Skip to main content
Top
Published in: Translational Stroke Research 6/2015

01-12-2015 | Opinion Paper

Translating G-CSF as an Adjunct Therapy to Stem Cell Transplantation for Stroke

Authors: Ike dela Peña, Cesar V. Borlongan

Published in: Translational Stroke Research | Issue 6/2015

Login to get access

Abstract

Among recently investigated stroke therapies, stem cell treatment holds great promise by virtue of their putative ability to replace lost cells, promote endogenous neurogenesis, and produce behavioral and functional improvement through their “bystander effects.” Translating stem cell in the clinic, however, presents a number of technical difficulties. A strategy suggested to enhance therapeutic utility of stem cells is combination therapy, i.e., co-transplantation of stem cells or adjunct treatment with pharmacological agents and substrates, which is assumed to produce more profound therapeutic benefits by circumventing limitations of individual treatments and facilitating complementary brain repair processes. We previously demonstrated enhanced functional effects of co-treatment with granulocyte-colony stimulating factor (G-CSF) and human umbilical cord blood cell (hUCB) transplantation in animal models of traumatic brain injury (TBI). Here, we suggest that the aforementioned combination therapy may also produce synergistic effects in stroke. Accordingly, G-CSF treatment may reduce expression of pro-inflammatory cytokines and enhance neurogenesis rendering a receptive microenvironment for hUCB engraftment. Adjunct treatment of G-CSF with hUCB may facilitate stemness maintenance and guide neural lineage commitment of hUCB cells. Moreover, regenerative mechanisms afforded by G-CSF-mobilized endogenous stem cells, secretion of growth factors by hUCB grafts and G-CSF-recruited endothelial progenitor cells (EPCs), as well as the potential graft–host integration that may promote synaptic circuitry re-establishment could altogether produce more pronounced functional improvement in stroked rats subjected to a combination G-CSF treatment and hUCB transplantation. Nevertheless, differences in pathology and repair processes underlying TBI and stroke deserve consideration when testing the effects of combinatorial G-CSF and hUCB cell transplantation for stroke treatment. Further studies are also required to determine the safety and efficacy of this intervention in both preclinical and clinical stroke studies.
Literature
1.
go back to reference Koton S, Schneider AL, Rosamond WD, Shahar E, Sang Y, Gottesman RF, et al. Stroke incidence and mortality trends in US communities, 1987 to 2011. JAMA. 2014;312(3):259–68.CrossRefPubMed Koton S, Schneider AL, Rosamond WD, Shahar E, Sang Y, Gottesman RF, et al. Stroke incidence and mortality trends in US communities, 1987 to 2011. JAMA. 2014;312(3):259–68.CrossRefPubMed
2.
go back to reference World Health Organization. World health report 2004-changing history. Geneva: World Health Organization; 2004. World Health Organization. World health report 2004-changing history. Geneva: World Health Organization; 2004.
4.
5.
go back to reference Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nature Rev Neurosci. 2003;4:399–415.CrossRef Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nature Rev Neurosci. 2003;4:399–415.CrossRef
6.
go back to reference Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A. Thrombolysis with alteplase 3 to 4.5 h after acute ischemic stroke. N Eng J Med. 2008;359:1317–29.CrossRef Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A. Thrombolysis with alteplase 3 to 4.5 h after acute ischemic stroke. N Eng J Med. 2008;359:1317–29.CrossRef
7.
go back to reference The NINDS, rt-PA Stroke Study Group (1997). Intracerebral hemorrhage after intravenous tPA therapy for ischemic stroke. Stroke. 2007;28:2109–18. The NINDS, rt-PA Stroke Study Group (1997). Intracerebral hemorrhage after intravenous tPA therapy for ischemic stroke. Stroke. 2007;28:2109–18.
8.
go back to reference Broderick J, Connolly S, Feldmann E, Hanley D, Kase C, Krieger D, et al. Guidelines for the management of spontaneous intracerebral hemorrhage in adults: 2007 update: a guideline from the American Heart Association/American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes in Research Interdisciplinary Working Group. Circulation. 2007;116(16):e391–413.CrossRefPubMed Broderick J, Connolly S, Feldmann E, Hanley D, Kase C, Krieger D, et al. Guidelines for the management of spontaneous intracerebral hemorrhage in adults: 2007 update: a guideline from the American Heart Association/American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes in Research Interdisciplinary Working Group. Circulation. 2007;116(16):e391–413.CrossRefPubMed
9.
go back to reference Graham GD. Tissue plasminogen activator for acute ischemic stroke in clinical practice: a meta-analysis of safety data. Stroke. 2003;34:2847–50.CrossRefPubMed Graham GD. Tissue plasminogen activator for acute ischemic stroke in clinical practice: a meta-analysis of safety data. Stroke. 2003;34:2847–50.CrossRefPubMed
10.
go back to reference Yip TR, Demaerschalk BM. Estimated cost savings of increased use of intravenous tissue plasminogen activator for acute ischemic stroke in Canada. Stroke. 2007;38:1952–5.CrossRefPubMed Yip TR, Demaerschalk BM. Estimated cost savings of increased use of intravenous tissue plasminogen activator for acute ischemic stroke in Canada. Stroke. 2007;38:1952–5.CrossRefPubMed
12.
go back to reference Sinden JD, Muir KW. Stem cells in stroke treatment: the promise and the challenges. Int J Stroke. 2012;7(5):426–34.CrossRefPubMed Sinden JD, Muir KW. Stem cells in stroke treatment: the promise and the challenges. Int J Stroke. 2012;7(5):426–34.CrossRefPubMed
13.
