Skip to main content
Top
Published in: Nuclear Medicine and Molecular Imaging 3/2024

23-02-2024 | Original Article

Uncertainty Analysis of Time-Integrated Activity Coefficient in Single-Time-Point Dosimetry Using Bayesian Fitting Method

Authors: Achmad Faturrahman Jundi, M. Dlorifun Naqiyyun, Bisma Barron Patrianesha, Intan A. S. Mu’minah, Ade Riana, Deni Hardiansyah

Published in: Nuclear Medicine and Molecular Imaging | Issue 3/2024

Login to get access

Abstract

Purpose

Calculation of the uncertainty of the individual time-integrated activity coefficient (TIACs) is desirable in molecular radiotherapy. However, the calculation of TIAC’s uncertainty in single-time-point (STP) method has never been reported in the literature. This study presents a method based on the Bayesian fitting (BF) to calculate the standard deviation (SD) of individual TIACs in the STP dosimetry.

Methods

Biokinetic data of 177Lu-DOTATATE in kidneys were obtained from PMID33443063. BF methods with extended objective function, which optimize the fitting using prior knowledge of the function’s parameters, were used. Reference TIACs (rTIACs) were calculated by fitting a mono-exponential function to the all-time-point data. The goodness of fit was checked based on the visual inspection and the coefficient of variations (CV) of the fitted parameters < 0.5. BF with relative (BFr) and absolute-based (BFa) variance methods were used to obtain the calculated TIACs (cTIACs) from the STP dosimetry. Performance of the STP method was obtained by calculating the relative deviation (RD) between cTIACs and rTIACs.

Results

Visual inspection showed a good fit for all patients with CV of fitted parameters less than 50%. The mean ± SD of cTIAC’s %RD were 7.0 ± 25.2 for BFr and 2.6 ± 8.9 for BFa. The range of %CV of the individual cTIAC’s SD for BFr and BFa methods was 36–78% and 22–33%, respectively, while the %CV of the rTIAC SD was 0.8–49%.

