Skip to main content
Top
Published in: Translational Stroke Research 3/2013

01-06-2013 | Original Article

In Vivo Animal Stroke Models

A Rationale for Rodent and Non-Human Primate Models

Authors: Naoki Tajiri, Travis Dailey, Christopher Metcalf, Yusef I. Mosley, Tsz Lau, Meaghan Staples, Harry van Loveren, Seung U. Kim, Tetsumori Yamashima, Takao Yasuhara, Isao Date, Yuji Kaneko, Cesario V. Borlongan

Published in: Translational Stroke Research | Issue 3/2013

Login to get access

Abstract

On average, every 4 min an individual dies from a stroke, accounting for one out of every 18 deaths in the United States. Approximately 795,000 Americans have a new or recurrent stroke each year, with just over 600,000 of these being first attack Roger et al. (Circulation, 125(1): 188–197, 2012). There have been multiple animal models of stroke demonstrating that novel therapeutics can help improve the clinical outcome. However, these results have failed to show the same outcomes when tested in human clinical trials. This review will discuss the current in vivo animal models of stroke, advantages and limitations, and the rationale for employing these animal models to satisfy translational gating items for examination of neuroprotective, as well as neurorestorative strategies in stroke patients. An emphasis in the present discussion of therapeutics development is given to stem cell therapy for stroke.
Literature
1.
go back to reference Roger VL, et al. Executive summary: heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation. 2012;125(1):188–97.PubMedCrossRef Roger VL, et al. Executive summary: heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation. 2012;125(1):188–97.PubMedCrossRef
2.
go back to reference Davenport R, Dennis M. Neurological emergencies: acute stroke. J Neurol Neurosurg Psychiatry. 2000;68(3):277–88.PubMedCrossRef Davenport R, Dennis M. Neurological emergencies: acute stroke. J Neurol Neurosurg Psychiatry. 2000;68(3):277–88.PubMedCrossRef
3.
4.
go back to reference Sudlow CL, Warlow CP. Comparing stroke incidence worldwide: what makes studies comparable? Stroke. 1996;27(3):550–8.PubMedCrossRef Sudlow CL, Warlow CP. Comparing stroke incidence worldwide: what makes studies comparable? Stroke. 1996;27(3):550–8.PubMedCrossRef
5.
go back to reference Fagan SC, et al. Cost-effectiveness of tissue plasminogen activator for acute ischemic stroke. NINDS rt-PA Stroke Study Group. Neurology. 1998;50(4):883–90.PubMedCrossRef Fagan SC, et al. Cost-effectiveness of tissue plasminogen activator for acute ischemic stroke. NINDS rt-PA Stroke Study Group. Neurology. 1998;50(4):883–90.PubMedCrossRef
6.
go back to reference Hess DC, et al. REACH: clinical feasibility of a rural telestroke network. Stroke. 2005;36(9):2018–20.PubMedCrossRef Hess DC, et al. REACH: clinical feasibility of a rural telestroke network. Stroke. 2005;36(9):2018–20.PubMedCrossRef
7.
go back to reference Wang S, et al. Remote evaluation of acute ischemic stroke in rural community hospitals in Georgia. Stroke. 2004;35(7):1763–8.PubMedCrossRef Wang S, et al. Remote evaluation of acute ischemic stroke in rural community hospitals in Georgia. Stroke. 2004;35(7):1763–8.PubMedCrossRef
8.
go back to reference Borlongan CV, et al. Gene therapy, cell transplantation and stroke. Front Biosci. 2006;11:1090–101.PubMedCrossRef Borlongan CV, et al. Gene therapy, cell transplantation and stroke. Front Biosci. 2006;11:1090–101.PubMedCrossRef
9.
go back to reference Pulsinelli WA, Brierley JB. A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke. 1979;10(3):267–72.PubMedCrossRef Pulsinelli WA, Brierley JB. A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke. 1979;10(3):267–72.PubMedCrossRef
10.