go back to reference Borlongan CV, Koutouzis TK, Jorden JR, Martinez R, Rodriguez AI, Poulos SG, et al. Neural transplantation as an experimental treatment modality for cerebral ischemia. Neurosci Biobehav Rev. 1997;21:79–90.CrossRefPubMed Borlongan CV, Koutouzis TK, Jorden JR, Martinez R, Rodriguez AI, Poulos SG, et al. Neural transplantation as an experimental treatment modality for cerebral ischemia. Neurosci Biobehav Rev. 1997;21:79–90.CrossRefPubMed
14.
go back to reference Nishino H, Borlongan CV. Restoration of function by neural transplantation in the ischemic brain. Prog Brain Res. 2000;127:461–76.CrossRefPubMed Nishino H, Borlongan CV. Restoration of function by neural transplantation in the ischemic brain. Prog Brain Res. 2000;127:461–76.CrossRefPubMed
15.
go back to reference Shinozuka K, Dailey T, Tajiri N, Ishikawa H, Kim DW, Pabon M, et al. Stem cells for neurovascular repair in stroke. J Stem Cell Res Ther. 2013;4(4):12912.PubMedCentralPubMed Shinozuka K, Dailey T, Tajiri N, Ishikawa H, Kim DW, Pabon M, et al. Stem cells for neurovascular repair in stroke. J Stem Cell Res Ther. 2013;4(4):12912.PubMedCentralPubMed
16.
17.
go back to reference Cui X, Chopp M, Shehadah A, Zacharek A, Kuzmin-Nichols N, Sanberg D, et al. Therapeutic benefit of treatment of stroke with simvastin and human umbilical cord blood cells: neurogenesis, synaptic plasticity, and axon growth. Cell Transplant. 2012;21:845–56.PubMedCentralCrossRefPubMed Cui X, Chopp M, Shehadah A, Zacharek A, Kuzmin-Nichols N, Sanberg D, et al. Therapeutic benefit of treatment of stroke with simvastin and human umbilical cord blood cells: neurogenesis, synaptic plasticity, and axon growth. Cell Transplant. 2012;21:845–56.PubMedCentralCrossRefPubMed
18.
go back to reference Rowe D, Leonardo C, Recio J, Collier L, Willing A, Pennypacker K. Human umbilical cord blood cells protect oligodendrocytes from brain ischemia through Akt signal transduction. J Biol Chem. 2012;287:4177–87.PubMedCentralCrossRefPubMed Rowe D, Leonardo C, Recio J, Collier L, Willing A, Pennypacker K. Human umbilical cord blood cells protect oligodendrocytes from brain ischemia through Akt signal transduction. J Biol Chem. 2012;287:4177–87.PubMedCentralCrossRefPubMed
19.
go back to reference Xiao J, Nan Z, Motooka Y, Low WC. Transplantation of a novel cell line population of umbilical cord blood stem cells ameliorates neurological deficits associated with ischemic brain injury. Stem Cells Dev. 2005;14:722–33.CrossRefPubMed Xiao J, Nan Z, Motooka Y, Low WC. Transplantation of a novel cell line population of umbilical cord blood stem cells ameliorates neurological deficits associated with ischemic brain injury. Stem Cells Dev. 2005;14:722–33.CrossRefPubMed
20.
go back to reference Sanberg PR, Eve DJ, Metcalf C, Borlongan CV. Advantages and challenges of alternative sources of adult-derived stem cells for brain repair in stroke. Prog Brain Res. 2012;201:99–117.CrossRefPubMed Sanberg PR, Eve DJ, Metcalf C, Borlongan CV. Advantages and challenges of alternative sources of adult-derived stem cells for brain repair in stroke. Prog Brain Res. 2012;201:99–117.CrossRefPubMed
21.
go back to reference Acosta SA, Franzese N, Staples M, Weinbren NL, Babilonia M, Patel J, et al. Human umbilical cord for transplantation therapy in myocardial infarction. J Stem Cell Res Ther. 2013;1 Suppl 4:S4–005. Acosta SA, Franzese N, Staples M, Weinbren NL, Babilonia M, Patel J, et al. Human umbilical cord for transplantation therapy in myocardial infarction. J Stem Cell Res Ther. 2013;1 Suppl 4:S4–005.
22.
go back to reference Sanberg PR, Willing AE, Garbuzova-Davis S, Saporta S, Liu G, Sanberg CD, et al. Umbilical cord blood-derived stem cells and brain repair. Ann N Y Acad Sci. 2005;1049:67–83.CrossRefPubMed Sanberg PR, Willing AE, Garbuzova-Davis S, Saporta S, Liu G, Sanberg CD, et al. Umbilical cord blood-derived stem cells and brain repair. Ann N Y Acad Sci. 2005;1049:67–83.CrossRefPubMed
23.
go back to reference Chung DJ, Choi CB, Lee SH, Kang EH, Lee JH, Hwang SH, et al. Intraarterially delivered human umbilical cord blood-derived mesenchymal stem cells in canine cerebral ischemia. J Neurosci Res. 2009;87:3554–67.CrossRefPubMed Chung DJ, Choi CB, Lee SH, Kang EH, Lee JH, Hwang SH, et al. Intraarterially delivered human umbilical cord blood-derived mesenchymal stem cells in canine cerebral ischemia. J Neurosci Res. 2009;87:3554–67.CrossRefPubMed
24.
go back to reference Copeland N, Harris D, Gaballa MA. Human umbilical cord blood stem cells, myocardial infarction and stroke. Clin Med. 2009;9(4):342–5.CrossRefPubMed Copeland N, Harris D, Gaballa MA. Human umbilical cord blood stem cells, myocardial infarction and stroke. Clin Med. 2009;9(4):342–5.CrossRefPubMed
25.
go back to reference Vendrame M, Cassady J, Newcomb J, Butler T, Pennypacker KR, Zigova T, et al. Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke. 2004;35:2390–5.CrossRefPubMed Vendrame M, Cassady J, Newcomb J, Butler T, Pennypacker KR, Zigova T, et al. Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke. 2004;35:2390–5.CrossRefPubMed
26.
