Skip to main content
Top
Published in: Translational Stroke Research 6/2017

01-12-2017 | Review

MicroRNA Changes in Preconditioning-Induced Neuroprotection

Authors: Josh D. Bell, Jang-Eun Cho, Rona G. Giffard

Published in: Translational Stroke Research | Issue 6/2017

Login to get access

Abstract

Preconditioning is a paradigm in which sublethal stress–prior to a more injurious insult–induces protection against injury. In the central nervous system (CNS), preconditioning against ischemic stroke is induced by short durations of ischemia, brief seizures, exposure to anesthetics, and other stresses. Increasing evidence supports the contribution of microRNAs (miRNAs) to the pathogenesis of cerebral ischemia and ischemic tolerance induced by preconditioning. Studies investigating miRNA changes induced by preconditioning have to date identified 562 miRNAs that change expression levels after preconditioning, and 15% of these changes were reproduced in at least one additional study. Of miRNAs assessed as changed by preconditioning in more than one study, about 40% changed in the same direction in more than one study. Most of the studies to assess the role of specific miRNAs in the neuroprotective mechanism of preconditioning were performed in vitro, with fewer studies manipulating individual miRNAs in vivo. Thus, while many miRNAs change in response to preconditioning stimuli, the mechanisms underlying their effects are not well understood. The data does suggest that miRNAs may play significant roles in preconditioning-induced neuroprotection. This review focuses on the current state of knowledge of the possible role of miRNAs in preconditioning-induced cerebral protection.
Literature
3.
go back to reference McDonough A, Weinstein JR. Neuroimmune response in ischemic preconditioning. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics. 2016;13(4):748–61. doi:10.1007/s13311-016-0465-z.CrossRef McDonough A, Weinstein JR. Neuroimmune response in ischemic preconditioning. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics. 2016;13(4):748–61. doi:10.​1007/​s13311-016-0465-z.CrossRef
5.
go back to reference Meller R, Thompson SJ, Lusardi TA, Ordonez AN, Ashley MD, Jessick V, et al. Ubiquitin proteasome-mediated synaptic reorganization: a novel mechanism underlying rapid ischemic tolerance. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2008;28(1):50–9. doi:10.1523/jneurosci.3474-07.2008.CrossRef Meller R, Thompson SJ, Lusardi TA, Ordonez AN, Ashley MD, Jessick V, et al. Ubiquitin proteasome-mediated synaptic reorganization: a novel mechanism underlying rapid ischemic tolerance. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2008;28(1):50–9. doi:10.​1523/​jneurosci.​3474-07.​2008.CrossRef
9.
go back to reference Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, et al. 'Ischemic tolerance' phenomenon found in the brain. Brain Res. 1990;528(1):21–4.CrossRefPubMed Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, et al. 'Ischemic tolerance' phenomenon found in the brain. Brain Res. 1990;528(1):21–4.CrossRefPubMed
10.
go back to reference Barone FC, White RF, Spera PA, Ellison J, Currie RW, Wang X, et al. Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke. 1998;29(9):1937–50. discussion 50-1CrossRefPubMed Barone FC, White RF, Spera PA, Ellison J, Currie RW, Wang X, et al. Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke. 1998;29(9):1937–50. discussion 50-1CrossRefPubMed
12.
go back to reference Stenzel-Poore MP, Stevens SL, Xiong Z, Lessov NS, Harrington CA, Mori M, et al. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet (London, England). 2003;362(9389):1028–37. doi:10.1016/s0140-6736(03)14412-1.CrossRef Stenzel-Poore MP, Stevens SL, Xiong Z, Lessov NS, Harrington CA, Mori M, et al. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet (London, England). 2003;362(9389):1028–37. doi:10.​1016/​s0140-6736(03)14412-1.CrossRef
