Skip to main content
Top
Published in: Nuclear Medicine and Molecular Imaging 1/2011

01-03-2011 | Original Article

Prognostic Value of Metabolic Tumor Volume Measured by 18F-FDG PET/CT in Locally Advanced Head and Neck Squamous Cell Carcinomas Treated by Surgery

Authors: Kyu-Ho Choi, Ie Ryung Yoo, Eun Ji Han, Yeon Sil Kim, Gi Won Kim, Sae Jung Na, Dong-Il Sun, So Lyung Jung, Chan-Kwon Jung, Min-Sik Kim, So-Yeon Lee, Sung Hoon Kim

Published in: Nuclear Medicine and Molecular Imaging | Issue 1/2011

Login to get access

Abstract

Purpose

We assessed the prognostic value of metabolic tumor volume (MTV) measured using18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) inpatients with locally advanced head and neck squamous cell carcinoma (HNSCC).

Methods

We retrospectively reviewed 56 patients (51 men, five women; mean age 56.0 ± 8.8years) who had locally advanced HNSCC and underwent FDG PET/CT for initial evaluation. All patients had surgical resection and radiotherapy with or without concurrent chemotherapy. The peak standardized uptake value (SUVpeak) and MTV of the target lesion, including primary HNSCC andmetastatic cervical lymph nodes, were measured from FDG PET/CT images. We compared SUVpeak, MTV, and clinicopathologic variables such as age, Eastern Cooperative Oncology Group (ECOG) performance status, pN stage, pT stage, TNM stage, histologic grade and treatment modality to disease-free survival (DFS) and overall survival (OS).

Results

On the initial FDG PET/CT scans, the median SUVpeak was 7.8 (range, 1.8-19.0) and MTV was17.0 cm3 (range, 0.1-131.0 cm3). The estimated 2-year DFS and OS rates were 67.2% and 81.8%. The cutoff points of SUVpeak 6.2 and MTV 20.7 cm3 were the best discriminative values for predicting clinical outcome. MTV and ECOG performance status were significantly related to DFS and OS on univariate and multivariate analyses (p < 0.05).

