Skip to main content
Top
Published in: Translational Stroke Research 2/2018

01-04-2018 | Original Article

Ischemic Preconditioning Protects Astrocytes against Oxygen Glucose Deprivation Via the Nuclear Erythroid 2-Related Factor 2 Pathway

Authors: Srinivasan V. Narayanan, Kunjan R. Dave, Miguel A. Perez-Pinzon

Published in: Translational Stroke Research | Issue 2/2018

Login to get access

Abstract

Induction of ischemic preconditioning (IPC) represents a potential therapy against cerebral ischemia by activation of adaptive pathways and modulation of mitochondria to induce ischemic tolerance to various cells and tissues. Mitochondrial dysfunction has been ascribed to contribute to numerous neurodegenerative conditions and cerebral ischemia. Nuclear erythroid 2-related factor 2 (Nrf2) is a transcription factor that has traditionally been involved in upregulating cellular antioxidant systems to combat oxidative stress in the brain; however, the association of Nrf2 with mitochondria in the brain remains unclear. In the present study, we investigated the effects of Nrf2 on (i) IPC-induced protection of astrocytes; (ii) OXPHOS protein expression; and (iii) mitochondrial supercomplex formation.
Oxygen-glucose deprivation (OGD) was used as an in vitro model of cerebral ischemia and IPC in cultured rodent astrocytes derived from WT C57Bl/6J and Nrf2−/− mice. OXPHOS proteins were probed via western blotting, and supercomplexes were determined by blue native gel electrophoresis.
IPC-induced cytoprotection in wild-type, but not Nrf2−/− mouse astrocyte cultures following a lethal duration of OGD. In addition, our results suggest that Nrf2 localizes to the outer membrane in non-synaptic brain mitochondria, and that a lack of Nrf2 in vivo produces altered supercomplex formation in mitochondria.
Our findings support a role of Nrf2 in mediating IPC-induced protection in astrocytes, which can profoundly impact the ischemic tolerance of neurons. In addition, we provide novel evidence for the association of Nrf2 to brain mitochondria and supercomplex formation. These studies offer new targets and pathways of Nrf2, which may be heavily implicated following cerebral ischemia.
Appendix
Available only for authorised users
Literature
1.
go back to reference Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–36.CrossRefPubMed Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–36.CrossRefPubMed
2.
go back to reference Schurr A, Reid KH, Tseng MT, West C, Rigor BM. Adaptation of adult brain tissue to anoxia and hypoxia in vitro. Brain Res. 1986;374:244–8.CrossRefPubMed Schurr A, Reid KH, Tseng MT, West C, Rigor BM. Adaptation of adult brain tissue to anoxia and hypoxia in vitro. Brain Res. 1986;374:244–8.CrossRefPubMed
3.
go back to reference Dave KR, Saul I, Prado R, Busto R, Perez-Pinzon MA. Remote organ ischemic preconditioning protect brain from ischemic damage following asphyxial cardiac arrest. Neurosci Lett. 2006;404:170–5.CrossRefPubMed Dave KR, Saul I, Prado R, Busto R, Perez-Pinzon MA. Remote organ ischemic preconditioning protect brain from ischemic damage following asphyxial cardiac arrest. Neurosci Lett. 2006;404:170–5.CrossRefPubMed
4.
go back to reference Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA. Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience. 2009;159:993–1002.CrossRefPubMedPubMedCentral Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA. Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience. 2009;159:993–1002.CrossRefPubMedPubMedCentral
5.
go back to reference Kim EJ, Raval AP, Hirsch N, Perez-Pinzon MA. Ischemic preconditioning mediates cyclooxygenase-2 expression via nuclear factor-kappa b activation in mixed cortical neuronal cultures. Transl Stroke Res. 2010;1:40–7.CrossRefPubMedPubMedCentral Kim EJ, Raval AP, Hirsch N, Perez-Pinzon MA. Ischemic preconditioning mediates cyclooxygenase-2 expression via nuclear factor-kappa b activation in mixed cortical neuronal cultures. Transl Stroke Res. 2010;1:40–7.CrossRefPubMedPubMedCentral
