy have great potential in oncology, since both are minimally invasive, easy to perform, and can be repeated in patient follow-up visits, enabling the extraction of valuable information regarding tumour type, aggressiveness, progression, and response to treatment. Both methods are in their infancy, with major evidence of application in lung and gastrointestinal cancer, while still undergoing evaluation in other cancer types. In this paper, the main oncologic applications of radiomics and liquid biopsy are reviewed, and a synergistic approach incorporating both tests for cancer diagnosis and follow-up is discussed within the context of systems medicine.

Teaching Points

Radiomics is a process of extraction and analysis of quantitative features from diagnostic images.
Most clinical applications of radiomics are in the field of oncologic imaging.
Radiomics applies to all imaging modalities.
A cluster of radiomic features is a “radiomic signature”.
Machine learning may improve the efficacy of radiomics analysis.
Literature
1.
go back to reference Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446CrossRef Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446CrossRef
2.
go back to reference Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577CrossRef Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577CrossRef
3.
go back to reference Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006CrossRef Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006CrossRef
4.
go back to reference Lu M, Zhan X (2018) The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J 9:77–102CrossRef Lu M, Zhan X (2018) The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J 9:77–102CrossRef
5.
go back to reference Yip SS, Aerts HJ (2016) Applications and limitations of radiomics. Phys Med Biol 61(13):R150–R166CrossRef Yip SS, Aerts HJ (2016) Applications and limitations of radiomics. Phys Med Biol 61(13):R150–R166CrossRef
6.
go back to reference Haralick RM, Shanmugam K (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 1973(6):610–621CrossRef Haralick RM, Shanmugam K (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 1973(6):610–621CrossRef
7.
go back to reference European Society of Radiology (ESR)(2010) White paper on imaging biomarkers. Insights Imaging 1:42–45 European Society of Radiology (ESR)(2010) White paper on imaging biomarkers. Insights Imaging 1:42–45
8.
go back to reference Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14(12):749–762CrossRef Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14(12):749–762CrossRef
9.
go back to reference Leijenaar RT, Carvalho S, Velazquez ER et al (2013) Stability of FDG-PET Radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol 52(7):1391–1397CrossRef Leijenaar RT, Carvalho S, Velazquez ER et al (2013) Stability of FDG-PET Radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol 52(7):1391–1397CrossRef
10.
go back to reference Cunliffe A, Armato SG 3rd, Castillo R, Pham N, Guerrero T, Al-Hallaq HA (2015) Lung texture in serial thoracic computed tomography scans: correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development. Int J Radiat Oncol Biol Phys 91:1048–1056CrossRef Cunliffe A, Armato SG 3rd, Castillo R, Pham N, Guerrero T, Al-Hallaq HA (2015) Lung texture in serial thoracic computed tomography scans: correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development. Int J Radiat Oncol Biol Phys 91:1048–1056CrossRef
11.
go back to reference Gabrys HS, Buettner F, Sterzing F, Hauswald H, Bangert M (2018) Design and selection of machine learning methods using radiomics and dosiomics for normal tissue complication probability modeling of xerostomia. Front Oncol 8:35CrossRef Gabrys HS, Buettner F, Sterzing F, Hauswald H, Bangert M (2018) Design and selection of machine learning methods using radiomics and dosiomics for normal tissue complication probability modeling of xerostomia. Front Oncol 8:35CrossRef
12.
go back to reference Coroller TP, Agrawal V, Narayan V et al (2016) Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiother Oncol 119:480–486CrossRef Coroller TP, Agrawal V, Narayan V et al (2016) Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiother Oncol 119:480–486CrossRef
13.
go back to reference Coroller TP, Grossmann P, Hou Y et al (2015) CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol 114:345–350CrossRef Coroller TP, Grossmann P, Hou Y et al (2015) CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol 114:345–350CrossRef
14.