go back to reference Eklof B, Siesjo BK. The effect of bilateral carotid artery ligation upon the blood flow and the energy state of the rat brain. Acta Physiol Scand. 1972;86(2):155–65.PubMedCrossRef Eklof B, Siesjo BK. The effect of bilateral carotid artery ligation upon the blood flow and the energy state of the rat brain. Acta Physiol Scand. 1972;86(2):155–65.PubMedCrossRef
11.
go back to reference Eklof B, Siesjo BK. The effect of bilateral carotid artery ligation upon acid–base parameters and substrate levels in the rat brain. Acta Physiol Scand. 1972;86(4):528–38.PubMedCrossRef Eklof B, Siesjo BK. The effect of bilateral carotid artery ligation upon acid–base parameters and substrate levels in the rat brain. Acta Physiol Scand. 1972;86(4):528–38.PubMedCrossRef
12.
13.
go back to reference Longa EZ, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1):84–91.PubMedCrossRef Longa EZ, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1):84–91.PubMedCrossRef
14.
go back to reference Schmid-Elsaesser R, et al. A critical reevaluation of the intraluminal thread model of focal cerebral ischemia: evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-Doppler flowmetry. Stroke. 1998;29(10):2162–70.PubMedCrossRef Schmid-Elsaesser R, et al. A critical reevaluation of the intraluminal thread model of focal cerebral ischemia: evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-Doppler flowmetry. Stroke. 1998;29(10):2162–70.PubMedCrossRef
15.
go back to reference Tamura A, et al. Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab. 1981;1(1):53–60.PubMedCrossRef Tamura A, et al. Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab. 1981;1(1):53–60.PubMedCrossRef
16.
go back to reference Duverger D, MacKenzie ET. The quantification of cerebral infarction following focal ischemia in the rat: influence of strain, arterial pressure, blood glucose concentration, and age. J Cereb Blood Flow Metab. 1988;8(4):449–61.PubMedCrossRef Duverger D, MacKenzie ET. The quantification of cerebral infarction following focal ischemia in the rat: influence of strain, arterial pressure, blood glucose concentration, and age. J Cereb Blood Flow Metab. 1988;8(4):449–61.PubMedCrossRef
17.
go back to reference Watson BD, et al. Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol. 1985;17(5):497–504.PubMedCrossRef Watson BD, et al. Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol. 1985;17(5):497–504.PubMedCrossRef
18.
go back to reference Markgraf CG, et al. Comparative histopathologic consequences of photothrombotic occlusion of the distal middle cerebral artery in Sprague–Dawley and Wistar rats. Stroke. 1993;24(2):92–286. discussion 292–3.CrossRef Markgraf CG, et al. Comparative histopathologic consequences of photothrombotic occlusion of the distal middle cerebral artery in Sprague–Dawley and Wistar rats. Stroke. 1993;24(2):92–286. discussion 292–3.CrossRef
19.
go back to reference Zhang Z, et al. A new rat model of thrombotic focal cerebral ischemia. J Cereb Blood Flow Metab. 1997;17(2):123–35.PubMedCrossRef Zhang Z, et al. A new rat model of thrombotic focal cerebral ischemia. J Cereb Blood Flow Metab. 1997;17(2):123–35.PubMedCrossRef
20.
go back to reference Pulsinelli WA, Buchan AM. The four-vessel occlusion rat model: method for complete occlusion of vertebral arteries and control of collateral circulation. Stroke. 1988;19(7):913–4.PubMedCrossRef Pulsinelli WA, Buchan AM. The four-vessel occlusion rat model: method for complete occlusion of vertebral arteries and control of collateral circulation. Stroke. 1988;19(7):913–4.PubMedCrossRef
21.
go back to reference Globus MY, et al. Intra-ischemic extracellular release of dopamine and glutamate is associated with striatal vulnerability to ischemia. Neurosci Lett. 1988;91(1):36–40.PubMedCrossRef Globus MY, et al. Intra-ischemic extracellular release of dopamine and glutamate is associated with striatal vulnerability to ischemia. Neurosci Lett. 1988;91(1):36–40.PubMedCrossRef
22.
