Skip to main content
Top
Published in: Insights into Imaging 4/2015

Open Access 01-08-2015 | Review

False positive and false negative diagnoses of prostate cancer at multi-parametric prostate MRI in active surveillance

Authors: Jeffrey S. Quon, Bardia Moosavi, Maneesh Khanna, Trevor A. Flood, Christopher S. Lim, Nicola Schieda

Published in: Insights into Imaging | Issue 4/2015

Login to get access

Abstract

MP-MRI is a critical component in active surveillance (AS) of prostate cancer (PCa) because of a high negative predictive value for clinically significant tumours. This review illustrates pitfalls of MP-MRI and how to recognise and avoid them. The anterior fibromuscular stroma and central zone are low signal on T2W-MRI/apparent diffusion coefficient (ADC), resembling PCa. Location, progressive enhancement and low signal on b ≥1000 mm²/s echo-planar images (EPI) are differentiating features. BPH can mimic PCa. Glandular BPH shows increased T2W/ADC signal, cystic change and progressive enhancement; however, stromal BPH resembles transition zone (TZ) PCa. A rounded morphology, low T2 signal capsule and posterior/superior location favour stromal BPH. Acute/chronic prostatitis mimics PCa at MP-MRI, with differentiation mainly on clinical grounds. Visual analysis of diffusion-weighted MRI must include EPI and appropriate windowing of ADC. Quantitative ADC analysis is limited by lack of standardization; the ADC ratio and ADC histogram analysis are alternatives to mean values. DCE lacks standardisation and has limited utility in the TZ, where T2W/DWI are favoured. Targeted TRUS-guided biopsies of MR-detected lesions are challenging. Lesions detected on MP-MRI may not be perfectly targeted with TRUS and this must be considered when faced with a suspicious lesion on MP-MRI and a negative targeted TRUS biopsy histopathological result.

Keypoints

• Multi-parametric MRI plays a critical role in prostate cancer active surveillance.
• Low T2W signal intensity structures appear dark on ADC, potentially simulating cancer.
• Stromal BPH mimics cancer at DWI and DCE.
• Long b value trace EPI should be reviewed
• Targeted biopsy of MR-detected lesions using TRUS guidance may be challenging.
Literature
4.
go back to reference Thomsen FB, Brasso K, Klotz LH, Roder MA, Berg KD, Iversen P (2014) Active surveillance for clinically localized prostate cancer–a systematic review. J Surg Oncol 109:830–835PubMedCrossRef Thomsen FB, Brasso K, Klotz LH, Roder MA, Berg KD, Iversen P (2014) Active surveillance for clinically localized prostate cancer–a systematic review. J Surg Oncol 109:830–835PubMedCrossRef
5.
go back to reference Heidenreich A, Bellmunt J, Bolla M et al (2011) EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur Urol 59:61–71PubMedCrossRef Heidenreich A, Bellmunt J, Bolla M et al (2011) EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur Urol 59:61–71PubMedCrossRef
8.
9.
go back to reference Eskew LA, Bare RL, McCullough DL (1997) Systematic 5 region prostate biopsy is superior to sextant method for diagnosing carcinoma of the prostate. J Urol 157:199–202, discussion 202–193 PubMedCrossRef Eskew LA, Bare RL, McCullough DL (1997) Systematic 5 region prostate biopsy is superior to sextant method for diagnosing carcinoma of the prostate. J Urol 157:199–202, discussion 202–193 PubMedCrossRef
10.
go back to reference Presti JC Jr, O’Dowd GJ, Miller MC, Mattu R, Veltri RW (2003) Extended peripheral zone biopsy schemes increase cancer detection rates and minimize variance in prostate specific antigen and age related cancer rates: results of a community multi-practice study. J Urol 169:125–129PubMedCrossRef Presti JC Jr, O’Dowd GJ, Miller MC, Mattu R, Veltri RW (2003) Extended peripheral zone biopsy schemes increase cancer detection rates and minimize variance in prostate specific antigen and age related cancer rates: results of a community multi-practice study. J Urol 169:125–129PubMedCrossRef
11.
go back to reference Babaian RJ, Toi A, Kamoi K et al (2000) A comparative analysis of sextant and an extended 11-core multisite directed biopsy strategy. J Urol 163:152–157PubMedCrossRef Babaian RJ, Toi A, Kamoi K et al (2000) A comparative analysis of sextant and an extended 11-core multisite directed biopsy strategy. J Urol 163:152–157PubMedCrossRef
12.