16.
25.
go back to reference Singh T, Jauhari A, Pandey A, Singh P, Pant AB, Parmar D, et al. Regulatory triangle of neurodegeneration, adult neurogenesis and microRNAs. CNS & neurological disorders drug targets. 2014;13(1):96–103.CrossRef Singh T, Jauhari A, Pandey A, Singh P, Pant AB, Parmar D, et al. Regulatory triangle of neurodegeneration, adult neurogenesis and microRNAs. CNS & neurological disorders drug targets. 2014;13(1):96–103.CrossRef
29.
go back to reference Zeng L, Liu J, Wang Y, Wang L, Weng S, Tang Y, et al. MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Frontiers in bioscience (Elite edition). 2011;3:1265–72. Zeng L, Liu J, Wang Y, Wang L, Weng S, Tang Y, et al. MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Frontiers in bioscience (Elite edition). 2011;3:1265–72.
31.
go back to reference Dharap A, Bowen K, Place R, Li LC, Vemuganti R. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2009;29(4):675–87. doi:10.1038/jcbfm.2008.157.CrossRef Dharap A, Bowen K, Place R, Li LC, Vemuganti R. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2009;29(4):675–87. doi:10.​1038/​jcbfm.​2008.​157.CrossRef
34.
go back to reference Thompson JW, Dave KR, Young JI, Perez-Pinzon MA. Ischemic preconditioning alters the epigenetic profile of the brain from ischemic intolerance to ischemic tolerance. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics. 2013;10(4):789–97. doi:10.1007/s13311-013-0202-9.CrossRef Thompson JW, Dave KR, Young JI, Perez-Pinzon MA. Ischemic preconditioning alters the epigenetic profile of the brain from ischemic intolerance to ischemic tolerance. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics. 2013;10(4):789–97. doi:10.​1007/​s13311-013-0202-9.CrossRef
35.
go back to reference Lusardi TA, Farr CD, Faulkner CL, Pignataro G, Yang T, Lan J, et al. Ischemic preconditioning regulates expression of microRNAs and a predicted target, MeCP2, in mouse cortex. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2010;30(4):744–56. doi:10.1038/jcbfm.2009.253.CrossRef Lusardi TA, Farr CD, Faulkner CL, Pignataro G, Yang T, Lan J, et al. Ischemic preconditioning regulates expression of microRNAs and a predicted target, MeCP2, in mouse cortex. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2010;30(4):744–56. doi:10.​1038/​jcbfm.​2009.​253.CrossRef
37.
go back to reference Hu K, Xie YY, Zhang C, Ouyang DS, Long HY, Sun DN, et al. MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus. BMC Neurosci. 2012;13:115. doi:10.1186/1471-2202-13-115.CrossRefPubMedPubMedCentral Hu K, Xie YY, Zhang C, Ouyang DS, Long HY, Sun DN, et al. MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus. BMC Neurosci. 2012;13:115. doi:10.​1186/​1471-2202-13-115.CrossRefPubMedPubMedCentral
39.
go back to reference Moon JM, Xu L, Giffard RG. Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2013;33(12):1976–82. doi:10.1038/jcbfm.2013.157.CrossRef Moon JM, Xu L, Giffard RG. Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2013;33(12):1976–82. doi:10.​1038/​jcbfm.​2013.​157.CrossRef
41.
42.
go back to reference Wang P, Zhang N, Liang J, Li J, Han S, Li J. Micro-RNA-30a regulates ischemia-induced cell death by targeting heat shock protein HSPA5 in primary cultured cortical neurons and mouse brain after stroke. J Neurosci Res. 2015;93(11):1756–68. doi:10.1002/jnr.23637.CrossRefPubMed Wang P, Zhang N, Liang J, Li J, Han S, Li J. Micro-RNA-30a regulates ischemia-induced cell death by targeting heat shock protein HSPA5 in primary cultured cortical neurons and mouse brain after stroke. J Neurosci Res. 2015;93(11):1756–68. doi:10.​1002/​jnr.​23637.CrossRefPubMed
43.