6.
go back to reference Perez-Alvarez A, Araque A. Astrocyte-neuron interaction at tripartite synapses. Curr Drug Targets. 2013;14:1220–4.CrossRefPubMed Perez-Alvarez A, Araque A. Astrocyte-neuron interaction at tripartite synapses. Curr Drug Targets. 2013;14:1220–4.CrossRefPubMed
8.
go back to reference Wang B, Cao W, Biswal S, Dore S. Carbon monoxide-activated nrf2 pathway leads to protection against permanent focal cerebral ischemia. Stroke. 2011;42:2605–10.CrossRefPubMedPubMedCentral Wang B, Cao W, Biswal S, Dore S. Carbon monoxide-activated nrf2 pathway leads to protection against permanent focal cerebral ischemia. Stroke. 2011;42:2605–10.CrossRefPubMedPubMedCentral
9.
go back to reference Zhao X, Sun G, Zhang J, Strong R, Dash PK, Kan YW, et al. Transcription factor nrf2 protects the brain from damage produced by intracerebral hemorrhage. Stroke. 2007;38:3280–6.CrossRefPubMed Zhao X, Sun G, Zhang J, Strong R, Dash PK, Kan YW, et al. Transcription factor nrf2 protects the brain from damage produced by intracerebral hemorrhage. Stroke. 2007;38:3280–6.CrossRefPubMed
10.
go back to reference Bell KF, Fowler JH, Al-Mubarak B, Horsburgh K, Hardingham GE. Activation of nrf2-regulated glutathione pathway genes by ischemic preconditioning. Oxidative Med Cell Longev. 2011;2011:689524.CrossRef Bell KF, Fowler JH, Al-Mubarak B, Horsburgh K, Hardingham GE. Activation of nrf2-regulated glutathione pathway genes by ischemic preconditioning. Oxidative Med Cell Longev. 2011;2011:689524.CrossRef
11.
go back to reference Kitteringham NR, Abdullah A, Walsh J, Randle L, Jenkins RE, Sison R, et al. Proteomic analysis of nrf2 deficient transgenic mice reveals cellular defence and lipid metabolism as primary nrf2-dependent pathways in the liver. J Proteome. 2010;73:1612–31.CrossRef Kitteringham NR, Abdullah A, Walsh J, Randle L, Jenkins RE, Sison R, et al. Proteomic analysis of nrf2 deficient transgenic mice reveals cellular defence and lipid metabolism as primary nrf2-dependent pathways in the liver. J Proteome. 2010;73:1612–31.CrossRef
12.
15.
go back to reference Kim EJ, Raval AP, Perez-Pinzon MA. Preconditioning mediated by sublethal oxygen-glucose deprivation-induced cyclooxygenase-2 expression via the signal transducers and activators of transcription 3 phosphorylation. J Cereb Blood Flow Metab. 2008;28:1329–40.CrossRefPubMedPubMedCentral Kim EJ, Raval AP, Perez-Pinzon MA. Preconditioning mediated by sublethal oxygen-glucose deprivation-induced cyclooxygenase-2 expression via the signal transducers and activators of transcription 3 phosphorylation. J Cereb Blood Flow Metab. 2008;28:1329–40.CrossRefPubMedPubMedCentral
16.
go back to reference SY X, YM W, Ji Z, Gao XY, Pan SYA. modified technique for culturing primary fetal rat cortical neurons. J Biomed Biotechnol. 2012;2012:803930. SY X, YM W, Ji Z, Gao XY, Pan SYA. modified technique for culturing primary fetal rat cortical neurons. J Biomed Biotechnol. 2012;2012:803930.
17.
go back to reference Dave KR, DeFazio RA, Raval AP, Torraco A, Saul I, Barrientos A, et al. Ischemic preconditioning targets the respiration of synaptic mitochondria via protein kinase c epsilon. J Neurosci. 2008;28:4172–82.CrossRefPubMedPubMedCentral Dave KR, DeFazio RA, Raval AP, Torraco A, Saul I, Barrientos A, et al. Ischemic preconditioning targets the respiration of synaptic mitochondria via protein kinase c epsilon. J Neurosci. 2008;28:4172–82.CrossRefPubMedPubMedCentral
18.