go back to reference Noguchi M, Stamey TA, McNeal JE, Yemoto CM (2001) Relationship between systematic biopsies and histological features of 222 radical prostatectomy specimens: lack of prediction of tumor significance for men with nonpalpable prostate cancer. J Urol 166:104–109, discussion 109–110 PubMedCrossRef Noguchi M, Stamey TA, McNeal JE, Yemoto CM (2001) Relationship between systematic biopsies and histological features of 222 radical prostatectomy specimens: lack of prediction of tumor significance for men with nonpalpable prostate cancer. J Urol 166:104–109, discussion 109–110 PubMedCrossRef
13.
go back to reference Bott SR, Young MP, Kellett MJ, Parkinson MC (2002) Anterior prostate cancer: is it more difficult to diagnose? BJU Int 89:886–889PubMedCrossRef Bott SR, Young MP, Kellett MJ, Parkinson MC (2002) Anterior prostate cancer: is it more difficult to diagnose? BJU Int 89:886–889PubMedCrossRef
14.
go back to reference Eberhardt SC, Carter S, Casalino DD et al (2013) ACR appropriateness criteria prostate cancer–pretreatment detection, staging, and surveillance. J Am Coll Radiol 10:83–92PubMedCrossRef Eberhardt SC, Carter S, Casalino DD et al (2013) ACR appropriateness criteria prostate cancer–pretreatment detection, staging, and surveillance. J Am Coll Radiol 10:83–92PubMedCrossRef
16.
go back to reference Hamoen EH, de Rooij M, Witjes JA, Barentsz JO, Rovers MM (2014) Use of the prostate imaging reporting and data system (PI-RADS) for prostate cancer detection with multiparametric magnetic resonance imaging: a diagnostic meta-analysis. Eur Urol 67:1112–1121PubMedCrossRef Hamoen EH, de Rooij M, Witjes JA, Barentsz JO, Rovers MM (2014) Use of the prostate imaging reporting and data system (PI-RADS) for prostate cancer detection with multiparametric magnetic resonance imaging: a diagnostic meta-analysis. Eur Urol 67:1112–1121PubMedCrossRef
17.
go back to reference de Rooij M, Hamoen EH, Futterer JJ, Barentsz JO, Rovers MM (2014) Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. AJR Am J Roentgenol 202:343–351PubMedCrossRef de Rooij M, Hamoen EH, Futterer JJ, Barentsz JO, Rovers MM (2014) Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. AJR Am J Roentgenol 202:343–351PubMedCrossRef
18.
go back to reference Hegde JV, Mulkern RV, Panych LP et al (2013) Multiparametric MRI of prostate cancer: an update on state-of-the-art techniques and their performance in detecting and localizing prostate cancer. J Magn Reson Imaging 37:1035–1054PubMedCentralPubMedCrossRef Hegde JV, Mulkern RV, Panych LP et al (2013) Multiparametric MRI of prostate cancer: an update on state-of-the-art techniques and their performance in detecting and localizing prostate cancer. J Magn Reson Imaging 37:1035–1054PubMedCentralPubMedCrossRef
19.
go back to reference Schoots IG, Petrides N, Giganti F et al (2015) Magnetic resonance imaging in active surveillance of prostate cancer: a systematic review. Eur Urol 67:627–636PubMedCrossRef Schoots IG, Petrides N, Giganti F et al (2015) Magnetic resonance imaging in active surveillance of prostate cancer: a systematic review. Eur Urol 67:627–636PubMedCrossRef
20.
go back to reference Stamatakis L, Siddiqui MM, Nix JW et al (2013) Accuracy of multiparametric magnetic resonance imaging in confirming eligibility for active surveillance for men with prostate cancer. Cancer 119:3359–3366PubMedCrossRef Stamatakis L, Siddiqui MM, Nix JW et al (2013) Accuracy of multiparametric magnetic resonance imaging in confirming eligibility for active surveillance for men with prostate cancer. Cancer 119:3359–3366PubMedCrossRef
21.
go back to reference Da Rosa MR, Milot L, Sugar L et al (2014) A prospective comparison of MRI-US fused targeted biopsy versus systemic ultrasound-guided biopsy for detecting clinically significant prostate cancer in patients on active surveillance. J Magn Reson Imaging 41:220–5PubMedCrossRef Da Rosa MR, Milot L, Sugar L et al (2014) A prospective comparison of MRI-US fused targeted biopsy versus systemic ultrasound-guided biopsy for detecting clinically significant prostate cancer in patients on active surveillance. J Magn Reson Imaging 41:220–5PubMedCrossRef
24.