Conclusion

We introduce the BF method to calculate the SD of individual TIACs in STP dosimetry. The presented method might be used as an alternative method for uncertainty analysis in STP dosimetry.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lassmann M, Chiesa C, Flux G, Bardiès M. EANM Dosimetry Committee guidance document: good practice of clinical dosimetry reporting. Eur J Nucl Med Mol Imaging. 2011;38:192–200.CrossRefPubMed Lassmann M, Chiesa C, Flux G, Bardiès M. EANM Dosimetry Committee guidance document: good practice of clinical dosimetry reporting. Eur J Nucl Med Mol Imaging. 2011;38:192–200.CrossRefPubMed
2.
go back to reference Glatting G, Bardiès M, Lassmann M. Treatment planning in molecular radiotherapy. Z Med Phys. 2013;23:262–9.CrossRefPubMed Glatting G, Bardiès M, Lassmann M. Treatment planning in molecular radiotherapy. Z Med Phys. 2013;23:262–9.CrossRefPubMed
3.
go back to reference Hardiansyah D, Maass C, Attarwala AA, Müller B, Kletting P, Mottaghy FM, et al. The role of patient-based treatment planning in peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging. 2016;43:871–80.CrossRefPubMed Hardiansyah D, Maass C, Attarwala AA, Müller B, Kletting P, Mottaghy FM, et al. The role of patient-based treatment planning in peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging. 2016;43:871–80.CrossRefPubMed
4.
go back to reference Jackson PA, Hofman MS, Hicks RJ, Scalzo M, Violet J. Radiation dosimetry in 177lu-psma-617 therapy using a single posttreatment spect/ct scan: A novel methodology to generate time- and tissue-specific dose factors. J Nucl Med. 2020;61:1030–8.CrossRefPubMedPubMedCentral Jackson PA, Hofman MS, Hicks RJ, Scalzo M, Violet J. Radiation dosimetry in 177lu-psma-617 therapy using a single posttreatment spect/ct scan: A novel methodology to generate time- and tissue-specific dose factors. J Nucl Med. 2020;61:1030–8.CrossRefPubMedPubMedCentral
6.
go back to reference Devasia TP, Dewaraja YK, Frey KA, Wong KK, Schipper MJ. A novel time-activity information-sharing approach using nonlinear mixed models for patient-specific dosimetry with reduced imaging time points: application in SPECT/CT after 177Lu-DOTATATE. J Nucl Med. 2021;62:1118–25.CrossRefPubMedPubMedCentral Devasia TP, Dewaraja YK, Frey KA, Wong KK, Schipper MJ. A novel time-activity information-sharing approach using nonlinear mixed models for patient-specific dosimetry with reduced imaging time points: application in SPECT/CT after 177Lu-DOTATATE. J Nucl Med. 2021;62:1118–25.CrossRefPubMedPubMedCentral
7.
go back to reference Hardiansyah D, Riana A, Beer AJ, Glatting G. Single-time-point dosimetry using model selection and nonlinear mixed-effects modelling: a proof of concept. EJNMMI Phys. 2023;10:1–12.CrossRef Hardiansyah D, Riana A, Beer AJ, Glatting G. Single-time-point dosimetry using model selection and nonlinear mixed-effects modelling: a proof of concept. EJNMMI Phys. 2023;10:1–12.CrossRef
8.
go back to reference Hänscheid H, Lapa C, Buck AK, Lassmann M, Werner RA. Dose mapping after endoradiotherapy with 177 Lu-DOTATATE/DOTATOC by a single measurement after 4 days. J Nucl Med. 2018;59:75–81.CrossRefPubMed Hänscheid H, Lapa C, Buck AK, Lassmann M, Werner RA. Dose mapping after endoradiotherapy with 177 Lu-DOTATATE/DOTATOC by a single measurement after 4 days. J Nucl Med. 2018;59:75–81.CrossRefPubMed
9.
go back to reference Ligonnet T, Pistone D, Auditore L, Italiano A, Amato E, Campennì A, et al. Simplified patient-specific renal dosimetry in 177Lu therapy: a proof of concept. Phys Medica. 2021;92:75–85.CrossRef Ligonnet T, Pistone D, Auditore L, Italiano A, Amato E, Campennì A, et al. Simplified patient-specific renal dosimetry in 177Lu therapy: a proof of concept. Phys Medica. 2021;92:75–85.CrossRef
10.
go back to reference Gear JI, Cox MG, Gustafsson J, Gleisner KS, Murray I, Glatting G, et al. EANM practical guidance on uncertainty analysis for molecular radiotherapy absorbed dose calculations. Eur J Nucl Med Mol Imaging. 2018;45:2456–74.CrossRefPubMedPubMedCentral Gear JI, Cox MG, Gustafsson J, Gleisner KS, Murray I, Glatting G, et al. EANM practical guidance on uncertainty analysis for molecular radiotherapy absorbed dose calculations. Eur J Nucl Med Mol Imaging. 2018;45:2456–74.CrossRefPubMedPubMedCentral
11.