go back to reference Smith ML, et al. Models for studying long-term recovery following forebrain ischemia in the rat: 2. A 2-vessel occlusion model. Acta Neurol Scand. 1984;69(6):385–401.PubMedCrossRef Smith ML, et al. Models for studying long-term recovery following forebrain ischemia in the rat: 2. A 2-vessel occlusion model. Acta Neurol Scand. 1984;69(6):385–401.PubMedCrossRef
23.
go back to reference de Crespigny AJ, et al. Acute studies of a new primate model of reversible middle cerebral artery occlusion. J Stroke Cerebrovasc Dis. 2005;14(2):80–7.PubMedCrossRef de Crespigny AJ, et al. Acute studies of a new primate model of reversible middle cerebral artery occlusion. J Stroke Cerebrovasc Dis. 2005;14(2):80–7.PubMedCrossRef
24.
go back to reference Sasaki M, et al. Development of a middle cerebral artery occlusion model in the nonhuman primate and a safety study of i.v. infusion of human mesenchymal stem cells. PLoS One. 2011;6(10):e26577.PubMedCrossRef Sasaki M, et al. Development of a middle cerebral artery occlusion model in the nonhuman primate and a safety study of i.v. infusion of human mesenchymal stem cells. PLoS One. 2011;6(10):e26577.PubMedCrossRef
25.
go back to reference Fisher M, et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke. 2009;40(6):2244–50.PubMedCrossRef Fisher M, et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke. 2009;40(6):2244–50.PubMedCrossRef
26.
go back to reference Shi S, Morike K, Klotz U. The clinical implications of ageing for rational drug therapy. Eur J Clin Pharmacol. 2008;64(2):183–99.PubMedCrossRef Shi S, Morike K, Klotz U. The clinical implications of ageing for rational drug therapy. Eur J Clin Pharmacol. 2008;64(2):183–99.PubMedCrossRef
27.
go back to reference Hurn PD, Vannucci SJ, Hagberg H. Adult or perinatal brain injury: does sex matter? Stroke. 2005;36(2):193–5.PubMedCrossRef Hurn PD, Vannucci SJ, Hagberg H. Adult or perinatal brain injury: does sex matter? Stroke. 2005;36(2):193–5.PubMedCrossRef
28.
go back to reference Hattiangady B, Rao MS, Shetty AK. Plasticity of hippocampal stem/progenitor cells to enhance neurogenesis in response to kainate-induced injury is lost by middle age. Aging Cell. 2008;7(2):207–24.PubMedCrossRef Hattiangady B, Rao MS, Shetty AK. Plasticity of hippocampal stem/progenitor cells to enhance neurogenesis in response to kainate-induced injury is lost by middle age. Aging Cell. 2008;7(2):207–24.PubMedCrossRef
29.
go back to reference The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med. 1995;333(24):1581–7. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med. 1995;333(24):1581–7.
30.
go back to reference Iadecola C, Davisson RL. Hypertension and cerebrovascular dysfunction. Cell Metab. 2008;7(6):476–84.PubMedCrossRef Iadecola C, Davisson RL. Hypertension and cerebrovascular dysfunction. Cell Metab. 2008;7(6):476–84.PubMedCrossRef
31.
go back to reference Lindner MD, et al. Long-lasting functional disabilities in middle-aged rats with small cerebral infarcts. J Neurosci. 2003;23(34):10913–22.PubMed Lindner MD, et al. Long-lasting functional disabilities in middle-aged rats with small cerebral infarcts. J Neurosci. 2003;23(34):10913–22.PubMed
32.
go back to reference Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol. 2006;100(1):328–35.PubMedCrossRef Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol. 2006;100(1):328–35.PubMedCrossRef
33.
go back to reference Fisher M. Stroke and TIA: epidemiology, risk factors, and the need for early intervention. Am J Manage Care. 2008;14(6 Suppl 2):S204–11. Fisher M. Stroke and TIA: epidemiology, risk factors, and the need for early intervention. Am J Manage Care. 2008;14(6 Suppl 2):S204–11.
