Skip to main content
Top
Published in: Insights into Imaging 3/2015

Open Access 01-06-2015 | Original Article

Morphological MR imaging of the articular cartilage of the knee at 3 T—comparison of standard and novel 3D sequences

Authors: Pieter Van Dyck, Floris Vanhevel, Filip M. Vanhoenacker, Kristien Wouters, David M. Grodzki, Jan L. Gielen, Paul M. Parizel

Published in: Insights into Imaging | Issue 3/2015

Login to get access

Abstract

Objectives

This study sought to compare various 3D cartilage sequences and to evaluate the usefulness of ultrashort TE (UTE) imaging, a new technique to isolate signal from the osteochondral junction.

Methods

Twenty knees were examined at 3 T with 3D spoiled GRE (FLASH), double-echo steady-state (DESS), balanced SSFP, 3D turbo spin-echo (TSE), and a prototype UTE sequence. Two radiologists independently evaluated all images. Consensus readings of all sequences were the reference standard. Statistical analysis included Friedman and pairwise Wilcoxon tests. Retrospective analysis of UTE morphology of osteochondral tissue in normal and abnormal cartilage seen at conventional MR was also performed.

Results

Three-dimensional TSE was superior to other sequences for detecting cartilage lesions. FLASH and DESS performed best in the subjective quality analysis. On UTE images, normal cartilage exhibited a high-intensity linear signal near the osteochondral junction. Retrospective analysis revealed abnormal UTE morphology of the osteochondral junction in 50 % of cartilage lesions diagnosed at conventional MR.

Conclusions

Cartilage imaging of the knee at 3 T can be reliably performed using 3D TSE, showing high accuracy when compared to standard sequences. Although UTE depicts signal from the deep cartilage layer, further studies are needed to establish its role for assessment of cartilage.