go back to reference Degasperi A, Birtwistle MR, Volinsky N, Rauch J, Kolch W, Kholodenko BN. Evaluating strategies to normalise biological replicates of western blot data. PLoS One. 2014;9:e87293.CrossRefPubMedPubMedCentral Degasperi A, Birtwistle MR, Volinsky N, Rauch J, Kolch W, Kholodenko BN. Evaluating strategies to normalise biological replicates of western blot data. PLoS One. 2014;9:e87293.CrossRefPubMedPubMedCentral
19.
go back to reference Sunderhaus S, Eubel H, Braun HP. Two-dimensional blue native/blue native polyacrylamide gel electrophoresis for the characterization of mitochondrial protein complexes and supercomplexes. Methods Mol Biol. 2007;372:315–24.CrossRefPubMed Sunderhaus S, Eubel H, Braun HP. Two-dimensional blue native/blue native polyacrylamide gel electrophoresis for the characterization of mitochondrial protein complexes and supercomplexes. Methods Mol Biol. 2007;372:315–24.CrossRefPubMed
20.
go back to reference Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H, et al. Coordinate regulation of glutathione biosynthesis and release by nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci. 2003;23:3394–406.PubMed Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H, et al. Coordinate regulation of glutathione biosynthesis and release by nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci. 2003;23:3394–406.PubMed
21.
go back to reference Stokfisz K, Ledakowicz-Polak A, Zagorski M, Zielinska M. Ischaemic preconditioning - current knowledge and potential future applications after 30 years of experience. Adv Med Sci. 2017;62:307–16.CrossRefPubMed Stokfisz K, Ledakowicz-Polak A, Zagorski M, Zielinska M. Ischaemic preconditioning - current knowledge and potential future applications after 30 years of experience. Adv Med Sci. 2017;62:307–16.CrossRefPubMed
22.
go back to reference Narayanan SV, Dave KR, Saul I, Perez-Pinzon MA. Resveratrol preconditioning protects against cerebral ischemic injury via nuclear erythroid 2-related factor 2. Stroke. 2015; Narayanan SV, Dave KR, Saul I, Perez-Pinzon MA. Resveratrol preconditioning protects against cerebral ischemic injury via nuclear erythroid 2-related factor 2. Stroke. 2015;
24.
go back to reference Tondera D, Czauderna F, Paulick K, Schwarzer R, Kaufmann J, Santel A. The mitochondrial protein mtp18 contributes to mitochondrial fission in mammalian cells. J Cell Sci. 2005;118:3049–59.CrossRefPubMed Tondera D, Czauderna F, Paulick K, Schwarzer R, Kaufmann J, Santel A. The mitochondrial protein mtp18 contributes to mitochondrial fission in mammalian cells. J Cell Sci. 2005;118:3049–59.CrossRefPubMed
25.
go back to reference Dennerlein S, Wang C, Rehling P. Plasticity of mitochondrial translation. Trends Cell Biol. 2017;27:712–21.CrossRefPubMed Dennerlein S, Wang C, Rehling P. Plasticity of mitochondrial translation. Trends Cell Biol. 2017;27:712–21.CrossRefPubMed
27.
go back to reference Maranzana E, Barbero G, Falasca AI, Lenaz G, Genova ML. Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex i. Antioxid Redox Signal. 2013;19:1469–80.CrossRefPubMedPubMedCentral Maranzana E, Barbero G, Falasca AI, Lenaz G, Genova ML. Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex i. Antioxid Redox Signal. 2013;19:1469–80.CrossRefPubMedPubMedCentral
28.
go back to reference Genova ML, Lenaz G. Functional role of mitochondrial respiratory supercomplexes. Biochim Biophys Acta. 2014;1837:427–43.CrossRefPubMed Genova ML, Lenaz G. Functional role of mitochondrial respiratory supercomplexes. Biochim Biophys Acta. 2014;1837:427–43.CrossRefPubMed
29.
go back to reference Andrienko TN, Pasdois P, Pereira GC, Ovens MJ, Halestrap AP. The role of succinate and ros in reperfusion injury—a critical appraisal. J Mol Cell Cardiol. 2017;110:1–14.CrossRefPubMedPubMedCentral Andrienko TN, Pasdois P, Pereira GC, Ovens MJ, Halestrap AP. The role of succinate and ros in reperfusion injury—a critical appraisal. J Mol Cell Cardiol. 2017;110:1–14.CrossRefPubMedPubMedCentral
30.