go back to reference Mackin D, Fave X, Zhang L et al (2015) Measuring computed tomography scanner variability of radiomics features. Investig Radiol 50:757–765CrossRef Mackin D, Fave X, Zhang L et al (2015) Measuring computed tomography scanner variability of radiomics features. Investig Radiol 50:757–765CrossRef
15.
go back to reference Zhao B, Tan Y, Tsai WY et al (2016) Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep 6:23428CrossRef Zhao B, Tan Y, Tsai WY et al (2016) Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep 6:23428CrossRef
16.
go back to reference Summers RM (2017) Texture analysis in radiology: does the emperor have no clothes? Abdom Radiol (NY) 42(2):342–345CrossRef Summers RM (2017) Texture analysis in radiology: does the emperor have no clothes? Abdom Radiol (NY) 42(2):342–345CrossRef
17.
go back to reference Berenguer R, Pastor-Juan MDR, Canales-Vázquez J et al (2018) Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters. Radiology 288(2):407–415CrossRef Berenguer R, Pastor-Juan MDR, Canales-Vázquez J et al (2018) Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters. Radiology 288(2):407–415CrossRef
18.
go back to reference Vallières M, Freeman CR, Skamene SR, El Naqa I (2015) A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 60:5471–5496CrossRef Vallières M, Freeman CR, Skamene SR, El Naqa I (2015) A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 60:5471–5496CrossRef
19.
go back to reference Zhu X, Dong D, Chen Z et al (2018) Radiomic signature as a diagnostic factor for histologic subtype classification of non-small cell lung cancer. Eur Radiol 28(7):2772–2778CrossRef Zhu X, Dong D, Chen Z et al (2018) Radiomic signature as a diagnostic factor for histologic subtype classification of non-small cell lung cancer. Eur Radiol 28(7):2772–2778CrossRef
22.
go back to reference Rathore S, Akbari H, Doshi J et al (2018) Radiomic signature of infiltration in peritumoral edema predicts subsequent recurrence in glioblastoma: implications for personalized radiotherapy planning. J Med Imaging (Bellingham) 5:021219 Rathore S, Akbari H, Doshi J et al (2018) Radiomic signature of infiltration in peritumoral edema predicts subsequent recurrence in glioblastoma: implications for personalized radiotherapy planning. J Med Imaging (Bellingham) 5:021219
24.
go back to reference Liu Z, Zhang XY, Shi YJ et al (2017) Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Clin Cancer Res 23:7253–7262CrossRef Liu Z, Zhang XY, Shi YJ et al (2017) Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Clin Cancer Res 23:7253–7262CrossRef
25.
go back to reference Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ (2015) Machine learning methods for quantitative radiomic biomarkers. Sci Rep 5:13087CrossRef Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ (2015) Machine learning methods for quantitative radiomic biomarkers. Sci Rep 5:13087CrossRef
26.
go back to reference van Timmeren JE, Leijenaar RTH, van Elmpt W et al (2016) Test-retest data for radiomics feature stability analysis: generalizable or study-specific? Tomography 2(4):361–365CrossRef van Timmeren JE, Leijenaar RTH, van Elmpt W et al (2016) Test-retest data for radiomics feature stability analysis: generalizable or study-specific? Tomography 2(4):361–365CrossRef
27.
go back to reference Parmar C, Rios Velazquez E, Leijenaar R et al (2014) Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One 9(7):e102107CrossRef Parmar C, Rios Velazquez E, Leijenaar R et al (2014) Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One 9(7):e102107CrossRef
28.
go back to reference Zhang B, He X, Ouyang F et al (2017) Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma. Cancer Lett 403:21–27CrossRef Zhang B, He X, Ouyang F et al (2017) Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma. Cancer Lett 403:21–27CrossRef
29.
go back to reference Zhou M, Scott J, Chaudhury B et al (2018) Radiomics in brain tumor: image assessment, quantitative feature descriptors, and machine-learning approaches. AJNR Am J Neuroradiol 39:208–216CrossRef Zhou M, Scott J, Chaudhury B et al (2018) Radiomics in brain tumor: image assessment, quantitative feature descriptors, and machine-learning approaches. AJNR Am J Neuroradiol 39:208–216CrossRef
30.