go back to reference McNeal JE, Redwine EA, Freiha FS, Stamey TA (1988) Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread. Am J Surg Pathol 12:897–906PubMedCrossRef McNeal JE, Redwine EA, Freiha FS, Stamey TA (1988) Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread. Am J Surg Pathol 12:897–906PubMedCrossRef
25.
go back to reference Rosenkrantz AB, Taneja SS (2014) Radiologist, be aware: ten pitfalls that confound the interpretation of multiparametric prostate MRI. AJR Am J Roentgenol 202:109–120PubMedCrossRef Rosenkrantz AB, Taneja SS (2014) Radiologist, be aware: ten pitfalls that confound the interpretation of multiparametric prostate MRI. AJR Am J Roentgenol 202:109–120PubMedCrossRef
26.
go back to reference Vargas HA, Akin O, Franiel T et al (2012) Normal central zone of the prostate and central zone involvement by prostate cancer: clinical and MR imaging implications. Radiology 262:894–902PubMedCentralPubMedCrossRef Vargas HA, Akin O, Franiel T et al (2012) Normal central zone of the prostate and central zone involvement by prostate cancer: clinical and MR imaging implications. Radiology 262:894–902PubMedCentralPubMedCrossRef
27.
go back to reference Mai KT, Belanger EC, Al-Maghrabi HM, Robertson S, Wang D, Margnean C (2008) Primary prostatic central zone adenocarcinoma. Pathol Res Pract 204:251–258PubMedCrossRef Mai KT, Belanger EC, Al-Maghrabi HM, Robertson S, Wang D, Margnean C (2008) Primary prostatic central zone adenocarcinoma. Pathol Res Pract 204:251–258PubMedCrossRef
28.
go back to reference Cohen RJ, Shannon BA, Phillips M, Moorin RE, Wheeler TM, Garrett KL (2008) Central zone carcinoma of the prostate gland: a distinct tumor type with poor prognostic features. J Urol 179:1762–1767, discussion 1767 PubMedCrossRef Cohen RJ, Shannon BA, Phillips M, Moorin RE, Wheeler TM, Garrett KL (2008) Central zone carcinoma of the prostate gland: a distinct tumor type with poor prognostic features. J Urol 179:1762–1767, discussion 1767 PubMedCrossRef
29.
go back to reference Lemaitre L, Puech P, Poncelet E et al (2009) Dynamic contrast-enhanced MRI of anterior prostate cancer: morphometric assessment and correlation with radical prostatectomy findings. Eur Radiol 19:470–480PubMedCrossRef Lemaitre L, Puech P, Poncelet E et al (2009) Dynamic contrast-enhanced MRI of anterior prostate cancer: morphometric assessment and correlation with radical prostatectomy findings. Eur Radiol 19:470–480PubMedCrossRef
30.
go back to reference Bonekamp D, Jacobs MA, El-Khouli R, Stoianovici D, Macura KJ (2011) Advancements in MR imaging of the prostate: from diagnosis to interventions. Radiographics 31:677–703PubMedCentralPubMedCrossRef Bonekamp D, Jacobs MA, El-Khouli R, Stoianovici D, Macura KJ (2011) Advancements in MR imaging of the prostate: from diagnosis to interventions. Radiographics 31:677–703PubMedCentralPubMedCrossRef
31.
go back to reference Akin O, Sala E, Moskowitz CS et al (2006) Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology 239:784–792PubMedCrossRef Akin O, Sala E, Moskowitz CS et al (2006) Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology 239:784–792PubMedCrossRef
32.
go back to reference Lawrentschuk N, Haider MA, Daljeet N et al (2010) ‘Prostatic evasive anterior tumours’: the role of magnetic resonance imaging. BJU Int 105:1231–1236PubMedCrossRef Lawrentschuk N, Haider MA, Daljeet N et al (2010) ‘Prostatic evasive anterior tumours’: the role of magnetic resonance imaging. BJU Int 105:1231–1236PubMedCrossRef
33.