go back to reference Willing AE, Lixian J, Milliken M, Poulos S, Zigova T, Song S, et al. Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res. 2003;73:296–307.CrossRefPubMed Willing AE, Lixian J, Milliken M, Poulos S, Zigova T, Song S, et al. Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res. 2003;73:296–307.CrossRefPubMed
27.
go back to reference Ilic D, Miere C, Lazic E. Umbilical cord blood cells: clinical trials in non-hematological disorders. Brit Med Bull. 2012;102:43–57.CrossRefPubMed Ilic D, Miere C, Lazic E. Umbilical cord blood cells: clinical trials in non-hematological disorders. Brit Med Bull. 2012;102:43–57.CrossRefPubMed
28.
go back to reference Newman MB, Willing AE, Manresa JJ, Sanberg CD, Sanberg PR. Cytokines produced by cultured human umbilical cord blood (HUCB) cells: implications for brain repair. Exp Neurol. 2006;199(1):201–8.CrossRefPubMed Newman MB, Willing AE, Manresa JJ, Sanberg CD, Sanberg PR. Cytokines produced by cultured human umbilical cord blood (HUCB) cells: implications for brain repair. Exp Neurol. 2006;199(1):201–8.CrossRefPubMed
29.
go back to reference Ma J, Liu N, Yi B, Zhang X, Gao BB, Zhang Y, et al. Transplanted hUCB-MSCs migrated to the damaged area by SDF-1/CXCR4 signaling to promote functional recovery after traumatic brain injury in rats. Neurol Res. 2015;37(1):50–6.CrossRefPubMed Ma J, Liu N, Yi B, Zhang X, Gao BB, Zhang Y, et al. Transplanted hUCB-MSCs migrated to the damaged area by SDF-1/CXCR4 signaling to promote functional recovery after traumatic brain injury in rats. Neurol Res. 2015;37(1):50–6.CrossRefPubMed
30.
go back to reference Lu D, Sanberg PR, Mahmood A, Li Y, Wang L, Sanchez-Ramos J, et al. Intravenous administration of human umbilical cord blood reduces neurological deficit in the rat after traumatic brain injury. Cell Transplant. 2002;11(3):275–81.PubMed Lu D, Sanberg PR, Mahmood A, Li Y, Wang L, Sanchez-Ramos J, et al. Intravenous administration of human umbilical cord blood reduces neurological deficit in the rat after traumatic brain injury. Cell Transplant. 2002;11(3):275–81.PubMed
31.
go back to reference Bramlett HM, Dietrich WD. Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cereb Blood Flow Metab. 2004;24(2):133–50.CrossRefPubMed Bramlett HM, Dietrich WD. Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cereb Blood Flow Metab. 2004;24(2):133–50.CrossRefPubMed
32.
go back to reference Boltze J, Reich DM, Hau S, Reymann KG, Strassburger M, Lobsien D, et al. Assessment of neuroprotective effects of human umbilical cord blood mononuclear cell subpopulations in vitro and in vivo. Cell Transplant. 2012;21(4):723–37.CrossRefPubMed Boltze J, Reich DM, Hau S, Reymann KG, Strassburger M, Lobsien D, et al. Assessment of neuroprotective effects of human umbilical cord blood mononuclear cell subpopulations in vitro and in vivo. Cell Transplant. 2012;21(4):723–37.CrossRefPubMed
33.
go back to reference Henning RJ, Shariff M, Eadula U, Alvarado F, Vasko M, Sanberg PR, et al. Human cord blood mononuclear cells decrease cytokines and inflammatory cells in acute myocardial infarction. Stem Cells Dev. 2008;17(6):1207–19.CrossRefPubMed Henning RJ, Shariff M, Eadula U, Alvarado F, Vasko M, Sanberg PR, et al. Human cord blood mononuclear cells decrease cytokines and inflammatory cells in acute myocardial infarction. Stem Cells Dev. 2008;17(6):1207–19.CrossRefPubMed
34.
go back to reference Pimentel-Coelho PM, Rosado-de Castro PH, da Fonseca LM B, Otero RM. Umbilical cord blood mononuclear cell transplantation for neonatal hypoxic-ischemic encephalopathy. Pediatr Res. 2012;71:464–73.CrossRefPubMed Pimentel-Coelho PM, Rosado-de Castro PH, da Fonseca LM B, Otero RM. Umbilical cord blood mononuclear cell transplantation for neonatal hypoxic-ischemic encephalopathy. Pediatr Res. 2012;71:464–73.CrossRefPubMed
35.
go back to reference dela Peña I, Sanberg PR, Acosta S, Lin SZ, Borlongan CV. G-CSF as an adjunctive therapy with umbilical cord blood cell transplantation for traumatic brain injury. Cell Transplant. 2015;24(3):447–57.CrossRef dela Peña I, Sanberg PR, Acosta S, Lin SZ, Borlongan CV. G-CSF as an adjunctive therapy with umbilical cord blood cell transplantation for traumatic brain injury. Cell Transplant. 2015;24(3):447–57.CrossRef
36.
go back to reference dela Peña I, Sanberg PR, Acosta S, Lin SZ, Borlongan CV. Umbilical cord blood cell and granulocyte-colony stimulating factor: combination therapy for traumatic brain injury. Regen Med. 2014;9(4):409–12.CrossRefPubMed dela Peña I, Sanberg PR, Acosta S, Lin SZ, Borlongan CV. Umbilical cord blood cell and granulocyte-colony stimulating factor: combination therapy for traumatic brain injury. Regen Med. 2014;9(4):409–12.CrossRefPubMed
37.
go back to reference dela Peña I, Sanberg PR, Acosta S, Tajiri N, Lin SZ, Borlongan CV. Stem cells and G-CSF for treating neuroinflammation in traumatic brain injury: aging as a comorbidity factor. J Neurosurg Sci. 2014;58(3):145–9. dela Peña I, Sanberg PR, Acosta S, Tajiri N, Lin SZ, Borlongan CV. Stem cells and G-CSF for treating neuroinflammation in traumatic brain injury: aging as a comorbidity factor. J Neurosurg Sci. 2014;58(3):145–9.