go back to reference Wei N, Xiao L, Xue R, Zhang D, Zhou J, Ren H, et al. MicroRNA-9 mediates the cell apoptosis by targeting Bcl2l11 in ischemic stroke. Mol Neurobiol. 2015; doi:10.1007/s12035-015-9605-4. Wei N, Xiao L, Xue R, Zhang D, Zhou J, Ren H, et al. MicroRNA-9 mediates the cell apoptosis by targeting Bcl2l11 in ischemic stroke. Mol Neurobiol. 2015; doi:10.​1007/​s12035-015-9605-4.
45.
go back to reference Duris K, Lipkova J. The role of microRNA in ischemic and hemorrhagic stroke. Current drug delivery 2016. Duris K, Lipkova J. The role of microRNA in ischemic and hemorrhagic stroke. Current drug delivery 2016.
46.
go back to reference Meng R, Ding Y, Asmaro K, Brogan D, Meng L, Sui M, et al. Ischemic conditioning is safe and effective for octo- and nonagenarians in stroke prevention and treatment. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics. 2015;12(3):667–77. doi:10.1007/s13311-015-0358-6.CrossRef Meng R, Ding Y, Asmaro K, Brogan D, Meng L, Sui M, et al. Ischemic conditioning is safe and effective for octo- and nonagenarians in stroke prevention and treatment. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics. 2015;12(3):667–77. doi:10.​1007/​s13311-015-0358-6.CrossRef
47.
go back to reference Slagsvold KH, Moreira JB, Rognmo O, Hoydal M, Bye A, Wisloff U, et al. Remote ischemic preconditioning preserves mitochondrial function and activates pro-survival protein kinase Akt in the left ventricle during cardiac surgery: a randomized trial. Int J Cardiol. 2014;177(2):409–17. doi:10.1016/j.ijcard.2014.09.206.CrossRefPubMed Slagsvold KH, Moreira JB, Rognmo O, Hoydal M, Bye A, Wisloff U, et al. Remote ischemic preconditioning preserves mitochondrial function and activates pro-survival protein kinase Akt in the left ventricle during cardiac surgery: a randomized trial. Int J Cardiol. 2014;177(2):409–17. doi:10.​1016/​j.​ijcard.​2014.​09.​206.CrossRefPubMed
48.
go back to reference Tian Y, Li H, Liu P, Xu JM, Irwin MG, Xia Z, et al. Captopril pretreatment produces an additive cardioprotection to isoflurane preconditioning in attenuating myocardial ischemia reperfusion injury in rabbits and in humans. Mediat Inflamm. 2015;2015:819232. doi:10.1155/2015/819232.CrossRef Tian Y, Li H, Liu P, Xu JM, Irwin MG, Xia Z, et al. Captopril pretreatment produces an additive cardioprotection to isoflurane preconditioning in attenuating myocardial ischemia reperfusion injury in rabbits and in humans. Mediat Inflamm. 2015;2015:819232. doi:10.​1155/​2015/​819232.CrossRef
50.
go back to reference Guicciardi ME, Gores GJ. Life and death by death receptors. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2009;23(6):1625–37. doi:10.1096/fj.08-111005.CrossRef Guicciardi ME, Gores GJ. Life and death by death receptors. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2009;23(6):1625–37. doi:10.​1096/​fj.​08-111005.CrossRef
52.
go back to reference Chen S, Guttridge DC, You Z, Zhang Z, Fribley A, Mayo MW, et al. Wnt-1 signaling inhibits apoptosis by activating beta-catenin/T cell factor-mediated transcription. J Cell Biol. 2001;152(1):87–96.CrossRefPubMedPubMedCentral Chen S, Guttridge DC, You Z, Zhang Z, Fribley A, Mayo MW, et al. Wnt-1 signaling inhibits apoptosis by activating beta-catenin/T cell factor-mediated transcription. J Cell Biol. 2001;152(1):87–96.CrossRefPubMedPubMedCentral
53.
go back to reference Li F, Chong ZZ, Maiese K. Winding through the WNT pathway during cellular development and demise. Histol Histopathol. 2006;21(1):103–24.PubMedPubMedCentral Li F, Chong ZZ, Maiese K. Winding through the WNT pathway during cellular development and demise. Histol Histopathol. 2006;21(1):103–24.PubMedPubMedCentral
54.
go back to reference Sun M, Yamashita T, Shang J, Liu N, Deguchi K, Feng J, et al. Time-dependent profiles of microRNA expression induced by ischemic preconditioning in the gerbil hippocampus. Cell Transplant. 2015;24(3):367–76. doi:10.3727/096368915x686869.CrossRefPubMed Sun M, Yamashita T, Shang J, Liu N, Deguchi K, Feng J, et al. Time-dependent profiles of microRNA expression induced by ischemic preconditioning in the gerbil hippocampus. Cell Transplant. 2015;24(3):367–76. doi:10.​3727/​096368915x686869​.CrossRefPubMed