go back to reference Hoeks CM, Hambrock T, Yakar D et al (2013) Transition zone prostate cancer: detection and localization with 3-T multiparametric MR imaging. Radiology 266:207–217PubMedCrossRef Hoeks CM, Hambrock T, Yakar D et al (2013) Transition zone prostate cancer: detection and localization with 3-T multiparametric MR imaging. Radiology 266:207–217PubMedCrossRef
34.
go back to reference Yoshizako T, Wada A, Hayashi T et al (2008) Usefulness of diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging in the diagnosis of prostate transition-zone cancer. Acta Radiol 49:1207–1213PubMedCrossRef Yoshizako T, Wada A, Hayashi T et al (2008) Usefulness of diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging in the diagnosis of prostate transition-zone cancer. Acta Radiol 49:1207–1213PubMedCrossRef
35.
go back to reference Oto A, Kayhan A, Jiang Y et al (2010) Prostate cancer: differentiation of central gland cancer from benign prostatic hyperplasia by using diffusion-weighted and dynamic contrast-enhanced MR imaging. Radiology 257:715–723PubMedCrossRef Oto A, Kayhan A, Jiang Y et al (2010) Prostate cancer: differentiation of central gland cancer from benign prostatic hyperplasia by using diffusion-weighted and dynamic contrast-enhanced MR imaging. Radiology 257:715–723PubMedCrossRef
36.
go back to reference Engelbrecht MR, Huisman HJ, Laheij RJ et al (2003) Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology 229:248–254PubMedCrossRef Engelbrecht MR, Huisman HJ, Laheij RJ et al (2003) Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology 229:248–254PubMedCrossRef
37.
go back to reference Turnbull LW, Buckley DL, Turnbull LS, Liney GP, Knowles AJ (1999) Differentiation of prostatic carcinoma and benign prostatic hyperplasia: correlation between dynamic Gd-DTPA-enhanced MR imaging and histopathology. J Magn Reson Imaging 9:311–316PubMedCrossRef Turnbull LW, Buckley DL, Turnbull LS, Liney GP, Knowles AJ (1999) Differentiation of prostatic carcinoma and benign prostatic hyperplasia: correlation between dynamic Gd-DTPA-enhanced MR imaging and histopathology. J Magn Reson Imaging 9:311–316PubMedCrossRef
38.
go back to reference Hoeks CM, Barentsz JO, Hambrock T et al (2011) Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology 261:46–66PubMedCrossRef Hoeks CM, Barentsz JO, Hambrock T et al (2011) Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology 261:46–66PubMedCrossRef
39.
go back to reference Schieda N, Coffey N, Gulavita P, Al-Dandan O, Shabana W, Flood TA (2014) Prostatic ductal adenocarcinoma: an aggressive tumour variant unrecognized on T2 weighted magnetic resonance imaging (MRI). Eur Radiol 24:1349–56PubMedCrossRef Schieda N, Coffey N, Gulavita P, Al-Dandan O, Shabana W, Flood TA (2014) Prostatic ductal adenocarcinoma: an aggressive tumour variant unrecognized on T2 weighted magnetic resonance imaging (MRI). Eur Radiol 24:1349–56PubMedCrossRef
40.
go back to reference Claus FG, Hricak H, Hattery RR (2004) Pretreatment evaluation of prostate cancer: role of MR imaging and 1H MR spectroscopy. Radiographics 24(Suppl 1):S167–180PubMedCrossRef Claus FG, Hricak H, Hattery RR (2004) Pretreatment evaluation of prostate cancer: role of MR imaging and 1H MR spectroscopy. Radiographics 24(Suppl 1):S167–180PubMedCrossRef
41.
go back to reference Barrett T, Vargas HA, Akin O, Goldman DA, Hricak H (2012) Value of the hemorrhage exclusion sign on T1-weighted prostate MR images for the detection of prostate cancer. Radiology 263:751–757PubMedCentralPubMedCrossRef Barrett T, Vargas HA, Akin O, Goldman DA, Hricak H (2012) Value of the hemorrhage exclusion sign on T1-weighted prostate MR images for the detection of prostate cancer. Radiology 263:751–757PubMedCentralPubMedCrossRef
42.
go back to reference Rosenkrantz AB, Kopec M, Kong X et al (2010) Prostate cancer vs. post-biopsy hemorrhage: diagnosis with T2- and diffusion-weighted imaging. J Magn Reson Imaging 31:1387–1394PubMedCrossRef Rosenkrantz AB, Kopec M, Kong X et al (2010) Prostate cancer vs. post-biopsy hemorrhage: diagnosis with T2- and diffusion-weighted imaging. J Magn Reson Imaging 31:1387–1394PubMedCrossRef
43.