38.
go back to reference Flax JD, Aurora S, Yang C, Simonin C, Wills AM, Billinghurst LL, et al. Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol. 1998;16(11):1033–9.CrossRefPubMed Flax JD, Aurora S, Yang C, Simonin C, Wills AM, Billinghurst LL, et al. Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol. 1998;16(11):1033–9.CrossRefPubMed
39.
go back to reference Matsuda R, Yoshikawa M, Kimura H, Ouji Y, Nakase H, Nishimura F, et al. Cotransplantation of mouse embryonic stem cells and bone marrow stromal cells following spinal cord injury suppresses tumor development. Cell Transpl. 2009;18:39–54.CrossRef Matsuda R, Yoshikawa M, Kimura H, Ouji Y, Nakase H, Nishimura F, et al. Cotransplantation of mouse embryonic stem cells and bone marrow stromal cells following spinal cord injury suppresses tumor development. Cell Transpl. 2009;18:39–54.CrossRef
40.
go back to reference Nakagomi N, Nakagomi T, Kubo S, Nakano-Doi A, Saino O, Takata M, et al. Endothelial cells support survival, proliferation, and neuronal differentiation of transplanted adult ischemia-induced neural stem/progenitor cells after cerebral infarction. Stem Cells. 2009;27:2185–95.CrossRefPubMed Nakagomi N, Nakagomi T, Kubo S, Nakano-Doi A, Saino O, Takata M, et al. Endothelial cells support survival, proliferation, and neuronal differentiation of transplanted adult ischemia-induced neural stem/progenitor cells after cerebral infarction. Stem Cells. 2009;27:2185–95.CrossRefPubMed
41.
go back to reference Zhang W, Yan Q, Zeng YS, Zhang XB, Xiong Y, Wang JM, et al. Implantation of adult bone marrow-derived mesenchymal stem cells transfected with the neurotrophin-3 gene and pretreated with retinoic acid in completely transected spinal cord. Brain Res. 2010;1359:256–71.CrossRefPubMed Zhang W, Yan Q, Zeng YS, Zhang XB, Xiong Y, Wang JM, et al. Implantation of adult bone marrow-derived mesenchymal stem cells transfected with the neurotrophin-3 gene and pretreated with retinoic acid in completely transected spinal cord. Brain Res. 2010;1359:256–71.CrossRefPubMed
42.
go back to reference Jin K, Mao X, Xie L, Galvan V, Lai B, Wang Y, et al. Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats. J Cereb Blood Flow Metab. 2010;30:534–44.PubMedCentralCrossRefPubMed Jin K, Mao X, Xie L, Galvan V, Lai B, Wang Y, et al. Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats. J Cereb Blood Flow Metab. 2010;30:534–44.PubMedCentralCrossRefPubMed
44.
go back to reference Welte K. Discovery of G-CSF and early clinical studies. In: Molineux G et al., editors. Twenty years of G-CSF, milestones in drug therapy. Basel: Springer Basel AG; 2012. p. 15–24.CrossRef Welte K. Discovery of G-CSF and early clinical studies. In: Molineux G et al., editors. Twenty years of G-CSF, milestones in drug therapy. Basel: Springer Basel AG; 2012. p. 15–24.CrossRef
45.
go back to reference Platzer E, Welte K, Gabrilove JL, Lu L, Harris P, Mertelsmann R, et al. Biological activities of a human pluripotent hematopoietic colony stimulating factor on normal and leukemic cells. J Exp Med. 1985;162:1788–801.CrossRefPubMed Platzer E, Welte K, Gabrilove JL, Lu L, Harris P, Mertelsmann R, et al. Biological activities of a human pluripotent hematopoietic colony stimulating factor on normal and leukemic cells. J Exp Med. 1985;162:1788–801.CrossRefPubMed
46.
go back to reference Schneider A, Kuhn HG, Schabitz WR. A role for G-CSF (granulocyte colony stimulating factor) in the central nervous system. Cell Cycle. 2005;4:1753–7.CrossRefPubMed Schneider A, Kuhn HG, Schabitz WR. A role for G-CSF (granulocyte colony stimulating factor) in the central nervous system. Cell Cycle. 2005;4:1753–7.CrossRefPubMed
47.
go back to reference Diederich K, Sevimli S, Dörr H, Kösters E, Hoppen M, Lewejohann L, et al. The role of granulocyte-colony stimulating factor (G-CSF) in the healthy brain. A characterization of G-CSF-deficient mice. J Neurosci. 2009;29(37):11572–81.CrossRefPubMed Diederich K, Sevimli S, Dörr H, Kösters E, Hoppen M, Lewejohann L, et al. The role of granulocyte-colony stimulating factor (G-CSF) in the healthy brain. A characterization of G-CSF-deficient mice. J Neurosci. 2009;29(37):11572–81.CrossRefPubMed
48.
go back to reference Minnerup J, Sevimli S, Schabitz WR. Granulocyte-colony stimulating factor for stroke treatment: mechanisms of action and efficacy in preclinical studies. Exp Transl Stroke Med. 2009;1:2.PubMedCentralCrossRefPubMed Minnerup J, Sevimli S, Schabitz WR. Granulocyte-colony stimulating factor for stroke treatment: mechanisms of action and efficacy in preclinical studies. Exp Transl Stroke Med. 2009;1:2.PubMedCentralCrossRefPubMed
49.