Conclusion

The MTV obtained from initial FDG PET/CT scan is a significant prognostic factor for disease recurrence and mortality in locally advanced HNSCC treated with surgery and radiotherapy with or without chemotherapy.
Literature
1.
go back to reference Subramaniam RM, Truong M, Peller P, Sakai O, Mercier G. Fluorodeoxyglucose-positron-emission tomography imaging of head and neck squamous cell cancer. AJNR Am J Neuroradiol. 2009. doi:10.3174/ajnr.A1760.PubMed Subramaniam RM, Truong M, Peller P, Sakai O, Mercier G. Fluorodeoxyglucose-positron-emission tomography imaging of head and neck squamous cell cancer. AJNR Am J Neuroradiol. 2009. doi:10.​3174/​ajnr.​A1760.PubMed
2.
go back to reference Allal AS, Dulguerov P, Allaoua M, Haenggeli CA, el El-Ghazi A, Lehmann W, et al. Standardized uptake value of 2-[(18)F] fluoro-2-deoxy-D-glucose in predicting outcome in head and neck carcinomas treated by radiotherapy with or without chemotherapy. J Clin Oncol. 2002;20:1398–404.CrossRefPubMed Allal AS, Dulguerov P, Allaoua M, Haenggeli CA, el El-Ghazi A, Lehmann W, et al. Standardized uptake value of 2-[(18)F] fluoro-2-deoxy-D-glucose in predicting outcome in head and neck carcinomas treated by radiotherapy with or without chemotherapy. J Clin Oncol. 2002;20:1398–404.CrossRefPubMed
3.
go back to reference Minn H, Clavo AC, Grénman R, Wahl RL. In vitro comparison of cell proliferation kinetics and uptake of tritiated fluorodeoxyglucose and L-methionine in squamous cell carcinoma of the head and neck. J Nucl Med. 1995;36:252–8.PubMed Minn H, Clavo AC, Grénman R, Wahl RL. In vitro comparison of cell proliferation kinetics and uptake of tritiated fluorodeoxyglucose and L-methionine in squamous cell carcinoma of the head and neck. J Nucl Med. 1995;36:252–8.PubMed
4.
go back to reference Minn H, Joensuu H, Ahonen A, Klemi P. Fluorodeoxyglucose imaging: a method to assess the proliferative activity of human cancer in vivo. Comparison with DNA flow cytometry in head and neck tumors. Cancer. 1988;61:1776–81.CrossRefPubMed Minn H, Joensuu H, Ahonen A, Klemi P. Fluorodeoxyglucose imaging: a method to assess the proliferative activity of human cancer in vivo. Comparison with DNA flow cytometry in head and neck tumors. Cancer. 1988;61:1776–81.CrossRefPubMed
5.
go back to reference Jacob R, Welkoborsky HJ, Mann WJ, Jauch M, Amedee R. [Fluorine-18]fluorodeoxyglucose positron emission tomography, DNA ploidy and growth fraction in squamous cell carcinoma of the head and neck. ORL J Otorhinolaryngol Relat Spec. 2001;63:307–13.PubMed Jacob R, Welkoborsky HJ, Mann WJ, Jauch M, Amedee R. [Fluorine-18]fluorodeoxyglucose positron emission tomography, DNA ploidy and growth fraction in squamous cell carcinoma of the head and neck. ORL J Otorhinolaryngol Relat Spec. 2001;63:307–13.PubMed
6.
go back to reference Minn H, Lapela M, Klemi PJ, Grénman R, Leskinen S, Lindholm P, et al. Prediction of survival with fluorine-18-fluoro-deoxyglucose and PET in head and neck cancer. J Nucl Med. 1997;38:1907–11.PubMed Minn H, Lapela M, Klemi PJ, Grénman R, Leskinen S, Lindholm P, et al. Prediction of survival with fluorine-18-fluoro-deoxyglucose and PET in head and neck cancer. J Nucl Med. 1997;38:1907–11.PubMed
7.
go back to reference Allal AS, Slosman DO, Kebdani T, Allaoua M, Lehmann W, Dulguerov P. Prediction of outcome in head-and-neck cancer patients using the standardized uptake value of 2-[18F]fluoro-2-deoxy-D-glucose. Int J Radiat Oncol Biol Phys. 2004;59:1295–300.CrossRefPubMed Allal AS, Slosman DO, Kebdani T, Allaoua M, Lehmann W, Dulguerov P. Prediction of outcome in head-and-neck cancer patients using the standardized uptake value of 2-[18F]fluoro-2-deoxy-D-glucose. Int J Radiat Oncol Biol Phys. 2004;59:1295–300.CrossRefPubMed