go back to reference Chesnais AL, Niaf E, Bratan F et al (2013) Differentiation of transitional zone prostate cancer from benign hyperplasia nodules: evaluation of discriminant criteria at multiparametric MRI. Clin Radiol 68:e323–330PubMedCrossRef Chesnais AL, Niaf E, Bratan F et al (2013) Differentiation of transitional zone prostate cancer from benign hyperplasia nodules: evaluation of discriminant criteria at multiparametric MRI. Clin Radiol 68:e323–330PubMedCrossRef
44.
go back to reference Bouye S, Potiron E, Puech P, Leroy X, Lemaitre L, Villers A (2009) Transition zone and anterior stromal prostate cancers: zone of origin and intraprostatic patterns of spread at histopathology. Prostate 69:105–113PubMedCrossRef Bouye S, Potiron E, Puech P, Leroy X, Lemaitre L, Villers A (2009) Transition zone and anterior stromal prostate cancers: zone of origin and intraprostatic patterns of spread at histopathology. Prostate 69:105–113PubMedCrossRef
45.
go back to reference Esen M, Onur MR, Akpolat N, Orhan I, Kocakoc E (2013) Utility of ADC measurement on diffusion-weighted MRI in differentiation of prostate cancer, normal prostate and prostatitis. Quant Imaging Med Surg 3:210–216PubMedCentralPubMed Esen M, Onur MR, Akpolat N, Orhan I, Kocakoc E (2013) Utility of ADC measurement on diffusion-weighted MRI in differentiation of prostate cancer, normal prostate and prostatitis. Quant Imaging Med Surg 3:210–216PubMedCentralPubMed
46.
go back to reference Nagel KN, Schouten MG, Hambrock T et al (2013) Differentiation of prostatitis and prostate cancer by using diffusion-weighted MR imaging and MR-guided biopsy at 3 T. Radiology 267:164–172PubMedCrossRef Nagel KN, Schouten MG, Hambrock T et al (2013) Differentiation of prostatitis and prostate cancer by using diffusion-weighted MR imaging and MR-guided biopsy at 3 T. Radiology 267:164–172PubMedCrossRef
47.
go back to reference Bour L, Schull A, Delongchamps NB et al (2013) Multiparametric MRI features of granulomatous prostatitis and tubercular prostate abscess. Diagn Interv Imaging 94:84–90PubMedCrossRef Bour L, Schull A, Delongchamps NB et al (2013) Multiparametric MRI features of granulomatous prostatitis and tubercular prostate abscess. Diagn Interv Imaging 94:84–90PubMedCrossRef
48.
go back to reference Shukla-Dave A, Hricak H, Eberhardt SC et al (2004) Chronic prostatitis: MR imaging and 1H MR spectroscopic imaging findings–initial observations. Radiology 231:717–724PubMedCrossRef Shukla-Dave A, Hricak H, Eberhardt SC et al (2004) Chronic prostatitis: MR imaging and 1H MR spectroscopic imaging findings–initial observations. Radiology 231:717–724PubMedCrossRef
49.
go back to reference Franiel T, Ludemann L, Rudolph B et al (2008) Evaluation of normal prostate tissue, chronic prostatitis, and prostate cancer by quantitative perfusion analysis using a dynamic contrast-enhanced inversion-prepared dual-contrast gradient echo sequence. Investig Radiol 43:481–487CrossRef Franiel T, Ludemann L, Rudolph B et al (2008) Evaluation of normal prostate tissue, chronic prostatitis, and prostate cancer by quantitative perfusion analysis using a dynamic contrast-enhanced inversion-prepared dual-contrast gradient echo sequence. Investig Radiol 43:481–487CrossRef
50.
go back to reference Watanabe Y, Nagayama M, Araki T et al (2013) Targeted biopsy based on ADC map in the detection and localization of prostate cancer: a feasibility study. J Magn Reson Imaging 37:1168–1177PubMedCentralPubMedCrossRef Watanabe Y, Nagayama M, Araki T et al (2013) Targeted biopsy based on ADC map in the detection and localization of prostate cancer: a feasibility study. J Magn Reson Imaging 37:1168–1177PubMedCentralPubMedCrossRef
51.