go back to reference Bao-Guo X. Cell biology and clinical promise of G-CSF: immunomodulation and neuroprotection. J Cell Mol Med. 2007;11(6):1272–90.CrossRef Bao-Guo X. Cell biology and clinical promise of G-CSF: immunomodulation and neuroprotection. J Cell Mol Med. 2007;11(6):1272–90.CrossRef
50.
go back to reference Schabitz WR, Kollmar R, Schwaninger M, Juettler E, Bardutzky J, Scholzke MN, et al. Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke. 2003;34:745–51.CrossRefPubMed Schabitz WR, Kollmar R, Schwaninger M, Juettler E, Bardutzky J, Scholzke MN, et al. Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke. 2003;34:745–51.CrossRefPubMed
51.
go back to reference Schneider A, Kruger C, Steigleder T, Weber D, Pitzer C, Laage R, et al. The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest. 2005;115:2083–98.PubMedCentralCrossRefPubMed Schneider A, Kruger C, Steigleder T, Weber D, Pitzer C, Laage R, et al. The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest. 2005;115:2083–98.PubMedCentralCrossRefPubMed
52.
go back to reference Komine-Kobayashi M, Zhang N, Liu M, Tanaka R, Hara H, Osaka A, et al. Neuroprotective effect of recombinant human granulocyte colony-stimulating factor in transient focal ischemia of mice. J Cereb Blood Flow Metab. 2006;26:402–13.CrossRefPubMed Komine-Kobayashi M, Zhang N, Liu M, Tanaka R, Hara H, Osaka A, et al. Neuroprotective effect of recombinant human granulocyte colony-stimulating factor in transient focal ischemia of mice. J Cereb Blood Flow Metab. 2006;26:402–13.CrossRefPubMed
53.
go back to reference Han JL, Blank T, Schwab S, Kollmar R. Inhibited glutamate release by granulocyte-colony stimulating factor after experimental stroke. Neurosci Lett. 2008;432:167–9.CrossRefPubMed Han JL, Blank T, Schwab S, Kollmar R. Inhibited glutamate release by granulocyte-colony stimulating factor after experimental stroke. Neurosci Lett. 2008;432:167–9.CrossRefPubMed
54.
go back to reference Solaroglu I, Tsubokawa T, Cahill J, Zhang JH. Anti-apoptotic effect of granulocyte-colony stimulating factor after focal cerebral ischemia in the rat. Neuroscience. 2006;143:965–74.PubMedCentralCrossRefPubMed Solaroglu I, Tsubokawa T, Cahill J, Zhang JH. Anti-apoptotic effect of granulocyte-colony stimulating factor after focal cerebral ischemia in the rat. Neuroscience. 2006;143:965–74.PubMedCentralCrossRefPubMed
55.
go back to reference Solaroglu I, Cahill J, Tsubokawa T, Beskonakli E, Zhang JH. Granulocyte colony-stimulating factor protects the brain against experimental stroke via inhibition of apoptosis and inflammation. Neurol Res. 2009;31(2):167–72.CrossRefPubMed Solaroglu I, Cahill J, Tsubokawa T, Beskonakli E, Zhang JH. Granulocyte colony-stimulating factor protects the brain against experimental stroke via inhibition of apoptosis and inflammation. Neurol Res. 2009;31(2):167–72.CrossRefPubMed
56.
go back to reference Shyu WC, Lin SZ, Yang HI, Tzeng YS, Pang CY, Yen PS, et al. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation. 2004;110:1847–54.CrossRefPubMed Shyu WC, Lin SZ, Yang HI, Tzeng YS, Pang CY, Yen PS, et al. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation. 2004;110:1847–54.CrossRefPubMed
57.
go back to reference Wang X, Tsuji K, Lee SR, Ning M, Furie KL, Buchan AM, et al. Mechanisms of hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke. Stroke. 2004;35:2726–30.CrossRefPubMed Wang X, Tsuji K, Lee SR, Ning M, Furie KL, Buchan AM, et al. Mechanisms of hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke. Stroke. 2004;35:2726–30.CrossRefPubMed
58.
go back to reference dela Peña IC, Yoo A, Tajiri N, Acosta SA, Ji X, Kaneko Y, et al. Granulocyte colony-stimulating factor attenuates delayed tPA-induced hemorrhagic transformation in ischemic stroke rats by enhancing angiogenesis and vasculogenesis. J Cereb Blood Flow Metab. 2015;35(2):338–46.CrossRef dela Peña IC, Yoo A, Tajiri N, Acosta SA, Ji X, Kaneko Y, et al. Granulocyte colony-stimulating factor attenuates delayed tPA-induced hemorrhagic transformation in ischemic stroke rats by enhancing angiogenesis and vasculogenesis. J Cereb Blood Flow Metab. 2015;35(2):338–46.CrossRef
59.
go back to reference Ishikawa H, Tajiri N, Shinozuka K, Vasconcellos J, Kaneko Y, Lee HJ, et al. Vasculogenesis in experimental stroke after human cerebral endothelial cell transplantation. Stroke. 2013;4(12):3473–81.CrossRef Ishikawa H, Tajiri N, Shinozuka K, Vasconcellos J, Kaneko Y, Lee HJ, et al. Vasculogenesis in experimental stroke after human cerebral endothelial cell transplantation. Stroke. 2013;4(12):3473–81.CrossRef
60.
go back to reference Kaneko Y, Tajiri N, Shinozuka K, Glover LE, Weinbren NL, Cortes L, et al. Cell therapy for stroke: emphasis on optimizing safety and efficacy profile of endothelial progenitor cells. Curr Pharm Des. 2012;18(25):3731–4.PubMedCentralCrossRefPubMed Kaneko Y, Tajiri N, Shinozuka K, Glover LE, Weinbren NL, Cortes L, et al. Cell therapy for stroke: emphasis on optimizing safety and efficacy profile of endothelial progenitor cells. Curr Pharm Des. 2012;18(25):3731–4.PubMedCentralCrossRefPubMed
61.
