Skip to main content
Top
Published in: Insights into Imaging 2/2016

Open Access 01-04-2016 | Pictorial Review

Bilateral temporal lobe disease: looking beyond herpes encephalitis

Authors: Ayelet Eran, Adina Hodes, Izlem Izbudak

Published in: Insights into Imaging | Issue 2/2016

Login to get access

Abstract

The temporal lobes have unique architecture, and functionality that makes them vulnerable to certain disease processes. Patients presenting with bilateral temporal lobe disease are often confused and have altered consciousness, and are therefore unable to provide cogent histories. For these reasons, imaging plays an important role in their workup and management. Disease entities causing bilateral temporal lobe involvement can be infectious, metabolic, neoplastic, and degenerative aetiologies, as well as trauma and cerebrovascular events. We will first describe the structural and functional anatomy of the temporal lobes and explain the mechanisms that underlie bilateral temporal lobe disease, and then show and discuss the different disease entities and differential diagnosis.

Teaching points

Bilateral temporal lobe disease is a unique pattern with specific differential diagnosis.
Patients presenting with bilateral temporal lobe disease are often confused.
Radiologists should be familar with the variety of disease processes that cause bitemporal disease.
Literature
1.
go back to reference Kretschmann HJ, Weinrich W (2004) Cranial neuroimaging and neuroanatomy, 3rd edn. Thieme, Stuttgart Kretschmann HJ, Weinrich W (2004) Cranial neuroimaging and neuroanatomy, 3rd edn. Thieme, Stuttgart
2.
go back to reference Naidich TP, Daniels DL, Haughton VM, Williams A, PojunasK PE (1987) Hippocampal formation and related structures of the limbic lobe: anatomic-MR correlation. Part I. Surface features and coronal sections. Radiology 162:747–754CrossRefPubMed Naidich TP, Daniels DL, Haughton VM, Williams A, PojunasK PE (1987) Hippocampal formation and related structures of the limbic lobe: anatomic-MR correlation. Part I. Surface features and coronal sections. Radiology 162:747–754CrossRefPubMed
3.
go back to reference Naidich TP, Daniels DL, Pech P, Haughton VM, Williams A, Pojunas K (1986) Anterior commissure: anatomic-MR correlation and use as a landmark in three orthogonal planes. Radiology 158:421–429CrossRefPubMed Naidich TP, Daniels DL, Pech P, Haughton VM, Williams A, Pojunas K (1986) Anterior commissure: anatomic-MR correlation and use as a landmark in three orthogonal planes. Radiology 158:421–429CrossRefPubMed
4.
go back to reference Mamata H, Mamata Y, Westin CF, Shenton ME, Kikinis R, Jolesz FA et al (2002) High-resolution line scan diffusion tensor MR imaging of white matter fiber tract anatomy. AJNR Am J Neuroradiol 23:67–75PubMedPubMedCentral Mamata H, Mamata Y, Westin CF, Shenton ME, Kikinis R, Jolesz FA et al (2002) High-resolution line scan diffusion tensor MR imaging of white matter fiber tract anatomy. AJNR Am J Neuroradiol 23:67–75PubMedPubMedCentral
5.
go back to reference Gultekin SH, Rosenfeld MR, Voltz R, Eichen J, Posner JB, Dalmau J (2000) Paraneoplastic limbic encephalitis: neurological symptoms, immunological findings and tumour association in 50 patients. Brain 123:1481–1494CrossRefPubMed Gultekin SH, Rosenfeld MR, Voltz R, Eichen J, Posner JB, Dalmau J (2000) Paraneoplastic limbic encephalitis: neurological symptoms, immunological findings and tumour association in 50 patients. Brain 123:1481–1494CrossRefPubMed
6.
go back to reference Arendt T, Brückner MK, Gertz HJ, Marcova L (1998) Cortical distribution of neurofibrillary tangles in Alzheimer’s disease matches the pattern of neurons that retain their capacity of plastic remodelling in the adult brain. Neuroscience 83:991–1002CrossRefPubMed Arendt T, Brückner MK, Gertz HJ, Marcova L (1998) Cortical distribution of neurofibrillary tangles in Alzheimer’s disease matches the pattern of neurons that retain their capacity of plastic remodelling in the adult brain. Neuroscience 83:991–1002CrossRefPubMed
7.
go back to reference Noguchi T, Yoshiura T, Hiwatashi A, Togao O, Yamashita K, Nagao E et al (2010) CT and MRI findings of human herpesvirus 6–associated encephalopathy: comparison with findings of herpes simplex virus encephalitis. AJR Am J Roentgenol 194:754–760CrossRefPubMed Noguchi T, Yoshiura T, Hiwatashi A, Togao O, Yamashita K, Nagao E et al (2010) CT and MRI findings of human herpesvirus 6–associated encephalopathy: comparison with findings of herpes simplex virus encephalitis. AJR Am J Roentgenol 194:754–760CrossRefPubMed
8.
go back to reference Jain KK, Mittal SK, Kumar S, Gupta RK (2007) Imaging features of central nervous system fungal infections. Neurol India 55:241–250CrossRefPubMed Jain KK, Mittal SK, Kumar S, Gupta RK (2007) Imaging features of central nervous system fungal infections. Neurol India 55:241–250CrossRefPubMed