go back to reference Finocchiaro D, Gear JI, Fioroni F, Flux GD, Murray I, Castellani G, et al. Uncertainty analysis of tumour absorbed dose calculations in molecular radiotherapy. EJNMMI Phys. 2020;7:63.CrossRefPubMedPubMedCentral Finocchiaro D, Gear JI, Fioroni F, Flux GD, Murray I, Castellani G, et al. Uncertainty analysis of tumour absorbed dose calculations in molecular radiotherapy. EJNMMI Phys. 2020;7:63.CrossRefPubMedPubMedCentral
12.
go back to reference Willowson KP, Eslick E, Ryu H, Poon A, Bernard EJ, Bailey DL. Feasibility and accuracy of single time point imaging for renal dosimetry following 177 Lu-DOTATATE (‘Lutate’) therapy. EJNMMI Phys. 2018;5:33.CrossRefPubMedPubMedCentral Willowson KP, Eslick E, Ryu H, Poon A, Bernard EJ, Bailey DL. Feasibility and accuracy of single time point imaging for renal dosimetry following 177 Lu-DOTATATE (‘Lutate’) therapy. EJNMMI Phys. 2018;5:33.CrossRefPubMedPubMedCentral
13.
go back to reference Peters SMB, Hofferber R, Privé BM, de Bakker M, Gotthardt M, Janssen M, et al. [68Ga]Ga-PSMA-11 PET imaging as a predictor for absorbed doses in organs at risk and small lesions in [177Lu]Lu-PSMA-617 treatment. Eur J Nucl Med Mol Imaging. 2022;49:1101–12.CrossRefPubMed Peters SMB, Hofferber R, Privé BM, de Bakker M, Gotthardt M, Janssen M, et al. [68Ga]Ga-PSMA-11 PET imaging as a predictor for absorbed doses in organs at risk and small lesions in [177Lu]Lu-PSMA-617 treatment. Eur J Nucl Med Mol Imaging. 2022;49:1101–12.CrossRefPubMed
14.
go back to reference Brosch-Lenz J, Delker A, Völter F, Unterrainer LM, Kaiser L, Bartenstein P, et al. Toward single-time-point image-based dosimetry of 177Lu-PSMA-617 therapy. J Nucl Med. 2023;64:767–74.CrossRefPubMedPubMedCentral Brosch-Lenz J, Delker A, Völter F, Unterrainer LM, Kaiser L, Bartenstein P, et al. Toward single-time-point image-based dosimetry of 177Lu-PSMA-617 therapy. J Nucl Med. 2023;64:767–74.CrossRefPubMedPubMedCentral
15.
go back to reference Maaß C, Sachs JP, Hardiansyah D, Mottaghy FM, Kletting P, Glatting G. Dependence of treatment planning accuracy in peptide receptor radionuclide therapy on the sampling schedule. EJNMMI Res. 2016;6:1–9.CrossRef Maaß C, Sachs JP, Hardiansyah D, Mottaghy FM, Kletting P, Glatting G. Dependence of treatment planning accuracy in peptide receptor radionuclide therapy on the sampling schedule. EJNMMI Res. 2016;6:1–9.CrossRef
16.
go back to reference Hardiansyah D, Guo W, Kletting P, Mottaghy FM, Glatting G. Time-integrated activity coefficient estimation for radionuclide therapy using PET and a pharmacokinetic model: a simulation study on the effect of sampling schedule and noise. Med Phys. 2016;43:5145–54.CrossRefPubMed Hardiansyah D, Guo W, Kletting P, Mottaghy FM, Glatting G. Time-integrated activity coefficient estimation for radionuclide therapy using PET and a pharmacokinetic model: a simulation study on the effect of sampling schedule and noise. Med Phys. 2016;43:5145–54.CrossRefPubMed
17.
go back to reference Kletting P, Kull T, Maaß C, Malik N, Luster M, Beer AJ, et al. Optimized peptide amount and activity for 90Y-labeled DOTATATE therapy. J Nucl Med. 2016;57:503–8.CrossRefPubMed Kletting P, Kull T, Maaß C, Malik N, Luster M, Beer AJ, et al. Optimized peptide amount and activity for 90Y-labeled DOTATATE therapy. J Nucl Med. 2016;57:503–8.CrossRefPubMed
18.
go back to reference Kletting P, Maaß C, Reske S, Beer AJ, Glatting G. Physiologically based pharmacokinetic modeling is essential in 90Y-labeled anti-CD66 radioimmunotherapy. PLoS ONE. 2015;10:1–15.CrossRef Kletting P, Maaß C, Reske S, Beer AJ, Glatting G. Physiologically based pharmacokinetic modeling is essential in 90Y-labeled anti-CD66 radioimmunotherapy. PLoS ONE. 2015;10:1–15.CrossRef
19.
go back to reference Ardenfors O, Nilsson JN, Thor D, Hindorf C. Simplified dosimetry for kidneys and tumors in 177Lu-labeled peptide receptor radionuclide therapy. EJNMMI Phys. 2022;9:44.CrossRefPubMedPubMedCentral Ardenfors O, Nilsson JN, Thor D, Hindorf C. Simplified dosimetry for kidneys and tumors in 177Lu-labeled peptide receptor radionuclide therapy. EJNMMI Phys. 2022;9:44.CrossRefPubMedPubMedCentral
20.