8.
go back to reference Roh JL, Pae KH, Choi SH, Kim JS, Lee S, Kim SB, et al. 2-[18F]-Fluoro-2-deoxy-D-glucose positron emission tomography as guidance for primary treatment in patients with advanced-stage resectable squamous cell carcinoma of the larynx and hypopharynx. Eur J Surg Oncol. 2007;33:790–5.PubMed Roh JL, Pae KH, Choi SH, Kim JS, Lee S, Kim SB, et al. 2-[18F]-Fluoro-2-deoxy-D-glucose positron emission tomography as guidance for primary treatment in patients with advanced-stage resectable squamous cell carcinoma of the larynx and hypopharynx. Eur J Surg Oncol. 2007;33:790–5.PubMed
9.
go back to reference Torizuka T, Tanizaki Y, Kanno T, Futatsubashi M, Naitou K, Ueda Y, et al. Prognostic value of 18F-FDG PET in patients with head and neck squamous cell cancer. AJR Am J Roentgenol. 2009;192:156–60.CrossRef Torizuka T, Tanizaki Y, Kanno T, Futatsubashi M, Naitou K, Ueda Y, et al. Prognostic value of 18F-FDG PET in patients with head and neck squamous cell cancer. AJR Am J Roentgenol. 2009;192:156–60.CrossRef
10.
go back to reference Mukherji SK, Schmalfuss IM, Castelijns J, Mancuso AA. Clinical applications of tumor volume measurements for predicting outcome in patients with squamous cell carcinoma of the upper aerodigestive tract. AJNR Am J Neuroradiology. 2004;25:1425–32. Mukherji SK, Schmalfuss IM, Castelijns J, Mancuso AA. Clinical applications of tumor volume measurements for predicting outcome in patients with squamous cell carcinoma of the upper aerodigestive tract. AJNR Am J Neuroradiology. 2004;25:1425–32.
11.
go back to reference Seol YM, Kwon BR, Song MK, Choi YJ, Shin HJ, Chung JS, et al. Measurement of tumor volume by PET to evaluate prognosis in patients with heal and neck cancer treated by chemo-radiation therapy. Acta Oncol. 2010;49:201–8.CrossRefPubMed Seol YM, Kwon BR, Song MK, Choi YJ, Shin HJ, Chung JS, et al. Measurement of tumor volume by PET to evaluate prognosis in patients with heal and neck cancer treated by chemo-radiation therapy. Acta Oncol. 2010;49:201–8.CrossRefPubMed
12.
go back to reference La TH, Filion EJ, Turnbull BB, Chu JN, Lee P, Nguyen K, et al. Metabolic tumor volume predicts for recurrence and death in head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2009;74:1335–41.CrossRefPubMed La TH, Filion EJ, Turnbull BB, Chu JN, Lee P, Nguyen K, et al. Metabolic tumor volume predicts for recurrence and death in head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2009;74:1335–41.CrossRefPubMed
13.
go back to reference Chung MK, Jeong HS, Park SG, Jang JY, Son YI, Choi JY, et al. Metabolic tumor volume of [18F]-fluorodeoxyglucose positron emission tomography/computed tomography predicts short-term outcome to radiotherapy with or without chemotherapy in pharyngeal cancer. Clin Cancer Res. 2009;15:5861–8.CrossRefPubMed Chung MK, Jeong HS, Park SG, Jang JY, Son YI, Choi JY, et al. Metabolic tumor volume of [18F]-fluorodeoxyglucose positron emission tomography/computed tomography predicts short-term outcome to radiotherapy with or without chemotherapy in pharyngeal cancer. Clin Cancer Res. 2009;15:5861–8.CrossRefPubMed
14.
go back to reference Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rübe C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med. 2005;46:1342–8.PubMed Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rübe C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med. 2005;46:1342–8.PubMed
15.
go back to reference Konski A, Doss M, Milestone B, Haluszka O, Hanlon A, Freedman G, et al. The integration of 18-fluoro-deoxy-glucose positron emission tomography and endoscopic ultrasound in the treatment-planning process for esophageal carcinoma. Int J Radiat Oncol Biol Phys. 2005;61:1123–8.CrossRefPubMed Konski A, Doss M, Milestone B, Haluszka O, Hanlon A, Freedman G, et al. The integration of 18-fluoro-deoxy-glucose positron emission tomography and endoscopic ultrasound in the treatment-planning process for esophageal carcinoma. Int J Radiat Oncol Biol Phys. 2005;61:1123–8.CrossRefPubMed