34.
go back to reference Rewell SS, et al. Inducing stroke in aged, hypertensive, diabetic rats. J Cereb Blood Flow Metab. 2010;30(4):729–33.PubMedCrossRef Rewell SS, et al. Inducing stroke in aged, hypertensive, diabetic rats. J Cereb Blood Flow Metab. 2010;30(4):729–33.PubMedCrossRef
35.
go back to reference Bruno A, et al. Admission glucose level and clinical outcomes in the NINDS rt-PA Stroke Trial. Neurology. 2002;59(5):669–74.PubMedCrossRef Bruno A, et al. Admission glucose level and clinical outcomes in the NINDS rt-PA Stroke Trial. Neurology. 2002;59(5):669–74.PubMedCrossRef
36.
go back to reference Martini SR, Kent TA. Hyperglycemia in acute ischemic stroke: a vascular perspective. J Cereb Blood Flow Metab. 2007;27(3):435–51.PubMedCrossRef Martini SR, Kent TA. Hyperglycemia in acute ischemic stroke: a vascular perspective. J Cereb Blood Flow Metab. 2007;27(3):435–51.PubMedCrossRef
37.
go back to reference Fan X, et al. A rat model of studying tissue-type plasminogen activator thrombolysis in ischemic stroke with diabetes. Stroke. 2012;43(2):567–70.PubMedCrossRef Fan X, et al. A rat model of studying tissue-type plasminogen activator thrombolysis in ischemic stroke with diabetes. Stroke. 2012;43(2):567–70.PubMedCrossRef
38.
go back to reference Kim E, et al. CD36 in the periphery and brain synergizes in stroke injury in hyperlipidemia. Ann Neurol. 2012;71(6):753–64.PubMedCrossRef Kim E, et al. CD36 in the periphery and brain synergizes in stroke injury in hyperlipidemia. Ann Neurol. 2012;71(6):753–64.PubMedCrossRef
39.
go back to reference Xu L, et al. Low dose intravenous minocycline is neuroprotective after middle cerebral artery occlusion-reperfusion in rats. BMC Neurol. 2004;4:7.PubMedCrossRef Xu L, et al. Low dose intravenous minocycline is neuroprotective after middle cerebral artery occlusion-reperfusion in rats. BMC Neurol. 2004;4:7.PubMedCrossRef
40.
go back to reference Fagan SC, et al. Optimal delivery of minocycline to the brain: implication for human studies of acute neuroprotection. Exp Neurol. 2004;186(2):248–51.PubMedCrossRef Fagan SC, et al. Optimal delivery of minocycline to the brain: implication for human studies of acute neuroprotection. Exp Neurol. 2004;186(2):248–51.PubMedCrossRef
41.
go back to reference Machado LS, et al. Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC Neurosci. 2006;7:56.PubMedCrossRef Machado LS, et al. Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC Neurosci. 2006;7:56.PubMedCrossRef
42.
go back to reference Matsukawa N, et al. Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke. BMC Neurosci. 2009;10:126.PubMedCrossRef Matsukawa N, et al. Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke. BMC Neurosci. 2009;10:126.PubMedCrossRef
43.
go back to reference Romero-Perez D, et al. Cardiac uptake of minocycline and mechanisms for in vivo cardioprotection. J Am Coll Cardiol. 2008;52(13):1086–94.PubMedCrossRef Romero-Perez D, et al. Cardiac uptake of minocycline and mechanisms for in vivo cardioprotection. J Am Coll Cardiol. 2008;52(13):1086–94.PubMedCrossRef
44.
go back to reference Matsumoto Y, Park IK, Kohyama K. Matrix metalloproteinase (MMP)-9, but not MMP-2, is involved in the development and progression of C protein-induced myocarditis and subsequent dilated cardiomyopathy. J Immunol. 2009;183(7):4773–81.PubMedCrossRef Matsumoto Y, Park IK, Kohyama K. Matrix metalloproteinase (MMP)-9, but not MMP-2, is involved in the development and progression of C protein-induced myocarditis and subsequent dilated cardiomyopathy. J Immunol. 2009;183(7):4773–81.PubMedCrossRef
45.
go back to reference Glover LE, et al. A step-up approach for cell therapy in stroke: translational hurdles of bone marrow-derived stem cells. Transl Stroke Res. 2012;3(1):90–8.PubMedCrossRef Glover LE, et al. A step-up approach for cell therapy in stroke: translational hurdles of bone marrow-derived stem cells. Transl Stroke Res. 2012;3(1):90–8.PubMedCrossRef
46.