go back to reference Tran-Gia J, Lassmann M. Characterization of noise and resolution for quantitative 177 Lu SPECT/CT with XSPECT quant. J Nucl Med. 2019;60:50–9.CrossRefPubMed Tran-Gia J, Lassmann M. Characterization of noise and resolution for quantitative 177 Lu SPECT/CT with XSPECT quant. J Nucl Med. 2019;60:50–9.CrossRefPubMed
21.
go back to reference Mirando D, Dewaraja YK, Cole NM, Nelson AS. In pursuit of fully automated dosimetry: evaluation of an automatic VOI propagation algorithm using contour intensity-based SPECT alignments. Eur J Nucl Med Mol Imaging. 2020;In: Eur. J. Nucl. Med. Mol. Imaging. Springer One New York Plaza, Suite 4600, New York, Ny, United States, pp S236–S236. Mirando D, Dewaraja YK, Cole NM, Nelson AS. In pursuit of fully automated dosimetry: evaluation of an automatic VOI propagation algorithm using contour intensity-based SPECT alignments. Eur J Nucl Med Mol Imaging. 2020;In: Eur. J. Nucl. Med. Mol. Imaging. Springer One New York Plaza, Suite 4600, New York, Ny, United States, pp S236–S236.
22.
go back to reference Kletting P, Schimmel S, Kestler HA, Hänscheid H, Luster M, Fernández M, et al. Molecular radiotherapy: the NUKFIT software for calculating the time-integrated activity coefficient. Med Phys. 2013;40: 102504.CrossRefPubMed Kletting P, Schimmel S, Kestler HA, Hänscheid H, Luster M, Fernández M, et al. Molecular radiotherapy: the NUKFIT software for calculating the time-integrated activity coefficient. Med Phys. 2013;40: 102504.CrossRefPubMed
23.
go back to reference Bonate PL. Pharmacokinetics pharmacodynamics modeling and simulation, 2nd ed. 2011;Springer, New York. Bonate PL. Pharmacokinetics pharmacodynamics modeling and simulation, 2nd ed. 2011;Springer, New York.
24.
go back to reference Barrett PHR, Bell BM, Cobelli C, Golde H, Schumitzky A, Vicini P, et al. SAAM II: simulation, analysis, and modeling software for tracer and pharmacokinetic studies. Metabolism. 1998;47:484–92.CrossRefPubMed Barrett PHR, Bell BM, Cobelli C, Golde H, Schumitzky A, Vicini P, et al. SAAM II: simulation, analysis, and modeling software for tracer and pharmacokinetic studies. Metabolism. 1998;47:484–92.CrossRefPubMed
25.
go back to reference Hardiansyah D, Riana A, Kletting P, Zaid NRR, Eiber M, Pawiro SA, et al. A population-based method to determine the time-integrated activity in molecular radiotherapy. EJNMMI Phys. 2021;8:82.CrossRefPubMedPubMedCentral Hardiansyah D, Riana A, Kletting P, Zaid NRR, Eiber M, Pawiro SA, et al. A population-based method to determine the time-integrated activity in molecular radiotherapy. EJNMMI Phys. 2021;8:82.CrossRefPubMedPubMedCentral
26.
go back to reference Kletting P, Schimmel S, Hänscheid H, Luster M, Fernández M, Nosske D, et al. The NUKDOS software for treatment planning in molecular radiotherapy. Z Med Phys. 2015;25:264–74.CrossRefPubMed Kletting P, Schimmel S, Hänscheid H, Luster M, Fernández M, Nosske D, et al. The NUKDOS software for treatment planning in molecular radiotherapy. Z Med Phys. 2015;25:264–74.CrossRefPubMed
27.
go back to reference Mahmoudi E, Pirayesh E, Deevband MR, Amoui M, Rad MG, Ghorbani M. Patient-specific dosimetry in radioligand therapy (RLT) for metastatic prostate cancer using 177Lu-DKFZ-PSMA-617. Nucl Med Mol Imaging. 2010;2021(55):237–44. Mahmoudi E, Pirayesh E, Deevband MR, Amoui M, Rad MG, Ghorbani M. Patient-specific dosimetry in radioligand therapy (RLT) for metastatic prostate cancer using 177Lu-DKFZ-PSMA-617. Nucl Med Mol Imaging. 2010;2021(55):237–44.
29.
go back to reference Vegt E, De JM, Wetzels JFM, Masereeuw R, Melis M, Oyen WJG, et al. Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention. J Nucl Med. 2010;51:1049–58.CrossRefPubMed Vegt E, De JM, Wetzels JFM, Masereeuw R, Melis M, Oyen WJG, et al. Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention. J Nucl Med. 2010;51:1049–58.CrossRefPubMed
Metadata
Title
Uncertainty Analysis of Time-Integrated Activity Coefficient in Single-Time-Point Dosimetry Using Bayesian Fitting Method
Authors
Achmad Faturrahman Jundi
M. Dlorifun Naqiyyun
Bisma Barron Patrianesha
Intan A. S. Mu’minah
Ade Riana
Deni Hardiansyah
Publication date
23-02-2024
Publisher
Springer Nature Singapore
Published in
Nuclear Medicine and Molecular Imaging / Issue 3/2024
Print ISSN: 1869-3474
Electronic ISSN: 1869-3482
DOI
https://doi.org/10.1007/s13139-024-00851-8

Other articles of this Issue 3/2024

Nuclear Medicine and Molecular Imaging 3/2024 Go to the issue