16.
go back to reference Greco C, Rosenzweig K, Cascini GL, Tamburrini O. Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer. 2007;57:125–34.CrossRefPubMed Greco C, Rosenzweig K, Cascini GL, Tamburrini O. Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer. 2007;57:125–34.CrossRefPubMed
17.
go back to reference Miller R, Siegmund D. Maximally selected x2 statistics. Biometrics. 1982;38:1011–6.CrossRef Miller R, Siegmund D. Maximally selected x2 statistics. Biometrics. 1982;38:1011–6.CrossRef
18.
go back to reference Halpern J. Maximally selected x2 statistics for small samples. Biometrics. 1982;38:1017–23.CrossRef Halpern J. Maximally selected x2 statistics for small samples. Biometrics. 1982;38:1017–23.CrossRef
19.
20.
go back to reference Le Tourneau C, Jung GM, Borel C, Bronner G, Flesch H, Velten M. Prognostic factors of survival in head and neck cancer patients treated with surgery and postoperative radiation therapy. Acta Otolaryngol. 2008;128:706–12.CrossRefPubMed Le Tourneau C, Jung GM, Borel C, Bronner G, Flesch H, Velten M. Prognostic factors of survival in head and neck cancer patients treated with surgery and postoperative radiation therapy. Acta Otolaryngol. 2008;128:706–12.CrossRefPubMed
21.
go back to reference Bastit L, Blot E, Debourdeau P, Menard J, Bastit P, Le Fur R. Influence of the delay of adjuvant postoperative radiation therapy on relapse and survival in oropharyngeal and hypopharyngeal cancers. Int J Radiat Oncol Biol Phys. 2001;49:139–46.CrossRefPubMed Bastit L, Blot E, Debourdeau P, Menard J, Bastit P, Le Fur R. Influence of the delay of adjuvant postoperative radiation therapy on relapse and survival in oropharyngeal and hypopharyngeal cancers. Int J Radiat Oncol Biol Phys. 2001;49:139–46.CrossRefPubMed
22.
go back to reference Langendijk JA, de Jong MA, Leemans CR, de Bree R, Smeele LE, Doornaert P, et al. Postoperative radiotherapy in squamous cell carcinoma of the oral cavity: the importance of the overall treatment time. Int J Radiat Oncol Biol Phys. 2003;57:693–700.CrossRefPubMed Langendijk JA, de Jong MA, Leemans CR, de Bree R, Smeele LE, Doornaert P, et al. Postoperative radiotherapy in squamous cell carcinoma of the oral cavity: the importance of the overall treatment time. Int J Radiat Oncol Biol Phys. 2003;57:693–700.CrossRefPubMed
23.
go back to reference Suwinski R, Sowa A, Rutkowski T, Wydmanski J, Tarnawski R, Maciejewski B. Time factor in postoperative radiotherapy: a multivariate locoregional control analysis in 868 patients. Int J Radiat Oncol Biol Phys. 2003;56:399–412.CrossRefPubMed Suwinski R, Sowa A, Rutkowski T, Wydmanski J, Tarnawski R, Maciejewski B. Time factor in postoperative radiotherapy: a multivariate locoregional control analysis in 868 patients. Int J Radiat Oncol Biol Phys. 2003;56:399–412.CrossRefPubMed
24.
go back to reference Al-Ibraheem A, Buck A, Krause BJ, Scheidhauer K, Schwaiger M (2009) Clinical Applications of FDG PET and PET/CT in Head and Neck Cancer. J Oncol 2009:208725. Epub 2009 Aug 20 Al-Ibraheem A, Buck A, Krause BJ, Scheidhauer K, Schwaiger M (2009) Clinical Applications of FDG PET and PET/CT in Head and Neck Cancer. J Oncol 2009:208725. Epub 2009 Aug 20
25.
go back to reference Laubenbacher C, Saumweber D, Wagner-Manslau C, Kau RJ, Herz M, Avril N, et al. Comparison of fluorine-18-fluorodeoxyglucose PET, MRI and endoscopy for staging head and neck squamous-cell carcinomas. J Nucl Med. 1995;36:1747–57.PubMed Laubenbacher C, Saumweber D, Wagner-Manslau C, Kau RJ, Herz M, Avril N, et al. Comparison of fluorine-18-fluorodeoxyglucose PET, MRI and endoscopy for staging head and neck squamous-cell carcinomas. J Nucl Med. 1995;36:1747–57.PubMed