go back to reference Busch E, Kruger K, Hossmann KA. Improved model of thromboembolic stroke and rt-PA induced reperfusion in the rat. Brain Res. 1997;778(1):16–24.PubMedCrossRef Busch E, Kruger K, Hossmann KA. Improved model of thromboembolic stroke and rt-PA induced reperfusion in the rat. Brain Res. 1997;778(1):16–24.PubMedCrossRef
47.
go back to reference Gerriets T, et al. The macrosphere model: evaluation of a new stroke model for permanent middle cerebral artery occlusion in rats. J Neurosci Methods. 2003;122(2):201–11.PubMedCrossRef Gerriets T, et al. The macrosphere model: evaluation of a new stroke model for permanent middle cerebral artery occlusion in rats. J Neurosci Methods. 2003;122(2):201–11.PubMedCrossRef
48.
go back to reference Belayev L, et al. Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke. 1996;27(9):1616–22. doi:discussion_1623.PubMedCrossRef Belayev L, et al. Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke. 1996;27(9):1616–22. doi:discussion_​1623.PubMedCrossRef
49.
go back to reference Garcia JH, et al. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke. 1995;26(4):627–34. doi:discussion_635.PubMedCrossRef Garcia JH, et al. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke. 1995;26(4):627–34. doi:discussion_​635.PubMedCrossRef
50.
go back to reference Kawamura S, et al. Reversible middle cerebral artery occlusion in rats using an intraluminal thread technique. Surg Neurol. 1994;41(5):368–73.PubMedCrossRef Kawamura S, et al. Reversible middle cerebral artery occlusion in rats using an intraluminal thread technique. Surg Neurol. 1994;41(5):368–73.PubMedCrossRef
51.
go back to reference Kawamura S, et al. Rat middle cerebral artery occlusion using an intraluminal thread technique. Acta Neurochir (Wien). 1991;109(3–4):126–32.CrossRef Kawamura S, et al. Rat middle cerebral artery occlusion using an intraluminal thread technique. Acta Neurochir (Wien). 1991;109(3–4):126–32.CrossRef
52.
go back to reference Memezawa H, Smith ML, Siesjo BK. Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Stroke. 1992;23(4):552–9.PubMedCrossRef Memezawa H, Smith ML, Siesjo BK. Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Stroke. 1992;23(4):552–9.PubMedCrossRef
53.
go back to reference Rink C, et al. Minimally invasive neuroradiologic model of preclinical transient middle cerebral artery occlusion in canines. Proc Natl Acad Sci U S A. 2008;105(37):14100–5.PubMedCrossRef Rink C, et al. Minimally invasive neuroradiologic model of preclinical transient middle cerebral artery occlusion in canines. Proc Natl Acad Sci U S A. 2008;105(37):14100–5.PubMedCrossRef
54.
go back to reference Ginsberg MD BR. Small animal models of global and focal cerebral ischemia. In: Ginsberg MD, Bogousslavsky J, editors. Cerebrovascular disease: pathophysiology, diagnosis and management. Malden, MA: Blackwell Scientific Publications; 1998. Ginsberg MD BR. Small animal models of global and focal cerebral ischemia. In: Ginsberg MD, Bogousslavsky J, editors. Cerebrovascular disease: pathophysiology, diagnosis and management. Malden, MA: Blackwell Scientific Publications; 1998.
55.
go back to reference van der Worp HB, et al. Can animal models of disease reliably inform human studies? PLoS Med. 2010;7(3):e1000245.PubMedCrossRef van der Worp HB, et al. Can animal models of disease reliably inform human studies? PLoS Med. 2010;7(3):e1000245.PubMedCrossRef
56.
go back to reference Lees JS, et al. Stem cell-based therapy for experimental stroke: a systematic review and meta-analysis. Int J Stroke. 2012;7(7):582–8.PubMedCrossRef Lees JS, et al. Stem cell-based therapy for experimental stroke: a systematic review and meta-analysis. Int J Stroke. 2012;7(7):582–8.PubMedCrossRef
57.