go back to reference Parekh VS, Jacobs MA (2017) Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI. NPJ Breast Cancer 3:43CrossRef Parekh VS, Jacobs MA (2017) Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI. NPJ Breast Cancer 3:43CrossRef
32.
go back to reference Sollini M, Cozzi L, Chiti A, Kirienko M (2018) Texture analysis and machine learning to characterize suspected thyroid nodules and differentiated thyroid cancer: where do we stand? Eur J Radiol 99:1–8CrossRef Sollini M, Cozzi L, Chiti A, Kirienko M (2018) Texture analysis and machine learning to characterize suspected thyroid nodules and differentiated thyroid cancer: where do we stand? Eur J Radiol 99:1–8CrossRef
34.
go back to reference Ayers D, Day PJ (2015) Systems medicine: the application of systems biology approaches for modern medical research and drug development. Mol Biol Int 2015:698169CrossRef Ayers D, Day PJ (2015) Systems medicine: the application of systems biology approaches for modern medical research and drug development. Mol Biol Int 2015:698169CrossRef
35.
go back to reference Hood L, Friend SH (2011) Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol 8:184–187CrossRef Hood L, Friend SH (2011) Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol 8:184–187CrossRef
36.
go back to reference Kamada T (1992) System biomedicine: a new paradigm in biomedical engineering. Front Med Biol Eng 4:1–2PubMed Kamada T (1992) System biomedicine: a new paradigm in biomedical engineering. Front Med Biol Eng 4:1–2PubMed
37.
go back to reference Zajicek G (1981) On the relevant model for human cancer. Med Hypotheses 7:1139–1146CrossRef Zajicek G (1981) On the relevant model for human cancer. Med Hypotheses 7:1139–1146CrossRef
38.
go back to reference Strotman LN, Millner LM, Valdes R Jr, Linder MW (2016) Liquid biopsies in oncology and the current regulatory landscape. Mol Diagn Ther 20:429–436CrossRef Strotman LN, Millner LM, Valdes R Jr, Linder MW (2016) Liquid biopsies in oncology and the current regulatory landscape. Mol Diagn Ther 20:429–436CrossRef
39.
go back to reference Ilie M, Hofman V, Long E et al (2014) Current challenges for detection of circulating tumor cells and cell-free circulating nucleic acids, and their characterization in non-small cell lung carcinoma patients. What is the best blood substrate for personalized medicine? Ann Transl Med 2:107PubMedPubMedCentral Ilie M, Hofman V, Long E et al (2014) Current challenges for detection of circulating tumor cells and cell-free circulating nucleic acids, and their characterization in non-small cell lung carcinoma patients. What is the best blood substrate for personalized medicine? Ann Transl Med 2:107PubMedPubMedCentral
40.
go back to reference Pantel K, Speicher MR (2016) The biology of circulating tumor cells. Oncogene 35(10):1216–1224CrossRef Pantel K, Speicher MR (2016) The biology of circulating tumor cells. Oncogene 35(10):1216–1224CrossRef
41.
go back to reference Zhang J, Chen K, Fan ZH (2016) Circulating tumor cell isolation and analysis. Adv Clin Chem 75:1–31CrossRef Zhang J, Chen K, Fan ZH (2016) Circulating tumor cell isolation and analysis. Adv Clin Chem 75:1–31CrossRef
42.
go back to reference Leise EM, Morita TN, Gray I, LeSane F (1970) Lymphocyte and polymorphonuclear enzymes in stress. I. Method of separation of leukocytes from small amounts of blood into lymphocyte and polymorphonuclear leukocytes by density-gradient centrifugation. Biochem Med 4(3):327–335CrossRef Leise EM, Morita TN, Gray I, LeSane F (1970) Lymphocyte and polymorphonuclear enzymes in stress. I. Method of separation of leukocytes from small amounts of blood into lymphocyte and polymorphonuclear leukocytes by density-gradient centrifugation. Biochem Med 4(3):327–335CrossRef
43.