go back to reference Sprigg N, Bath PM, Zhao L, Willmot MR, Gray LJ, Walker MF, et al. Granulocyte-colony-stimulating factor mobilizes bone marrow stem cells in patients with subacute ischemic stroke: the Stem cell Trial of recovery Enhancement After Stroke (STEMS) pilot randomized, controlled trial (ISRCTN 16784092). Stroke. 2006;37:2979–83.CrossRefPubMed Sprigg N, Bath PM, Zhao L, Willmot MR, Gray LJ, Walker MF, et al. Granulocyte-colony-stimulating factor mobilizes bone marrow stem cells in patients with subacute ischemic stroke: the Stem cell Trial of recovery Enhancement After Stroke (STEMS) pilot randomized, controlled trial (ISRCTN 16784092). Stroke. 2006;37:2979–83.CrossRefPubMed
62.
go back to reference Shyu WC, Lin SZ, Lee CC, Liu DD, Li H. Granulocyte colony-stimulating factor for acute ischemic stroke: a randomized controlled trial. CMAJ. 2006;174:927–33.PubMedCentralCrossRefPubMed Shyu WC, Lin SZ, Lee CC, Liu DD, Li H. Granulocyte colony-stimulating factor for acute ischemic stroke: a randomized controlled trial. CMAJ. 2006;174:927–33.PubMedCentralCrossRefPubMed
63.
go back to reference Schabitz WR, Laage R, Vogt G, Koch W, Kollmar R, Schwab S, et al. AXIS: a trial of intravenous granulocyte colony-stimulating factor in acute ischemic stroke. Stroke. 2010;41:2545–51.CrossRefPubMed Schabitz WR, Laage R, Vogt G, Koch W, Kollmar R, Schwab S, et al. AXIS: a trial of intravenous granulocyte colony-stimulating factor in acute ischemic stroke. Stroke. 2010;41:2545–51.CrossRefPubMed
64.
go back to reference Ringelstein EB, Thijs V, Norrving B, Chamorro A, Aichner F, Grond M, et al. Granulocyte colony-stimulating factor in patients with acute ischemic stroke: results of the AX200 for Ischemic Stroke trial. Stroke. 2013;44(10):2681–7.CrossRefPubMed Ringelstein EB, Thijs V, Norrving B, Chamorro A, Aichner F, Grond M, et al. Granulocyte colony-stimulating factor in patients with acute ischemic stroke: results of the AX200 for Ischemic Stroke trial. Stroke. 2013;44(10):2681–7.CrossRefPubMed
65.
go back to reference An C, Shi Y, Li P, Hu X, Gan Y, Stetler RA, et al. Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair. Prog Neurobiol. 2014;115:6–24.PubMedCentralCrossRefPubMed An C, Shi Y, Li P, Hu X, Gan Y, Stetler RA, et al. Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair. Prog Neurobiol. 2014;115:6–24.PubMedCentralCrossRefPubMed
66.
go back to reference Lapchak PA, Zhang JH, Noble-Haeusslein LJ. RIGOR guidelines: escalating STAIR and STEPS for effective translational research. Transl Stroke Res. 2013;4(3):279–85.PubMedCentralCrossRefPubMed Lapchak PA, Zhang JH, Noble-Haeusslein LJ. RIGOR guidelines: escalating STAIR and STEPS for effective translational research. Transl Stroke Res. 2013;4(3):279–85.PubMedCentralCrossRefPubMed
67.
go back to reference Li L, McBride DW, Doycheva D, Dixon BJ, Krafft PR, Zhang JH, et al. G-CSF attenuates neuroinflammation and stabilizes the blood–brain barrier via the PI3K/Akt/GSK-3β signaling pathway following neonatal hypoxia-ischemia in rats. Exp Neurol. 2015;S0014–4886(15):00005–9. Li L, McBride DW, Doycheva D, Dixon BJ, Krafft PR, Zhang JH, et al. G-CSF attenuates neuroinflammation and stabilizes the blood–brain barrier via the PI3K/Akt/GSK-3β signaling pathway following neonatal hypoxia-ischemia in rats. Exp Neurol. 2015;S0014–4886(15):00005–9.
68.
go back to reference Sobrino T, Millán M, Castellanos M, Blanco M, Brea D, Dorado L, et al. Association of growth factors with arterial recanalization and clinical outcome in patients with ischemic stroke treated with tPA. J Thromb Haemost. 2010;8(7):1567–74.CrossRefPubMed Sobrino T, Millán M, Castellanos M, Blanco M, Brea D, Dorado L, et al. Association of growth factors with arterial recanalization and clinical outcome in patients with ischemic stroke treated with tPA. J Thromb Haemost. 2010;8(7):1567–74.CrossRefPubMed
69.
go back to reference Liu X, Ye R, Yan T, Yu SP, Wei L, Xu G, et al. Cell based therapies for ischemic stroke: from basic science to bedside. Prog Neurobiol. 2014;115:92–115.PubMedCentralCrossRefPubMed Liu X, Ye R, Yan T, Yu SP, Wei L, Xu G, et al. Cell based therapies for ischemic stroke: from basic science to bedside. Prog Neurobiol. 2014;115:92–115.PubMedCentralCrossRefPubMed
70.
go back to reference Zhang XM, Du F, Yang D, Wang R, Yu C, Huang XN, et al. Granulocyte colony-stimulating factor increases the therapeutic efficacy of bone marrow mononuclear cell transplantation in cerebral ischemia in mice. BMC Neurosci. 2011;12:61.PubMedCentralCrossRefPubMed Zhang XM, Du F, Yang D, Wang R, Yu C, Huang XN, et al. Granulocyte colony-stimulating factor increases the therapeutic efficacy of bone marrow mononuclear cell transplantation in cerebral ischemia in mice. BMC Neurosci. 2011;12:61.PubMedCentralCrossRefPubMed
71.