55.
go back to reference Sun M, Yamashita T, Shang J, Liu N, Deguchi K, Liu W, et al. Acceleration of TDP43 and FUS/TLS protein expressions in the preconditioned hippocampus following repeated transient ischemia. J Neurosci Res. 2014;92(1):54–63. doi:10.1002/jnr.23301.CrossRefPubMed Sun M, Yamashita T, Shang J, Liu N, Deguchi K, Liu W, et al. Acceleration of TDP43 and FUS/TLS protein expressions in the preconditioned hippocampus following repeated transient ischemia. J Neurosci Res. 2014;92(1):54–63. doi:10.​1002/​jnr.​23301.CrossRefPubMed
56.
go back to reference Liu C, Peng Z, Zhang N, Yu L, Han S, Li D, et al. Identification of differentially expressed microRNAs and their PKC-isoform specific gene network prediction during hypoxic pre-conditioning and focal cerebral ischemia of mice. J Neurochem. 2012;120(5):830–41. doi:10.1111/j.1471-4159.2011.07624.x.CrossRefPubMed Liu C, Peng Z, Zhang N, Yu L, Han S, Li D, et al. Identification of differentially expressed microRNAs and their PKC-isoform specific gene network prediction during hypoxic pre-conditioning and focal cerebral ischemia of mice. J Neurochem. 2012;120(5):830–41. doi:10.​1111/​j.​1471-4159.​2011.​07624.​x.CrossRefPubMed
57.
go back to reference Klein ME, Lioy DT, Ma L, Impey S, Mandel G, Goodman RH. Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci. 2007;10(12):1513–4. doi:10.1038/nn2010.CrossRefPubMed Klein ME, Lioy DT, Ma L, Impey S, Mandel G, Goodman RH. Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci. 2007;10(12):1513–4. doi:10.​1038/​nn2010.CrossRefPubMed
60.
go back to reference Peng Z, Li J, Li Y, Yang X, Feng S, Han S, et al. Downregulation of miR-181b in mouse brain following ischemic stroke induces neuroprotection against ischemic injury through targeting heat shock protein A5 and ubiquitin carboxyl-terminal hydrolase isozyme L1. J Neurosci Res. 2013;91(10):1349–62. doi:10.1002/jnr.23255.CrossRefPubMed Peng Z, Li J, Li Y, Yang X, Feng S, Han S, et al. Downregulation of miR-181b in mouse brain following ischemic stroke induces neuroprotection against ischemic injury through targeting heat shock protein A5 and ubiquitin carboxyl-terminal hydrolase isozyme L1. J Neurosci Res. 2013;91(10):1349–62. doi:10.​1002/​jnr.​23255.CrossRefPubMed
61.
62.
63.
go back to reference Ciechanover A, Brundin P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron. 2003;40(2):427–46.CrossRefPubMed Ciechanover A, Brundin P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron. 2003;40(2):427–46.CrossRefPubMed
70.
go back to reference Miller JT, Bartley JH, Wimborne HJ, Walker AL, Hess DC, Hill WD, et al. The neuroblast and angioblast chemotaxic factor SDF-1 (CXCL12) expression is briefly up regulated by reactive astrocytes in brain following neonatal hypoxic-ischemic injury. BMC Neurosci. 2005;6:63. doi:10.1186/1471-2202-6-63.CrossRefPubMedPubMedCentral Miller JT, Bartley JH, Wimborne HJ, Walker AL, Hess DC, Hill WD, et al. The neuroblast and angioblast chemotaxic factor SDF-1 (CXCL12) expression is briefly up regulated by reactive astrocytes in brain following neonatal hypoxic-ischemic injury. BMC Neurosci. 2005;6:63. doi:10.​1186/​1471-2202-6-63.CrossRefPubMedPubMedCentral
72.
go back to reference Feng Y, Li W, Wang JQ. MicroRNA-33A expression is reduced in cerebral cortex in a rat model of ischemic tolerance. Cellular and molecular biology (Noisy-le-Grand, France). 2015;61(3):24–9. Feng Y, Li W, Wang JQ. MicroRNA-33A expression is reduced in cerebral cortex in a rat model of ischemic tolerance. Cellular and molecular biology (Noisy-le-Grand, France). 2015;61(3):24–9.
74.