go back to reference Rosenberg R, Gertler R, Friederichs J et al (2002) Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood. Cytometry 49(4):150–158CrossRef Rosenberg R, Gertler R, Friederichs J et al (2002) Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood. Cytometry 49(4):150–158CrossRef
44.
go back to reference Karabacak NM, Spuhler PS, Fachin F et al (2014) Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc 9(3):694–710CrossRef Karabacak NM, Spuhler PS, Fachin F et al (2014) Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc 9(3):694–710CrossRef
45.
go back to reference McInnes LM, Jacobson N, Redfern A, Dowling A, Thompson EW, Saunders CM (2015) Clinical implications of circulating tumor cells of breast cancer patients: role of epithelial-mesenchymal plasticity. Front Oncol 5:42CrossRef McInnes LM, Jacobson N, Redfern A, Dowling A, Thompson EW, Saunders CM (2015) Clinical implications of circulating tumor cells of breast cancer patients: role of epithelial-mesenchymal plasticity. Front Oncol 5:42CrossRef
46.
go back to reference Pimienta M, Edderkaoui M, Wang R, Pandol S (2017) The potential for circulating tumor cells in pancreatic cancer management. Front Physiol 8:381CrossRef Pimienta M, Edderkaoui M, Wang R, Pandol S (2017) The potential for circulating tumor cells in pancreatic cancer management. Front Physiol 8:381CrossRef
47.
go back to reference Imamura T, Komatsu S, Ichikawa D et al (2016) Liquid biopsy in patients with pancreatic cancer: circulating tumor cells and cell-free nucleic acids. World J Gastroenterol 22:5627–5641CrossRef Imamura T, Komatsu S, Ichikawa D et al (2016) Liquid biopsy in patients with pancreatic cancer: circulating tumor cells and cell-free nucleic acids. World J Gastroenterol 22:5627–5641CrossRef
48.
go back to reference Antonarakis ES, Lu C, Wang H et al (2014) AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 371:1028–1038CrossRef Antonarakis ES, Lu C, Wang H et al (2014) AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 371:1028–1038CrossRef
49.
go back to reference Rack B, Schindlbeck C, Jückstock J et al (2014) Circulating tumor cells predict survival in early average-to-high risk breast cancer patients. J Natl Cancer Inst 106:5CrossRef Rack B, Schindlbeck C, Jückstock J et al (2014) Circulating tumor cells predict survival in early average-to-high risk breast cancer patients. J Natl Cancer Inst 106:5CrossRef
50.
go back to reference Nicolazzo C, Raimondi C, Mancini M et al (2016) Monitoring PD-L1 positive circulating tumor cells in non-small cell lung cancer patients treated with the PD-1 inhibitor Nivolumab. Sci Rep 6:31726CrossRef Nicolazzo C, Raimondi C, Mancini M et al (2016) Monitoring PD-L1 positive circulating tumor cells in non-small cell lung cancer patients treated with the PD-1 inhibitor Nivolumab. Sci Rep 6:31726CrossRef
51.
go back to reference Hartkopf AD, Wagner P, Wallwiener D, Fehm T, Rothmund R (2011) Changing levels of circulating tumor cells in monitoring chemotherapy response in patients with metastatic breast cancer. Anticancer Res 31(3):979–984PubMed Hartkopf AD, Wagner P, Wallwiener D, Fehm T, Rothmund R (2011) Changing levels of circulating tumor cells in monitoring chemotherapy response in patients with metastatic breast cancer. Anticancer Res 31(3):979–984PubMed
52.
go back to reference Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11:426–437CrossRef Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11:426–437CrossRef
53.
go back to reference Jänne PA, Yang JC, Kim DW et al (2015) AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med 372:1689–1699CrossRef Jänne PA, Yang JC, Kim DW et al (2015) AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med 372:1689–1699CrossRef
55.