go back to reference Balseanu AT, Buga AM, Catalin B, Wagner DC, Boltze J, Zagrean AM, et al. Multimodal approaches for regenerative stroke therapies: combination of granulocyte colony-stimulating factor with bone marrow mesenchymal stem cells is not superior to G-CSF alone. Front Aging Neurosci. 2014;6:130.PubMedCentralCrossRefPubMed Balseanu AT, Buga AM, Catalin B, Wagner DC, Boltze J, Zagrean AM, et al. Multimodal approaches for regenerative stroke therapies: combination of granulocyte colony-stimulating factor with bone marrow mesenchymal stem cells is not superior to G-CSF alone. Front Aging Neurosci. 2014;6:130.PubMedCentralCrossRefPubMed
72.
go back to reference Popa-Wagner A, Stöcker K, Balseanu AT, Rogalewski A, Diederich K, Minnerup J, et al. Effects of granulocyte-colony stimulating factor after stroke in aged rats. Stroke. 2010;41(5):1027–31.CrossRefPubMed Popa-Wagner A, Stöcker K, Balseanu AT, Rogalewski A, Diederich K, Minnerup J, et al. Effects of granulocyte-colony stimulating factor after stroke in aged rats. Stroke. 2010;41(5):1027–31.CrossRefPubMed
73.
go back to reference Acosta SA, Tajiri N, Shinozuka K, Ishikawa H, Sanberg PR, Sanchez-Ramos J, et al. Combination therapy of human umbilical cord blood cells and granulocyte colony stimulating factor reduces histopathological and motor impairments in an experimental model of chronic traumatic brain injury. PLoS One. 2014;12(9(3):e90953.CrossRef Acosta SA, Tajiri N, Shinozuka K, Ishikawa H, Sanberg PR, Sanchez-Ramos J, et al. Combination therapy of human umbilical cord blood cells and granulocyte colony stimulating factor reduces histopathological and motor impairments in an experimental model of chronic traumatic brain injury. PLoS One. 2014;12(9(3):e90953.CrossRef
74.
go back to reference Iskander A, Knight RA, Zhang ZG, Ewing JR, Shankar A, Varma NR, et al. Intravenous administration of human umbilical cord blood-derived AC133+ endothelial progenitor cells in rat stroke model reduces infarct volume: magnetic resonance imaging and histological findings. Stem Cells Transl Med. 2013;2:703–14.PubMedCentralCrossRefPubMed Iskander A, Knight RA, Zhang ZG, Ewing JR, Shankar A, Varma NR, et al. Intravenous administration of human umbilical cord blood-derived AC133+ endothelial progenitor cells in rat stroke model reduces infarct volume: magnetic resonance imaging and histological findings. Stem Cells Transl Med. 2013;2:703–14.PubMedCentralCrossRefPubMed
75.
go back to reference Shahaduzzaman M, Golden JE, Green S, Gronda AE, Adrien E, Ahmed A, et al. A single administration of human umbilical cord blood T cells produces long-lasting effects in the aging hippocampus. Age (Dordr). 2013;35:2071–87.CrossRef Shahaduzzaman M, Golden JE, Green S, Gronda AE, Adrien E, Ahmed A, et al. A single administration of human umbilical cord blood T cells produces long-lasting effects in the aging hippocampus. Age (Dordr). 2013;35:2071–87.CrossRef
76.
go back to reference Zhao LR, Piao CS, Murikinati SR, Gonzalez-Toledo ME. The role of stem cell factor and granulocyte-colony stimulating factor in treatment of stroke. Recent Pat CNS Drug Discov. 2013;8(1):2–12.PubMedCentralCrossRefPubMed Zhao LR, Piao CS, Murikinati SR, Gonzalez-Toledo ME. The role of stem cell factor and granulocyte-colony stimulating factor in treatment of stroke. Recent Pat CNS Drug Discov. 2013;8(1):2–12.PubMedCentralCrossRefPubMed
77.
go back to reference Sanchez-Ramos J, Song S, Sava V, Catlow B, Lin X, Mori T, et al. Granulocyte colony stimulating factor decreases brain amyloid burden and reverses cognitive impairment in Alzheimer’s mice. Neuroscience. 2009;163:55–72.CrossRefPubMed Sanchez-Ramos J, Song S, Sava V, Catlow B, Lin X, Mori T, et al. Granulocyte colony stimulating factor decreases brain amyloid burden and reverses cognitive impairment in Alzheimer’s mice. Neuroscience. 2009;163:55–72.CrossRefPubMed
78.
go back to reference Toth ZE, Leker RR, Shahar T, Pastorino S, Szalayova I, Asemenew B, et al. The combination of granulocyte colony-stimulating factor and stem cell factor significantly increases the number of bone marrow-derived endothelial cells in brains of mice following cerebral ischemia. Blood. 2008;111:5544–52.PubMedCentralCrossRefPubMed Toth ZE, Leker RR, Shahar T, Pastorino S, Szalayova I, Asemenew B, et al. The combination of granulocyte colony-stimulating factor and stem cell factor significantly increases the number of bone marrow-derived endothelial cells in brains of mice following cerebral ischemia. Blood. 2008;111:5544–52.PubMedCentralCrossRefPubMed
79.
go back to reference England TJ, Abaei M, Auer DP, Lowe J, Jones DR, Sare G, et al. Granulocyte-colony stimulating factor for mobilizing bone marrow stem cells in subacute stroke: the stem cell trial of recovery enhancement after stroke 2 randomized controlled trial. Stroke. 2012;43:405–11.CrossRefPubMed England TJ, Abaei M, Auer DP, Lowe J, Jones DR, Sare G, et al. Granulocyte-colony stimulating factor for mobilizing bone marrow stem cells in subacute stroke: the stem cell trial of recovery enhancement after stroke 2 randomized controlled trial. Stroke. 2012;43:405–11.CrossRefPubMed
80.