go back to reference Humphrey PA (2012) Histological variants of prostatic carcinoma and their significance. Histopathology 60:59–74PubMedCrossRef Humphrey PA (2012) Histological variants of prostatic carcinoma and their significance. Histopathology 60:59–74PubMedCrossRef
52.
go back to reference Meeks JJ, Zhao LC, Cashy J, Kundu S (2012) Incidence and outcomes of ductal carcinoma of the prostate in the USA: analysis of data from the surveillance, epidemiology, and end results program. BJU Int 109:831–834PubMedCrossRef Meeks JJ, Zhao LC, Cashy J, Kundu S (2012) Incidence and outcomes of ductal carcinoma of the prostate in the USA: analysis of data from the surveillance, epidemiology, and end results program. BJU Int 109:831–834PubMedCrossRef
53.
go back to reference Seipel AH, Wiklund F, Wiklund NP, Egevad L (2013) Histopathological features of ductal adenocarcinoma of the prostate in 1,051 radical prostatectomy specimens. Virchows Arch 462:429–436PubMedCrossRef Seipel AH, Wiklund F, Wiklund NP, Egevad L (2013) Histopathological features of ductal adenocarcinoma of the prostate in 1,051 radical prostatectomy specimens. Virchows Arch 462:429–436PubMedCrossRef
54.
go back to reference Amin A, Epstein JI (2011) Pathologic stage of prostatic ductal adenocarcinoma at radical prostatectomy: effect of percentage of the ductal component and associated grade of acinar adenocarcinoma. Am J Surg Pathol 35:615–619PubMedCentralPubMedCrossRef Amin A, Epstein JI (2011) Pathologic stage of prostatic ductal adenocarcinoma at radical prostatectomy: effect of percentage of the ductal component and associated grade of acinar adenocarcinoma. Am J Surg Pathol 35:615–619PubMedCentralPubMedCrossRef
55.
go back to reference Montironi R, Hammond EH, Lin DW et al (2014) Consensus statement with recommendations on active surveillance inclusion criteria and definition of progression in men with localized prostate cancer: the critical role of the pathologist. Virchows Arch 465:623–628PubMedCrossRef Montironi R, Hammond EH, Lin DW et al (2014) Consensus statement with recommendations on active surveillance inclusion criteria and definition of progression in men with localized prostate cancer: the critical role of the pathologist. Virchows Arch 465:623–628PubMedCrossRef
56.
go back to reference Amin MB, Lin DW, Gore JL et al (2014) The critical role of the pathologist in determining eligibility for active surveillance as a management option in patients with prostate cancer: consensus statement with recommendations supported by the College of American Pathologists, International Society of Urological Pathology, Association of Directors of Anatomic and Surgical Pathology, the New Zealand Society of Pathologists, and the Prostate Cancer Foundation. Arch Pathol Lab Med 138:1387–1405PubMedCrossRef Amin MB, Lin DW, Gore JL et al (2014) The critical role of the pathologist in determining eligibility for active surveillance as a management option in patients with prostate cancer: consensus statement with recommendations supported by the College of American Pathologists, International Society of Urological Pathology, Association of Directors of Anatomic and Surgical Pathology, the New Zealand Society of Pathologists, and the Prostate Cancer Foundation. Arch Pathol Lab Med 138:1387–1405PubMedCrossRef
57.
59.
go back to reference Froehlich JM, Metens T, Chilla B, Hauser N, Klarhoefer M, Kubik-Huch RA (2012) Should less motion sensitive T2-weighted BLADE TSE replace cartesian TSE for female pelvic MRI? Insights Imaging 3:611–618 Froehlich JM, Metens T, Chilla B, Hauser N, Klarhoefer M, Kubik-Huch RA (2012) Should less motion sensitive T2-weighted BLADE TSE replace cartesian TSE for female pelvic MRI? Insights Imaging 3:611–618
60.
go back to reference Lane BF, Vandermeer FQ, Oz RC, Irwin EW, McMillan AB, Wong-You-Cheong JJ (2011) Comparison of sagittal T2-weighted BLADE and fast spin-echo MRI of the female pelvis for motion artifact and lesion detection. AJR Am J Roentgenol 197:W307–313PubMedCrossRef Lane BF, Vandermeer FQ, Oz RC, Irwin EW, McMillan AB, Wong-You-Cheong JJ (2011) Comparison of sagittal T2-weighted BLADE and fast spin-echo MRI of the female pelvis for motion artifact and lesion detection. AJR Am J Roentgenol 197:W307–313PubMedCrossRef
61.