26.
go back to reference Schwartz DL, Ford E, Rajendran J, Yueh B, Coltrera MD, Virgin J, et al. FDG-PET/CT imaging for preradiotherapy staging of head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2005;61:129–36.CrossRefPubMed Schwartz DL, Ford E, Rajendran J, Yueh B, Coltrera MD, Virgin J, et al. FDG-PET/CT imaging for preradiotherapy staging of head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2005;61:129–36.CrossRefPubMed
27.
go back to reference Greven KM, Williams 3rd DW, McGuirt Sr WF, Harkness BA, D’Agostino Jr RB, Keyes Jr JW, et al. Serial positron emission tomography scans following radiation therapy of patients with head and neck cancer. Head Neck. 2001;23:942–6.CrossRefPubMed Greven KM, Williams 3rd DW, McGuirt Sr WF, Harkness BA, D’Agostino Jr RB, Keyes Jr JW, et al. Serial positron emission tomography scans following radiation therapy of patients with head and neck cancer. Head Neck. 2001;23:942–6.CrossRefPubMed
28.
go back to reference Vernon MR, Maheshwari M, Schultz CJ, Michel MA, Wong SJ, Campbell BH. Clinical outcomes of patients receiving integrated PET/CT-guided radiotherapy for head and neck carcinoma. Int J Radiat Oncol Biol Phys. 2008;70:678–84.CrossRefPubMed Vernon MR, Maheshwari M, Schultz CJ, Michel MA, Wong SJ, Campbell BH. Clinical outcomes of patients receiving integrated PET/CT-guided radiotherapy for head and neck carcinoma. Int J Radiat Oncol Biol Phys. 2008;70:678–84.CrossRefPubMed
29.
go back to reference Plataniotis GA, Theofanopoulou ME, Kalogera-Fountzila A, Haritanti A, Ciuleanou E, Ghilezan N, et al. Prognostic impact of tumor volumetry in patients with locally advanced head-and-neck carcinoma (non-nasopharyngeal) treated by radiotherapy alone or combined radiochemotherapy in a randomized trial. Int J Radiat Oncol Biol Phys. 2004;59:1018–26.CrossRefPubMed Plataniotis GA, Theofanopoulou ME, Kalogera-Fountzila A, Haritanti A, Ciuleanou E, Ghilezan N, et al. Prognostic impact of tumor volumetry in patients with locally advanced head-and-neck carcinoma (non-nasopharyngeal) treated by radiotherapy alone or combined radiochemotherapy in a randomized trial. Int J Radiat Oncol Biol Phys. 2004;59:1018–26.CrossRefPubMed
30.
go back to reference Chao KS, Ozyigit G, Blanco AI, Thorstad WL, Deasy JO, Haughey BH, et al. Intensity-modulated radiation therapy for oropharyngeal carcinoma: impact of tumor volume. Int J Radiat Oncol Biol Phys. 2004;59:43–50.CrossRefPubMed Chao KS, Ozyigit G, Blanco AI, Thorstad WL, Deasy JO, Haughey BH, et al. Intensity-modulated radiation therapy for oropharyngeal carcinoma: impact of tumor volume. Int J Radiat Oncol Biol Phys. 2004;59:43–50.CrossRefPubMed
31.
go back to reference Mancuso AA, Mukherji SK, Schmalfuss I, Mendenhall W, Parsons J, Pameijer F, et al. Preradiotherapy computed tomography as a predictor of local control in supraglottic carcinoma. J Clin Oncol. 1999;17:631–7.PubMed Mancuso AA, Mukherji SK, Schmalfuss I, Mendenhall W, Parsons J, Pameijer F, et al. Preradiotherapy computed tomography as a predictor of local control in supraglottic carcinoma. J Clin Oncol. 1999;17:631–7.PubMed
32.
go back to reference Chang CC, Chen MK, Liu MT, Wu HK. The effect of primary tumor volumes in advanced T-staged nasopharyngeal tumors. Head Neck. 2002;24:940–6.CrossRefPubMed Chang CC, Chen MK, Liu MT, Wu HK. The effect of primary tumor volumes in advanced T-staged nasopharyngeal tumors. Head Neck. 2002;24:940–6.CrossRefPubMed
33.