Main Messages

MRI is the best available imaging method for assessment of knee cartilage.
Cartilage imaging can be reliably performed using 3D TSE.
UTE cannot be used as a single sequence to assess cartilage.
Literature
1.
go back to reference Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85-A(Suppl 2):58–69PubMed Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85-A(Suppl 2):58–69PubMed
2.
go back to reference Guermazi A, Hayashi D, Eckstein F, Hunter DJ, Duryea J, Roemer FW (2013) Imaging of osteoarthritis. Rheum Dis Clin N Am 39:67–105CrossRef Guermazi A, Hayashi D, Eckstein F, Hunter DJ, Duryea J, Roemer FW (2013) Imaging of osteoarthritis. Rheum Dis Clin N Am 39:67–105CrossRef
3.
go back to reference Mosher TJ, Walker EA, Petscavage-Thomas J, Guermazi A (2013) Osteoarthritis year 2013 in review: imaging. Osteoarthr Cartil 21:1425–1435CrossRefPubMed Mosher TJ, Walker EA, Petscavage-Thomas J, Guermazi A (2013) Osteoarthritis year 2013 in review: imaging. Osteoarthr Cartil 21:1425–1435CrossRefPubMed
4.
go back to reference Kijowski R, Gold GE (2011) Routine three-dimensional magnetic resonance imaging of joints. J Magn Reson Imaging 33:758–771CrossRefPubMed Kijowski R, Gold GE (2011) Routine three-dimensional magnetic resonance imaging of joints. J Magn Reson Imaging 33:758–771CrossRefPubMed
5.
go back to reference Crema MD, Roemer FW, Marra MD, Burstein D, Gold GE, Eckstein F et al (2011) Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 31:37–61CrossRefPubMed Crema MD, Roemer FW, Marra MD, Burstein D, Gold GE, Eckstein F et al (2011) Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 31:37–61CrossRefPubMed
6.
go back to reference Gold GE, Hargreaves BA, Stevens KJ, Beaulieu CF (2006) Advanced magnetic resonance imaging of articular cartilage. Orthop Clin N Am 37:331–347CrossRef Gold GE, Hargreaves BA, Stevens KJ, Beaulieu CF (2006) Advanced magnetic resonance imaging of articular cartilage. Orthop Clin N Am 37:331–347CrossRef
8.
go back to reference Recht MP, Goodwin DW, Winalski CS, White LM (2005) MRI of articular cartilage: revisiting current status and future directions. AJR Am J Roentgenol 185:899–914CrossRefPubMed Recht MP, Goodwin DW, Winalski CS, White LM (2005) MRI of articular cartilage: revisiting current status and future directions. AJR Am J Roentgenol 185:899–914CrossRefPubMed
9.
go back to reference Peterfy CG, Schneider E, Nevitt M (2008) The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthr Cartil 16:1433–1441CrossRefPubMedCentralPubMed Peterfy CG, Schneider E, Nevitt M (2008) The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthr Cartil 16:1433–1441CrossRefPubMedCentralPubMed
10.
go back to reference Duc SR, Pfirrmann CWA, Koch PP, Zanetti M, Hodler J (2008) Internal knee derangement assessed with 3-minute three-dimensional isovoxel True FISP MR sequence: preliminary study. Radiology 246:526–535CrossRefPubMed Duc SR, Pfirrmann CWA, Koch PP, Zanetti M, Hodler J (2008) Internal knee derangement assessed with 3-minute three-dimensional isovoxel True FISP MR sequence: preliminary study. Radiology 246:526–535CrossRefPubMed
11.
go back to reference Roemer FW, Crema MD, Trattnig S, Guermazi A (2011) Advances in imaging of osteoarthritis and cartilage. Radiology 260:332–354CrossRefPubMed Roemer FW, Crema MD, Trattnig S, Guermazi A (2011) Advances in imaging of osteoarthritis and cartilage. Radiology 260:332–354CrossRefPubMed
13.
go back to reference Gatehouse PD, Bydder GM (2003) Magnetic resonance imaging of short T2 components in tissue. Clin Radiol 58:1–19CrossRefPubMed Gatehouse PD, Bydder GM (2003) Magnetic resonance imaging of short T2 components in tissue. Clin Radiol 58:1–19CrossRefPubMed
14.
go back to reference Chen CA, Kijowski R, Shapiro LM, Tuite MJ, Davis KW, Klaers JL et al (2010) Cartilage morphology at 3.0 T: assessment of three-dimensional MR imaging techniques. J Magn Reson Imaging 32:173–183CrossRefPubMedCentralPubMed Chen CA, Kijowski R, Shapiro LM, Tuite MJ, Davis KW, Klaers JL et al (2010) Cartilage morphology at 3.0 T: assessment of three-dimensional MR imaging techniques. J Magn Reson Imaging 32:173–183CrossRefPubMedCentralPubMed
15.
go back to reference Friedrich KM, Reiter G, Kaiser B, Mayerhöfer M, Deimling M, Jellus V et al (2011) High-resolution cartilage imaging of the knee at 3 T: basic evaluation of modern isotropic 3D MR-sequences. Eur J Radiol 78:398–405CrossRefPubMed Friedrich KM, Reiter G, Kaiser B, Mayerhöfer M, Deimling M, Jellus V et al (2011) High-resolution cartilage imaging of the knee at 3 T: basic evaluation of modern isotropic 3D MR-sequences. Eur J Radiol 78:398–405CrossRefPubMed
16.
go back to reference Goto H, Fujii M, Iwama Y, Aoyama N, Ohno Y, Sugimura K (2012) Magnetic resonance imaging (MRI) of articular cartilage of the knee using ultrashort echo time (UTE) sequences with spiral acquisition. J Med Imaging Radiat Oncol 56:318–323CrossRefPubMed Goto H, Fujii M, Iwama Y, Aoyama N, Ohno Y, Sugimura K (2012) Magnetic resonance imaging (MRI) of articular cartilage of the knee using ultrashort echo time (UTE) sequences with spiral acquisition. J Med Imaging Radiat Oncol 56:318–323CrossRefPubMed
17.
go back to reference Lee YH, Kim S, Song HT, Kim I, Suh JS (2014) Weighted subtraction in 3D ultrashort echo time (UTE) imaging for visualization of short T2 tissues of the knee. Acta Radiol 55:454–461CrossRefPubMed Lee YH, Kim S, Song HT, Kim I, Suh JS (2014) Weighted subtraction in 3D ultrashort echo time (UTE) imaging for visualization of short T2 tissues of the knee. Acta Radiol 55:454–461CrossRefPubMed