go back to reference Vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker PT. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem. 1998;273:18092–8.CrossRef Vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker PT. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem. 1998;273:18092–8.CrossRef
31.
go back to reference Sun JZ, Tang XL, Park SW, Qiu Y, Turrens JF, Bolli R. Evidence for an essential role of reactive oxygen species in the genesis of late preconditioning against myocardial stunning in conscious pigs. J Clin Invest. 1996;97:562–76.CrossRefPubMedPubMedCentral Sun JZ, Tang XL, Park SW, Qiu Y, Turrens JF, Bolli R. Evidence for an essential role of reactive oxygen species in the genesis of late preconditioning against myocardial stunning in conscious pigs. J Clin Invest. 1996;97:562–76.CrossRefPubMedPubMedCentral
32.
go back to reference Stauch KL, Purnell PR, Fox HS. Quantitative proteomics of synaptic and nonsynaptic mitochondria: Insights for synaptic mitochondrial vulnerability. J Proteome Res. 2014;13:2620–36.CrossRefPubMedPubMedCentral Stauch KL, Purnell PR, Fox HS. Quantitative proteomics of synaptic and nonsynaptic mitochondria: Insights for synaptic mitochondrial vulnerability. J Proteome Res. 2014;13:2620–36.CrossRefPubMedPubMedCentral
33.
go back to reference Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A, et al. P62/sqstm1 is a target gene for transcription factor nrf2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem. 2010;285:22576–91.CrossRefPubMedPubMedCentral Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A, et al. P62/sqstm1 is a target gene for transcription factor nrf2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem. 2010;285:22576–91.CrossRefPubMedPubMedCentral
34.
go back to reference Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, et al. Persistent activation of nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol. 2011;193:275–84.CrossRefPubMedPubMedCentral Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, et al. Persistent activation of nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol. 2011;193:275–84.CrossRefPubMedPubMedCentral
35.
go back to reference Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R, et al. Phosphorylation of p62 activates the keap1-nrf2 pathway during selective autophagy. Mol Cell. 2013;51:618–31.CrossRefPubMed Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R, et al. Phosphorylation of p62 activates the keap1-nrf2 pathway during selective autophagy. Mol Cell. 2013;51:618–31.CrossRefPubMed
36.
go back to reference Piantadosi CA, Carraway MS, Babiker A, Suliman HB. Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ Res. 2008;103:1232–40.CrossRefPubMedPubMedCentral Piantadosi CA, Carraway MS, Babiker A, Suliman HB. Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ Res. 2008;103:1232–40.CrossRefPubMedPubMedCentral
37.
go back to reference Tufekci KU, Civi Bayin E, Genc S, Genc K. The nrf2/are pathway: a promising target to counteract mitochondrial dysfunction in Parkinson’s disease. Parkinson’s disease. 2011;2011:314082.PubMedPubMedCentral Tufekci KU, Civi Bayin E, Genc S, Genc K. The nrf2/are pathway: a promising target to counteract mitochondrial dysfunction in Parkinson’s disease. Parkinson’s disease. 2011;2011:314082.PubMedPubMedCentral
Metadata
Title
Ischemic Preconditioning Protects Astrocytes against Oxygen Glucose Deprivation Via the Nuclear Erythroid 2-Related Factor 2 Pathway
Authors
Srinivasan V. Narayanan
Kunjan R. Dave
Miguel A. Perez-Pinzon
Publication date
01-04-2018
Publisher
Springer US
Published in
Translational Stroke Research / Issue 2/2018
Print ISSN: 1868-4483
Electronic ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-017-0574-y

Other articles of this Issue 2/2018

Translational Stroke Research 2/2018 Go to the issue