go back to reference Del Re M, Vasile E, Falcone A, Danesi R, Petrini I (2014) Molecular analysis of cell-free circulating DNA for the diagnosis of somatic mutations associated with resistance to tyrosine kinase inhibitors in non-small-cell lung cancer. Expert Rev Mol Diagn 14:453–468CrossRef Del Re M, Vasile E, Falcone A, Danesi R, Petrini I (2014) Molecular analysis of cell-free circulating DNA for the diagnosis of somatic mutations associated with resistance to tyrosine kinase inhibitors in non-small-cell lung cancer. Expert Rev Mol Diagn 14:453–468CrossRef
56.
go back to reference Novello S, Barlesi F, Califano R et al (2016) Metastatic non-small-cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 27:v1–v27CrossRef Novello S, Barlesi F, Califano R et al (2016) Metastatic non-small-cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 27:v1–v27CrossRef
57.
go back to reference Vidal J, Muinelo L, Dalmases A et al (2017) Plasma ctDNA RAS mutation analysis for the diagnosis and treatment monitoring of metastatic colorectal cancer patients. Ann Oncol 28:1325–1332CrossRef Vidal J, Muinelo L, Dalmases A et al (2017) Plasma ctDNA RAS mutation analysis for the diagnosis and treatment monitoring of metastatic colorectal cancer patients. Ann Oncol 28:1325–1332CrossRef
58.
go back to reference Sun Q, Liu Y, Liu B, Liu Y (2018) Use of liquid biopsy in monitoring colorectal cancer progression shows strong clinical correlation. Am J Med Sci 355:220–227CrossRef Sun Q, Liu Y, Liu B, Liu Y (2018) Use of liquid biopsy in monitoring colorectal cancer progression shows strong clinical correlation. Am J Med Sci 355:220–227CrossRef
59.
go back to reference Thomsen CB, Hansen TF, Andersen RF, Lindebjerg J, Jensen LH, Jakobsen A (2018) Monitoring the effect of first line treatment in RAS/RAF mutated metastatic colorectal cancer by serial analysis of tumor specific DNA in plasma. J Exp Clin Cancer Res 37:55CrossRef Thomsen CB, Hansen TF, Andersen RF, Lindebjerg J, Jensen LH, Jakobsen A (2018) Monitoring the effect of first line treatment in RAS/RAF mutated metastatic colorectal cancer by serial analysis of tumor specific DNA in plasma. J Exp Clin Cancer Res 37:55CrossRef
60.
go back to reference Del Re M, Biasco E, Crucitta S et al (2017) The detection of androgen receptor splice variant 7 in plasma-derived exosomal RNA strongly predicts resistance to hormonal therapy in metastatic prostate cancer patients. Eur Urol 71:680–687CrossRef Del Re M, Biasco E, Crucitta S et al (2017) The detection of androgen receptor splice variant 7 in plasma-derived exosomal RNA strongly predicts resistance to hormonal therapy in metastatic prostate cancer patients. Eur Urol 71:680–687CrossRef
61.
go back to reference Miyamoto DT, Lee RJ, Kalinich M et al (2018) An RNA-based digital circulating tumor cell signature is predictive of drug response and early dissemination in prostate cancer. Cancer Discov 8:288–303CrossRef Miyamoto DT, Lee RJ, Kalinich M et al (2018) An RNA-based digital circulating tumor cell signature is predictive of drug response and early dissemination in prostate cancer. Cancer Discov 8:288–303CrossRef
62.
go back to reference Del Re M, Vivaldi C, Rofi E et al (2017) Early changes in plasma DNA levels of mutant KRAS as a sensitive marker of response to chemotherapy in pancreatic cancer. Sci Rep 7:7931CrossRef Del Re M, Vivaldi C, Rofi E et al (2017) Early changes in plasma DNA levels of mutant KRAS as a sensitive marker of response to chemotherapy in pancreatic cancer. Sci Rep 7:7931CrossRef
63.