18.
go back to reference Bae WC, Dwek JR, Znamirowski R, Statum SM, Hermida JC, D’Lima DD et al (2010) Ultrashort echo time MR imaging of osteochondral junction of the knee at 3 T: identification of anatomic structures contributing to signal intensity. Radiology 254:837–845CrossRefPubMedCentralPubMed Bae WC, Dwek JR, Znamirowski R, Statum SM, Hermida JC, D’Lima DD et al (2010) Ultrashort echo time MR imaging of osteochondral junction of the knee at 3 T: identification of anatomic structures contributing to signal intensity. Radiology 254:837–845CrossRefPubMedCentralPubMed
19.
go back to reference Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70 Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70
20.
go back to reference Jung JY, Yoon YC, Kim HR, Choe B-K, Wang JH, Jung JY (2013) Knee derangements: comparison of isotropic 3D fast spin-echo, isotropic 3D balanced fast field-echo, and conventional 2D fast spin-echo MR imaging. Radiology 268:802–813CrossRefPubMed Jung JY, Yoon YC, Kim HR, Choe B-K, Wang JH, Jung JY (2013) Knee derangements: comparison of isotropic 3D fast spin-echo, isotropic 3D balanced fast field-echo, and conventional 2D fast spin-echo MR imaging. Radiology 268:802–813CrossRefPubMed
21.
go back to reference Crema MD, Nogueira-Barbosa MH, Roemer FW, Marra MD, Niu J, Chagas-Neto FA et al (2013) Three-dimensional turbo spin-echo magnetic resonance imaging (MRI) and semiquantitative assessment of knee osteoarthritis: comparison with two-dimensional routine MRI. Osteoarthr Cartil 21:428–433CrossRefPubMed Crema MD, Nogueira-Barbosa MH, Roemer FW, Marra MD, Niu J, Chagas-Neto FA et al (2013) Three-dimensional turbo spin-echo magnetic resonance imaging (MRI) and semiquantitative assessment of knee osteoarthritis: comparison with two-dimensional routine MRI. Osteoarthr Cartil 21:428–433CrossRefPubMed
22.
go back to reference Muir P, McCarthy J, Radtke CL, Markel MD, Santschi EM, Scollay MC et al (2006) Role of endochondral ossification of articular cartilage and functional adaptation of the subchondral plate in the development of fatigue microcracking of joints. Bone 38:342–349CrossRefPubMed Muir P, McCarthy J, Radtke CL, Markel MD, Santschi EM, Scollay MC et al (2006) Role of endochondral ossification of articular cartilage and functional adaptation of the subchondral plate in the development of fatigue microcracking of joints. Bone 38:342–349CrossRefPubMed
23.
go back to reference Frisbie DD, Morisset S, Ho CP, Rodkey WG, Steadman JR, McIlwraith CW (2006) Effects of calcified cartilage on healing of chondral defects treated with microfracture in horses. Am J Sports Med 34:1824–1831CrossRefPubMed Frisbie DD, Morisset S, Ho CP, Rodkey WG, Steadman JR, McIlwraith CW (2006) Effects of calcified cartilage on healing of chondral defects treated with microfracture in horses. Am J Sports Med 34:1824–1831CrossRefPubMed
24.
go back to reference Gatehouse PD, Thomas RW, Robson MD, Hamilton G, Herlihy AH, Bydder GM (2004) Magnetic resonance imaging of the knee with ultrashort TE pulse sequences. Magn Reson Imaging 22:1061–1067CrossRefPubMed Gatehouse PD, Thomas RW, Robson MD, Hamilton G, Herlihy AH, Bydder GM (2004) Magnetic resonance imaging of the knee with ultrashort TE pulse sequences. Magn Reson Imaging 22:1061–1067CrossRefPubMed
25.
go back to reference Du J, Carl M, Bae WC, Statum S, Chang E, Bydder GM et al (2013) Dual inversion recovery ultrashort echo time (DIR-UTE) imaging and quantification of the zone of calcified cartilage (ZCC). Osteoarthr Cartil 21:77–85CrossRefPubMedCentralPubMed Du J, Carl M, Bae WC, Statum S, Chang E, Bydder GM et al (2013) Dual inversion recovery ultrashort echo time (DIR-UTE) imaging and quantification of the zone of calcified cartilage (ZCC). Osteoarthr Cartil 21:77–85CrossRefPubMedCentralPubMed
26.
go back to reference Grodzki DM, Jakob PM, Heismann B (2012) Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA). Magn Reson Med 67:510–518CrossRefPubMed Grodzki DM, Jakob PM, Heismann B (2012) Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA). Magn Reson Med 67:510–518CrossRefPubMed
27.
go back to reference Cameron ML, Briggs KK, Steadman JR (2003) Reproducibility and reliability of the outerbridge classification for grading chondral lesions of the knee arthroscopically. Am J Sports Med 31:83–86PubMed Cameron ML, Briggs KK, Steadman JR (2003) Reproducibility and reliability of the outerbridge classification for grading chondral lesions of the knee arthroscopically. Am J Sports Med 31:83–86PubMed
28.
go back to reference Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26:375–385CrossRefPubMed Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26:375–385CrossRefPubMed
Metadata
Title
Morphological MR imaging of the articular cartilage of the knee at 3 T—comparison of standard and novel 3D sequences
Authors
Pieter Van Dyck
Floris Vanhevel
Filip M. Vanhoenacker
Kristien Wouters
David M. Grodzki
Jan L. Gielen
Paul M. Parizel
Publication date
01-06-2015
Publisher
Springer Berlin Heidelberg
Published in
Insights into Imaging / Issue 3/2015
Electronic ISSN: 1869-4101
DOI
https://doi.org/10.1007/s13244-015-0405-1

Other articles of this Issue 3/2015

Insights into Imaging 3/2015 Go to the issue