9.
go back to reference Russo A, Farina E, Nicoletti L, Nemni R (2009) Selective involvement of temporal regions in a case of flavivirus encephalitis. Neurol Sci 30:413–415CrossRefPubMed Russo A, Farina E, Nicoletti L, Nemni R (2009) Selective involvement of temporal regions in a case of flavivirus encephalitis. Neurol Sci 30:413–415CrossRefPubMed
10.
go back to reference Bash S, Hathout GM, Cohen S (2001) Mesiotemporal T2-weighted hyperintensity: neurosyphilis mimicking herpes encephalitis. AJNR Am J Neuroradiol 22:314–316PubMed Bash S, Hathout GM, Cohen S (2001) Mesiotemporal T2-weighted hyperintensity: neurosyphilis mimicking herpes encephalitis. AJNR Am J Neuroradiol 22:314–316PubMed
11.
go back to reference Bien CG, Schulze–Bonhage A, Deckert M, Urbach H, Helmstaedter C, Grunwald C et al (2000) Limbic encephalitis not associated with neoplasm as a cause of temporal lobe epilepsy. Neurology 55:1823–1828CrossRefPubMed Bien CG, Schulze–Bonhage A, Deckert M, Urbach H, Helmstaedter C, Grunwald C et al (2000) Limbic encephalitis not associated with neoplasm as a cause of temporal lobe epilepsy. Neurology 55:1823–1828CrossRefPubMed
12.
go back to reference Gómez-Isla T, Price JL, McKeel DW, Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16:4491–4500PubMed Gómez-Isla T, Price JL, McKeel DW, Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16:4491–4500PubMed
14.
go back to reference Perry RJ, Hodges JR (2000) Differentiating frontal and temporal variant frontotemporal dementia from Alzheimer’s disease. Neurology 54:2277–2284CrossRefPubMed Perry RJ, Hodges JR (2000) Differentiating frontal and temporal variant frontotemporal dementia from Alzheimer’s disease. Neurology 54:2277–2284CrossRefPubMed
15.
go back to reference Takanash JI, Barkovich AJ, Cheng SF, Kostiner D, Baker JC, Packman S (2003) Brain MR imaging in acute hyperammonemic encephalopathy arising from late-onset ornithine transcarbamylase deficiency. AJNR Am J Neuroradiol 24:390–393 Takanash JI, Barkovich AJ, Cheng SF, Kostiner D, Baker JC, Packman S (2003) Brain MR imaging in acute hyperammonemic encephalopathy arising from late-onset ornithine transcarbamylase deficiency. AJNR Am J Neuroradiol 24:390–393
16.
go back to reference Gadian DG, Aicardi J, Watkins KE, Porter DA, Mishkin M, Vargha-Khadem F (2000) Developmental amnesia associated with early hypoxic–ischaemic injury. Brain 123:499–507CrossRefPubMed Gadian DG, Aicardi J, Watkins KE, Porter DA, Mishkin M, Vargha-Khadem F (2000) Developmental amnesia associated with early hypoxic–ischaemic injury. Brain 123:499–507CrossRefPubMed
18.
20.
go back to reference Singhal S, Rich P, Markus HS (2005) The spatial distribution of MR imaging abnormalities in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy and their relationship to age and clinical features. AJNR Am J Neuroradiol 26:2481–2487PubMed Singhal S, Rich P, Markus HS (2005) The spatial distribution of MR imaging abnormalities in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy and their relationship to age and clinical features. AJNR Am J Neuroradiol 26:2481–2487PubMed
21.
go back to reference Miaux Y, Chiras J, Eymard B, Lauriot-Prevost MC, Radvanyi H, Martin-Duverneuil N et al (1997) Cranial MRI findings in myotonic dystrophy. Neuroradiology 39:166–170CrossRefPubMed Miaux Y, Chiras J, Eymard B, Lauriot-Prevost MC, Radvanyi H, Martin-Duverneuil N et al (1997) Cranial MRI findings in myotonic dystrophy. Neuroradiology 39:166–170CrossRefPubMed
22.
go back to reference Chong VH, Rumpel H, Fan YF, Mukherji SK (2001) Temporal lobe changes following radiation therapy: imaging and proton MR spectroscopic findings. Eur Radiol 11:317–324CrossRefPubMed Chong VH, Rumpel H, Fan YF, Mukherji SK (2001) Temporal lobe changes following radiation therapy: imaging and proton MR spectroscopic findings. Eur Radiol 11:317–324CrossRefPubMed
23.
go back to reference Shah R, Vattoth S, Jacob R, Manzil FFP, O’Malley JP, Borghei P et al (2012) Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence. Radiographics 32:1343–1359CrossRefPubMed Shah R, Vattoth S, Jacob R, Manzil FFP, O’Malley JP, Borghei P et al (2012) Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence. Radiographics 32:1343–1359CrossRefPubMed
Metadata
Title
Bilateral temporal lobe disease: looking beyond herpes encephalitis
Authors
Ayelet Eran
Adina Hodes
Izlem Izbudak
Publication date
01-04-2016
Publisher
Springer Berlin Heidelberg
Published in
Insights into Imaging / Issue 2/2016
Electronic ISSN: 1869-4101
DOI
https://doi.org/10.1007/s13244-016-0481-x

Other articles of this Issue 2/2016

Insights into Imaging 2/2016 Go to the issue