go back to reference Rosenkrantz AB, Bennett GL, Doshi A, Deng FM, Babb JS, Taneja SS (2014) T2-weighted imaging of the prostate: impact of the BLADE technique on image quality and tumor assessment. Abdom Imaging 40:552–9CrossRef Rosenkrantz AB, Bennett GL, Doshi A, Deng FM, Babb JS, Taneja SS (2014) T2-weighted imaging of the prostate: impact of the BLADE technique on image quality and tumor assessment. Abdom Imaging 40:552–9CrossRef
62.
go back to reference Westphalen AC, Rosenkrantz AB (2014) Prostate imaging reporting and data system (PI-RADS): reflections on early experience with a standardized interpretation scheme for multiparametric prostate MRI. AJR Am J Roentgenol 202:121–123PubMedCrossRef Westphalen AC, Rosenkrantz AB (2014) Prostate imaging reporting and data system (PI-RADS): reflections on early experience with a standardized interpretation scheme for multiparametric prostate MRI. AJR Am J Roentgenol 202:121–123PubMedCrossRef
63.
go back to reference Metens T, Miranda D, Absil J, Matos C (2012) What is the optimal b value in diffusion-weighted MR imaging to depict prostate cancer at 3 T? Eur Radiol 22:703–709PubMedCrossRef Metens T, Miranda D, Absil J, Matos C (2012) What is the optimal b value in diffusion-weighted MR imaging to depict prostate cancer at 3 T? Eur Radiol 22:703–709PubMedCrossRef
64.
go back to reference Wang X, Qian Y, Liu B et al (2014) High-b-value diffusion-weighted MRI for the detection of prostate cancer at 3 T. Clin Radiol 69:1165–1170PubMedCrossRef Wang X, Qian Y, Liu B et al (2014) High-b-value diffusion-weighted MRI for the detection of prostate cancer at 3 T. Clin Radiol 69:1165–1170PubMedCrossRef
65.
go back to reference Haider MA, van der Kwast TH, Tanguay J et al (2007) Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am J Roentgenol 189:323–328PubMedCrossRef Haider MA, van der Kwast TH, Tanguay J et al (2007) Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am J Roentgenol 189:323–328PubMedCrossRef
66.
go back to reference Rosenkrantz AB, Triolo MJ, Melamed J, Rusinek H, Taneja SS, Deng FM (2015) Whole-lesion apparent diffusion coefficient metrics as a marker of percentage Gleason 4 component within Gleason 7 prostate cancer at radical prostatectomy. J Magn Reson Imaging 41:708–714PubMedCrossRef Rosenkrantz AB, Triolo MJ, Melamed J, Rusinek H, Taneja SS, Deng FM (2015) Whole-lesion apparent diffusion coefficient metrics as a marker of percentage Gleason 4 component within Gleason 7 prostate cancer at radical prostatectomy. J Magn Reson Imaging 41:708–714PubMedCrossRef
67.
go back to reference Lawrence EM, Gallagher FA, Barrett T et al (2014) Preoperative 3 T diffusion-weighted MRI for the qualitative and quantitative assessment of extracapsular extension in patients with intermediate- or high-risk prostate cancer. AJR Am J Roentgenol 203:W280–286PubMedCrossRef Lawrence EM, Gallagher FA, Barrett T et al (2014) Preoperative 3 T diffusion-weighted MRI for the qualitative and quantitative assessment of extracapsular extension in patients with intermediate- or high-risk prostate cancer. AJR Am J Roentgenol 203:W280–286PubMedCrossRef
68.
go back to reference Donati OF, Mazaheri Y, Afaq A et al (2014) Prostate cancer aggressiveness: assessment with whole-lesion histogram analysis of the apparent diffusion coefficient. Radiology 271:143–152PubMedCrossRef Donati OF, Mazaheri Y, Afaq A et al (2014) Prostate cancer aggressiveness: assessment with whole-lesion histogram analysis of the apparent diffusion coefficient. Radiology 271:143–152PubMedCrossRef
69.
go back to reference Vos EK, Litjens GJ, Kobus T et al (2013) Assessment of prostate cancer aggressiveness using dynamic contrast-enhanced magnetic resonance imaging at 3 T. Eur Urol 64:448–455PubMedCrossRef Vos EK, Litjens GJ, Kobus T et al (2013) Assessment of prostate cancer aggressiveness using dynamic contrast-enhanced magnetic resonance imaging at 3 T. Eur Urol 64:448–455PubMedCrossRef
70.