go back to reference Wang H, Lu S, Yu Q, Liang W, Gao H, Li P, et al. Sevoflurane preconditioning confers neuroprotection via anti-inflammatory effects. Frontiers in bioscience (Elite edition). 2011;3:604–15. Wang H, Lu S, Yu Q, Liang W, Gao H, Li P, et al. Sevoflurane preconditioning confers neuroprotection via anti-inflammatory effects. Frontiers in bioscience (Elite edition). 2011;3:604–15.
75.
76.
go back to reference Yu Q, Chu M, Wang H, Lu S, Gao H, Li P, et al. Sevoflurane preconditioning protects blood-brain-barrier against brain ischemia. Frontiers in bioscience (Elite edition). 2011;3:978–88. Yu Q, Chu M, Wang H, Lu S, Gao H, Li P, et al. Sevoflurane preconditioning protects blood-brain-barrier against brain ischemia. Frontiers in bioscience (Elite edition). 2011;3:978–88.
78.
go back to reference Shi H, Sun BL, Zhang J, Lu S, Zhang P, Wang H, et al. MiR-15b suppression of Bcl-2 contributes to cerebral ischemic injury and is reversed by sevoflurane preconditioning. CNS & neurological disorders drug targets. 2013;12(3):381–91.CrossRef Shi H, Sun BL, Zhang J, Lu S, Zhang P, Wang H, et al. MiR-15b suppression of Bcl-2 contributes to cerebral ischemic injury and is reversed by sevoflurane preconditioning. CNS & neurological disorders drug targets. 2013;12(3):381–91.CrossRef
80.
go back to reference Sun Y, Li Y, Liu L, Wang Y, Xia Y, Zhang L, et al. Identification of miRNAs involved in the protective effect of sevoflurane preconditioning against hypoxic injury in PC12 cells. Cell Mol Neurobiol. 2015;35(8):1117–25. doi:10.1007/s10571-015-0205-7.CrossRefPubMed Sun Y, Li Y, Liu L, Wang Y, Xia Y, Zhang L, et al. Identification of miRNAs involved in the protective effect of sevoflurane preconditioning against hypoxic injury in PC12 cells. Cell Mol Neurobiol. 2015;35(8):1117–25. doi:10.​1007/​s10571-015-0205-7.CrossRefPubMed
83.
go back to reference Jimenez-Mateos EM, Henshall DC. Seizure preconditioning and epileptic tolerance: models and mechanisms. Int J Physiol Pathophysiol pharmacol. 2009;1(2):180–91.PubMedPubMedCentral Jimenez-Mateos EM, Henshall DC. Seizure preconditioning and epileptic tolerance: models and mechanisms. Int J Physiol Pathophysiol pharmacol. 2009;1(2):180–91.PubMedPubMedCentral
88.
go back to reference Frerichs KU, Hallenbeck JM. Hibernation in ground squirrels induces state and species-specific tolerance to hypoxia and aglycemia: an in vitro study in hippocampal slices. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 1998;18(2):168–75. doi:10.1097/00004647-199802000-00007.CrossRef Frerichs KU, Hallenbeck JM. Hibernation in ground squirrels induces state and species-specific tolerance to hypoxia and aglycemia: an in vitro study in hippocampal slices. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 1998;18(2):168–75. doi:10.​1097/​00004647-199802000-00007.CrossRef
89.
go back to reference Lee YJ, Miyake S, Wakita H, McMullen DC, Azuma Y, Auh S, et al. Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2007;27(5):950–62. doi:10.1038/sj.jcbfm.9600395.CrossRef Lee YJ, Miyake S, Wakita H, McMullen DC, Azuma Y, Auh S, et al. Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2007;27(5):950–62. doi:10.​1038/​sj.​jcbfm.​9600395.CrossRef
98.
go back to reference Greenberg DS, Soreq H. MicroRNA therapeutics in neurological disease. Curr Pharm Des. 2014;20(38):6022–7.CrossRefPubMed Greenberg DS, Soreq H. MicroRNA therapeutics in neurological disease. Curr Pharm Des. 2014;20(38):6022–7.CrossRefPubMed
Metadata
Title
MicroRNA Changes in Preconditioning-Induced Neuroprotection
Authors
Josh D. Bell
Jang-Eun Cho
Rona G. Giffard
Publication date
01-12-2017
Publisher
Springer US
Published in
Translational Stroke Research / Issue 6/2017
Print ISSN: 1868-4483
Electronic ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-017-0547-1

Other articles of this Issue 6/2017

Translational Stroke Research 6/2017 Go to the issue