go back to reference Cheng H, Liu C, Jiang J et al (2017) Analysis of ctDNA to predict prognosis and monitor treatment responses in metastatic pancreatic cancer patients. Int J Cancer 140:2344–2350CrossRef Cheng H, Liu C, Jiang J et al (2017) Analysis of ctDNA to predict prognosis and monitor treatment responses in metastatic pancreatic cancer patients. Int J Cancer 140:2344–2350CrossRef
64.
go back to reference Diaz LA Jr, Bardelli A (2014) Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 32:579–586CrossRef Diaz LA Jr, Bardelli A (2014) Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 32:579–586CrossRef
65.
go back to reference Dagogo-Jack I, Shaw AT (2018) Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 15:81–94CrossRef Dagogo-Jack I, Shaw AT (2018) Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 15:81–94CrossRef
66.
go back to reference Punnoose EA, Atwal S, Liu W et al (2012) Evaluation of circulating tumor cells and circulating tumor DNA in non-small cell lung cancer: association with clinical endpoints in a phase II clinical trial of pertuzumab and erlotinib. Clin Cancer Res 18:2391–2401CrossRef Punnoose EA, Atwal S, Liu W et al (2012) Evaluation of circulating tumor cells and circulating tumor DNA in non-small cell lung cancer: association with clinical endpoints in a phase II clinical trial of pertuzumab and erlotinib. Clin Cancer Res 18:2391–2401CrossRef
67.
go back to reference Mayo-de-Las-Casas C, Jordana-Ariza N, Garzón-Ibañez M et al (2017) Large scale, prospective screening of EGFR mutations in the blood of advanced NSCLC patients to guide treatment decisions. Ann Oncol 28:2248–2255CrossRef Mayo-de-Las-Casas C, Jordana-Ariza N, Garzón-Ibañez M et al (2017) Large scale, prospective screening of EGFR mutations in the blood of advanced NSCLC patients to guide treatment decisions. Ann Oncol 28:2248–2255CrossRef
68.
go back to reference Del Re M, Bordi P, Petrini I et al (2017) Patients with NSCLC may display a low ratio of p.T790M vs. activating EGFR mutations in plasma at disease progression: implications for personalised treatment. Oncotarget 8:86056–86065PubMedPubMedCentral Del Re M, Bordi P, Petrini I et al (2017) Patients with NSCLC may display a low ratio of p.T790M vs. activating EGFR mutations in plasma at disease progression: implications for personalised treatment. Oncotarget 8:86056–86065PubMedPubMedCentral
69.
go back to reference Tchekmedyian N, Mudad R, Blanco FF et al (2017) Longitudinal monitoring of ctDNA EGFR mutation burden from urine correlates with patient response to EGFR TKIs: a case series. Lung Cancer 108:22–28CrossRef Tchekmedyian N, Mudad R, Blanco FF et al (2017) Longitudinal monitoring of ctDNA EGFR mutation burden from urine correlates with patient response to EGFR TKIs: a case series. Lung Cancer 108:22–28CrossRef
70.
go back to reference Bordi P, Tiseo M, Rofi E et al (2017) Detection of ALK and KRAS mutations in circulating tumor DNA of patients with advanced ALK-positive NSCLC with disease progression during crizotinib treatment. Clin Lung Cancer 18:692–697CrossRef Bordi P, Tiseo M, Rofi E et al (2017) Detection of ALK and KRAS mutations in circulating tumor DNA of patients with advanced ALK-positive NSCLC with disease progression during crizotinib treatment. Clin Lung Cancer 18:692–697CrossRef
72.
go back to reference Del Re M, Marconcini R, Pasquini G et al (2018) PD-L1 mRNA expression in plasma-derived exosomes is associated with response to anti-PD-1 antibodies in melanoma and NSCLC. Br J Cancer 118:820–824CrossRef Del Re M, Marconcini R, Pasquini G et al (2018) PD-L1 mRNA expression in plasma-derived exosomes is associated with response to anti-PD-1 antibodies in melanoma and NSCLC. Br J Cancer 118:820–824CrossRef
73.