go back to reference Isebaert S, De Keyzer F, Haustermans K et al (2012) Evaluation of semi-quantitative dynamic contrast-enhanced MRI parameters for prostate cancer in correlation to whole-mount histopathology. Eur J Radiol 81:e217–222PubMedCrossRef Isebaert S, De Keyzer F, Haustermans K et al (2012) Evaluation of semi-quantitative dynamic contrast-enhanced MRI parameters for prostate cancer in correlation to whole-mount histopathology. Eur J Radiol 81:e217–222PubMedCrossRef
71.
go back to reference Langer DL, van der Kwast TH, Evans AJ et al (2010) Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, K(trans), v(e), and corresponding histologic features. Radiology 255:485–494PubMedCrossRef Langer DL, van der Kwast TH, Evans AJ et al (2010) Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, K(trans), v(e), and corresponding histologic features. Radiology 255:485–494PubMedCrossRef
72.
go back to reference Quon JKA, Jain R, Schieda N (2015) Assessing the utilization of functional imaging in multi-parametric (mp) prostate MRI in routine clinical practice. Clin Radiol 70:373–378PubMedCrossRef Quon JKA, Jain R, Schieda N (2015) Assessing the utilization of functional imaging in multi-parametric (mp) prostate MRI in routine clinical practice. Clin Radiol 70:373–378PubMedCrossRef
73.
go back to reference Wysock JS, Rosenkrantz AB, Huang WC et al (2014) A prospective, blinded comparison of magnetic resonance (MR) imaging-ultrasound fusion and visual estimation in the performance of MR-targeted prostate biopsy: the PROFUS trial. Eur Urol 66:343–351PubMedCrossRef Wysock JS, Rosenkrantz AB, Huang WC et al (2014) A prospective, blinded comparison of magnetic resonance (MR) imaging-ultrasound fusion and visual estimation in the performance of MR-targeted prostate biopsy: the PROFUS trial. Eur Urol 66:343–351PubMedCrossRef
74.
go back to reference Puech P, Rouviere O, Renard-Penna R et al (2013) Prostate cancer diagnosis: multiparametric MR-targeted biopsy with cognitive and transrectal US-MR fusion guidance versus systematic biopsy–prospective multicenter study. Radiology 268:461–469PubMedCrossRef Puech P, Rouviere O, Renard-Penna R et al (2013) Prostate cancer diagnosis: multiparametric MR-targeted biopsy with cognitive and transrectal US-MR fusion guidance versus systematic biopsy–prospective multicenter study. Radiology 268:461–469PubMedCrossRef
75.
go back to reference Delongchamps NB, Peyromaure M, Schull A et al (2013) Prebiopsy magnetic resonance imaging and prostate cancer detection: comparison of random and targeted biopsies. J Urol 189:493–499PubMedCrossRef Delongchamps NB, Peyromaure M, Schull A et al (2013) Prebiopsy magnetic resonance imaging and prostate cancer detection: comparison of random and targeted biopsies. J Urol 189:493–499PubMedCrossRef
76.
go back to reference Cool DW, Zhang X, Romagnoli C, Izawa JI, Romano WM, Fenster A (2015) Evaluation of MRI-TRUS fusion versus cognitive registration accuracy for MRI-targeted, TRUS-guided prostate biopsy. AJR Am J Roentgenol 204:83–91PubMedCrossRef Cool DW, Zhang X, Romagnoli C, Izawa JI, Romano WM, Fenster A (2015) Evaluation of MRI-TRUS fusion versus cognitive registration accuracy for MRI-targeted, TRUS-guided prostate biopsy. AJR Am J Roentgenol 204:83–91PubMedCrossRef
Metadata
Title
False positive and false negative diagnoses of prostate cancer at multi-parametric prostate MRI in active surveillance
Authors
Jeffrey S. Quon
Bardia Moosavi
Maneesh Khanna
Trevor A. Flood
Christopher S. Lim
Nicola Schieda
Publication date
01-08-2015
Publisher
Springer Berlin Heidelberg
Published in
Insights into Imaging / Issue 4/2015
Electronic ISSN: 1869-4101
DOI
https://doi.org/10.1007/s13244-015-0411-3

Other articles of this Issue 4/2015

Insights into Imaging 4/2015 Go to the issue