go back to reference Chu ST, Wu PH, Hou YY, Chang KP, Chi CC, Lee CC, et al. Primary tumor volume of nasopharyngeal carcinoma: significance for recurrence and survival. J Chin Med Assoc. 2008;71:461–6.CrossRefPubMed Chu ST, Wu PH, Hou YY, Chang KP, Chi CC, Lee CC, et al. Primary tumor volume of nasopharyngeal carcinoma: significance for recurrence and survival. J Chin Med Assoc. 2008;71:461–6.CrossRefPubMed
34.
go back to reference Knegjens JL, Hauptmann M, Pameijer FA, Balm AJ, Hoebers FJ, de Bois JA, et al. Tumor volume as outcome predictor in chemoradiation for advanced head and neck cancer. Head Neck. 2010. doi:10.1002/hed.21459. Knegjens JL, Hauptmann M, Pameijer FA, Balm AJ, Hoebers FJ, de Bois JA, et al. Tumor volume as outcome predictor in chemoradiation for advanced head and neck cancer. Head Neck. 2010. doi:10.​1002/​hed.​21459.
35.
go back to reference Chong VF, Zhou JY, Khoo JB, Chan KL, Huang J. Correlation between MR imaging-derived nasopharyngeal carcinoma tumor volume and TNM system. Int J Radiat Oncol Biol Phys. 2006;64:72–6.CrossRefPubMed Chong VF, Zhou JY, Khoo JB, Chan KL, Huang J. Correlation between MR imaging-derived nasopharyngeal carcinoma tumor volume and TNM system. Int J Radiat Oncol Biol Phys. 2006;64:72–6.CrossRefPubMed
36.
go back to reference Daisne J-F, Duprez T, Weynand B, Lonneux M, Hamoir M, Reychler H, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology. 2004;233:93–100.CrossRefPubMed Daisne J-F, Duprez T, Weynand B, Lonneux M, Hamoir M, Reychler H, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology. 2004;233:93–100.CrossRefPubMed
37.
go back to reference Minna JD, Higgins GA, Glatstein EJ. Cancer of lung. In: De Vita VT, Jr HS, Rosenberg SA, editors. Cancer: Principles and practice of oncology. Philadelphia: Lippincott; 1985. p. 507–97. Minna JD, Higgins GA, Glatstein EJ. Cancer of lung. In: De Vita VT, Jr HS, Rosenberg SA, editors. Cancer: Principles and practice of oncology. Philadelphia: Lippincott; 1985. p. 507–97.
38.
go back to reference Lee WR, Berkey B, Marcial V, Fu KK, Cooper JS, Vikram B, et al. Anemia is associated with decreased survival and increased locoregional failure in patients with locally advanced head and neck carcinoma: a secondary analysis of RTOG 85-27. Int J Radiat Oncol Biol Phys. 1998;42:1069–75.CrossRefPubMed Lee WR, Berkey B, Marcial V, Fu KK, Cooper JS, Vikram B, et al. Anemia is associated with decreased survival and increased locoregional failure in patients with locally advanced head and neck carcinoma: a secondary analysis of RTOG 85-27. Int J Radiat Oncol Biol Phys. 1998;42:1069–75.CrossRefPubMed
39.
go back to reference Rades D, Fehlauer F, Wroblesky J, Albers D, Schild SE, Schmidt R. Prognostic factors in head-and-neck cancer patients treated with surgery followed by intensity-modulated radiotherapy (IMRT), 3D-conformal radiotherapy, or conventional radiotherapy. Oral Oncol. 2007;43:535–43.CrossRefPubMed Rades D, Fehlauer F, Wroblesky J, Albers D, Schild SE, Schmidt R. Prognostic factors in head-and-neck cancer patients treated with surgery followed by intensity-modulated radiotherapy (IMRT), 3D-conformal radiotherapy, or conventional radiotherapy. Oral Oncol. 2007;43:535–43.CrossRefPubMed
Metadata
Title
Prognostic Value of Metabolic Tumor Volume Measured by 18F-FDG PET/CT in Locally Advanced Head and Neck Squamous Cell Carcinomas Treated by Surgery
Authors
Kyu-Ho Choi
Ie Ryung Yoo
Eun Ji Han
Yeon Sil Kim
Gi Won Kim
Sae Jung Na
Dong-Il Sun
So Lyung Jung
Chan-Kwon Jung
Min-Sik Kim
So-Yeon Lee
Sung Hoon Kim
Publication date
01-03-2011
Publisher
Springer-Verlag
Published in
Nuclear Medicine and Molecular Imaging / Issue 1/2011
Print ISSN: 1869-3474
Electronic ISSN: 1869-3482
DOI
https://doi.org/10.1007/s13139-010-0063-7

Other articles of this Issue 1/2011

Nuclear Medicine and Molecular Imaging 1/2011 Go to the issue