go back to reference Diehl F, Schmidt K, Durkee KH et al (2008) Analysis of mutations in DNA isolated from plasma and stool of colorectal cancer patients. Gastroenterology 135:489–498CrossRef Diehl F, Schmidt K, Durkee KH et al (2008) Analysis of mutations in DNA isolated from plasma and stool of colorectal cancer patients. Gastroenterology 135:489–498CrossRef
74.
go back to reference Tie J, Kinde I, Wang Y et al (2015) Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann Oncol 26:1715–1722CrossRef Tie J, Kinde I, Wang Y et al (2015) Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann Oncol 26:1715–1722CrossRef
75.
go back to reference Bettegowda C, Sausen M, Leary RJ et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6:224ra224CrossRef Bettegowda C, Sausen M, Leary RJ et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6:224ra224CrossRef
76.
go back to reference Diaz LA Jr, Williams RT, Wu J et al (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486:537–540CrossRef Diaz LA Jr, Williams RT, Wu J et al (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486:537–540CrossRef
77.
go back to reference Misale S, Yaeger R, Hobor S et al (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486:532–536CrossRef Misale S, Yaeger R, Hobor S et al (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486:532–536CrossRef
78.
go back to reference Seitz AK, Thoene S, Bietenbeck A et al (2017) AR-V7 in peripheral whole blood of patients with castration-resistant prostate cancer: association with treatment-specific outcome under abiraterone and enzalutamide. Eur Urol 72:828–834CrossRef Seitz AK, Thoene S, Bietenbeck A et al (2017) AR-V7 in peripheral whole blood of patients with castration-resistant prostate cancer: association with treatment-specific outcome under abiraterone and enzalutamide. Eur Urol 72:828–834CrossRef
79.
80.
go back to reference Fribbens C, Garcia Murillas I, Beaney M et al (2018) Tracking evolution of aromatase inhibitor resistance with circulating tumour DNA analysis in metastatic breast cancer. Ann Oncol 29:145–153CrossRef Fribbens C, Garcia Murillas I, Beaney M et al (2018) Tracking evolution of aromatase inhibitor resistance with circulating tumour DNA analysis in metastatic breast cancer. Ann Oncol 29:145–153CrossRef
84.
go back to reference Hewitt R, Watson P (2013) Defining biobank. Biopreserv Biobanking 11:309–315CrossRef Hewitt R, Watson P (2013) Defining biobank. Biopreserv Biobanking 11:309–315CrossRef
85.
go back to reference European Commission (2013) Commission implementing decision of 22 November 2013 on setting up the biobanks and biomolecular resources research infrastructure consortium (BBMRI-ERIC) as a European research infrastructure consortium. Off J Eur Union 56:63 European Commission (2013) Commission implementing decision of 22 November 2013 on setting up the biobanks and biomolecular resources research infrastructure consortium (BBMRI-ERIC) as a European research infrastructure consortium. Off J Eur Union 56:63
87.
go back to reference European Society of Radiology (ESR) (2015) Position paper on imaging biobanks. Insights Imaging 6(4):403–410CrossRef European Society of Radiology (ESR) (2015) Position paper on imaging biobanks. Insights Imaging 6(4):403–410CrossRef
Metadata
Title
Radiomics and liquid biopsy in oncology: the holons of systems medicine
Authors
Emanuele Neri
Marzia Del Re
Fabiola Paiar
Paola Erba
Paola Cocuzza
Daniele Regge
Romano Danesi
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
Insights into Imaging / Issue 6/2018
Electronic ISSN: 1869-4101
DOI
https://doi.org/10.1007/s13244-018-0657-7

Other articles of this Issue 6/2018

Insights into Imaging 6/2018 Go to the issue