go back to reference Stachura DL, Svoboda O, Campbell CA, Espín-Palazón R, Lau RP, Zon LI, et al. The zebrafish granulocyte colony stimulating factors (Gcsfs): two paralogous cytokines and their roles in hematopoietic development and maintenance. Blood. 2013;122(24):3918–28.PubMedCentralCrossRefPubMed Stachura DL, Svoboda O, Campbell CA, Espín-Palazón R, Lau RP, Zon LI, et al. The zebrafish granulocyte colony stimulating factors (Gcsfs): two paralogous cytokines and their roles in hematopoietic development and maintenance. Blood. 2013;122(24):3918–28.PubMedCentralCrossRefPubMed
81.
go back to reference Tsuji T, Nishimura-Morita Y, Watanabe Y, Hirano D, Nakanishi S, Mori KJ, et al. A murine stromal cell line promotes the expansion of CD34high+-primitive progenitor cells isolated from human umbilical cord blood in combination with human cytokines. Growth Factors. 1999;16(3):225–40.CrossRefPubMed Tsuji T, Nishimura-Morita Y, Watanabe Y, Hirano D, Nakanishi S, Mori KJ, et al. A murine stromal cell line promotes the expansion of CD34high+-primitive progenitor cells isolated from human umbilical cord blood in combination with human cytokines. Growth Factors. 1999;16(3):225–40.CrossRefPubMed
83.
go back to reference Yang DY, Chen YJ, Wang MF, Pan HC, Chen SY, Cheng FC. Granulocyte colony-stimulating factor enhances cellular proliferation and motor function recovery on rats subjected to traumatic brain injury. Neurol Res. 2010;32(10):1041–9.CrossRefPubMed Yang DY, Chen YJ, Wang MF, Pan HC, Chen SY, Cheng FC. Granulocyte colony-stimulating factor enhances cellular proliferation and motor function recovery on rats subjected to traumatic brain injury. Neurol Res. 2010;32(10):1041–9.CrossRefPubMed
84.
go back to reference Yang M, Wei X, Li J, Heine LA, Rosenwasser R, Iacovitti L. Changes in host blood factors and brain glia accompanying the functional recovery after systemic administration of bone marrow stem cells in ischemic stroke rats. Cell Transplant. 2010;19:1073–84.CrossRefPubMed Yang M, Wei X, Li J, Heine LA, Rosenwasser R, Iacovitti L. Changes in host blood factors and brain glia accompanying the functional recovery after systemic administration of bone marrow stem cells in ischemic stroke rats. Cell Transplant. 2010;19:1073–84.CrossRefPubMed
85.
go back to reference Fan CG, Zhang QJ, Tang FW, Han ZB, Wang GS, Han ZC. Human umbilical cord blood cells express neurotrophic factors. Neurosci Lett. 2005;380:322–5.CrossRefPubMed Fan CG, Zhang QJ, Tang FW, Han ZB, Wang GS, Han ZC. Human umbilical cord blood cells express neurotrophic factors. Neurosci Lett. 2005;380:322–5.CrossRefPubMed
86.
go back to reference Hayakawa K, Miyamoto N, Seo JH, Pham LD, Kim KW, Lo EH, et al. High-mobility group box 1 from reactive astrocytes enhances the accumulation of endothelial progenitor cells in damaged white matter. J Neurochem. 2013;125(2):273–80.PubMedCentralCrossRefPubMed Hayakawa K, Miyamoto N, Seo JH, Pham LD, Kim KW, Lo EH, et al. High-mobility group box 1 from reactive astrocytes enhances the accumulation of endothelial progenitor cells in damaged white matter. J Neurochem. 2013;125(2):273–80.PubMedCentralCrossRefPubMed
87.
go back to reference Willing AE, Vendrame M, Mallery J, Cassady CJ, Davis CD, Sanchez-Ramos J, et al. Mobilized peripheral blood cells administered intravenously produce functional recovery in stroke. Cell Transplant. 2003;12:449–54.CrossRefPubMed Willing AE, Vendrame M, Mallery J, Cassady CJ, Davis CD, Sanchez-Ramos J, et al. Mobilized peripheral blood cells administered intravenously produce functional recovery in stroke. Cell Transplant. 2003;12:449–54.CrossRefPubMed
88.
go back to reference Sullivan R, Duncan K, Dailey T, Kaneko Y, Tajiri N, Borlongan CV. A possible new focus for stroke treatment–migrating stem cells. Expert Opin Biol Ther. 2015;15(7):949–58.PubMedCentralCrossRefPubMed Sullivan R, Duncan K, Dailey T, Kaneko Y, Tajiri N, Borlongan CV. A possible new focus for stroke treatment–migrating stem cells. Expert Opin Biol Ther. 2015;15(7):949–58.PubMedCentralCrossRefPubMed
89.
go back to reference Dailey T, Metcalf C, Mosley YI, Sullivan R, Shinozuka K, Tajiri N, et al. An update on translating stem cell therapy for stroke from bench to bedside. J Clin Med. 2013;2(4):220–41.PubMedCentralCrossRefPubMed Dailey T, Metcalf C, Mosley YI, Sullivan R, Shinozuka K, Tajiri N, et al. An update on translating stem cell therapy for stroke from bench to bedside. J Clin Med. 2013;2(4):220–41.PubMedCentralCrossRefPubMed
90.
Metadata
Title
Translating G-CSF as an Adjunct Therapy to Stem Cell Transplantation for Stroke
Authors
Ike dela Peña
Cesar V. Borlongan
Publication date
01-12-2015
Publisher
Springer US
Published in
Translational Stroke Research / Issue 6/2015
Print ISSN: 1868-4483
Electronic ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-015-0430-x

Other articles of this Issue 6/2015

Translational Stroke Research 6/2015 Go to the issue