go back to reference Toda H, et al. Grafting neural stem cells improved the impaired spatial recognition in ischemic rats. Neurosci Lett. 2001;316(1):9–12.PubMedCrossRef Toda H, et al. Grafting neural stem cells improved the impaired spatial recognition in ischemic rats. Neurosci Lett. 2001;316(1):9–12.PubMedCrossRef
58.
go back to reference Ferrari A, et al. Immature human NT2 cells grafted into mouse brain differentiate into neuronal and glial cell types. FEBS Lett. 2000;486(2):121–5.PubMedCrossRef Ferrari A, et al. Immature human NT2 cells grafted into mouse brain differentiate into neuronal and glial cell types. FEBS Lett. 2000;486(2):121–5.PubMedCrossRef
59.
go back to reference Borlongan CV, et al. Transplantation of cryopreserved human embryonal carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats. Exp Neurol. 1998;149(2):310–21.PubMedCrossRef Borlongan CV, et al. Transplantation of cryopreserved human embryonal carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats. Exp Neurol. 1998;149(2):310–21.PubMedCrossRef
60.
go back to reference Veizovic T, et al. Resolution of stroke deficits following contralateral grafts of conditionally immortal neuroepithelial stem cells. Stroke. 2001;32(4):1012–9.PubMedCrossRef Veizovic T, et al. Resolution of stroke deficits following contralateral grafts of conditionally immortal neuroepithelial stem cells. Stroke. 2001;32(4):1012–9.PubMedCrossRef
61.
go back to reference Modo M, et al. Neurological sequelae and long-term behavioural assessment of rats with transient middle cerebral artery occlusion. J Neurosci Methods. 2000;104(1):99–109.PubMedCrossRef Modo M, et al. Neurological sequelae and long-term behavioural assessment of rats with transient middle cerebral artery occlusion. J Neurosci Methods. 2000;104(1):99–109.PubMedCrossRef
62.
go back to reference Englund U, et al. Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry. Proc Natl Acad Sci U S A. 2002;99(26):17089–94.PubMedCrossRef Englund U, et al. Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry. Proc Natl Acad Sci U S A. 2002;99(26):17089–94.PubMedCrossRef
63.
go back to reference Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A. 1999;96(19):10711–6.PubMedCrossRef Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A. 1999;96(19):10711–6.PubMedCrossRef
64.
go back to reference Chen J, Li Y, Chopp M. Intracerebral transplantation of bone marrow with BDNF after MCAo in rat. Neuropharmacology. 2000;39(5):711–6.PubMedCrossRef Chen J, Li Y, Chopp M. Intracerebral transplantation of bone marrow with BDNF after MCAo in rat. Neuropharmacology. 2000;39(5):711–6.PubMedCrossRef
65.
go back to reference Li Y, et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab. 2000;20(9):1311–9.PubMedCrossRef Li Y, et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab. 2000;20(9):1311–9.PubMedCrossRef
66.
go back to reference Woodbury D, et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000;61(4):364–70.PubMedCrossRef Woodbury D, et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000;61(4):364–70.PubMedCrossRef
67.
go back to reference Munoz-Elias G, et al. Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival. J Neurosci. 2004;24(19):4585–95.PubMedCrossRef Munoz-Elias G, et al. Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival. J Neurosci. 2004;24(19):4585–95.PubMedCrossRef
68.
go back to reference Borlongan CV, et al. Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke. 2004;35(10):2385–9.PubMedCrossRef Borlongan CV, et al. Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke. 2004;35(10):2385–9.PubMedCrossRef
69.
go back to reference Eglitis MA, Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci U S A. 1997;94(8):4080–5.PubMedCrossRef Eglitis MA, Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci U S A. 1997;94(8):4080–5.PubMedCrossRef
70.
go back to reference Hess DC, et al. Bone marrow as a source of endothelial cells and NeuN-expressing cells After stroke. Stroke. 2002;33(5):1362–8.PubMedCrossRef Hess DC, et al. Bone marrow as a source of endothelial cells and NeuN-expressing cells After stroke. Stroke. 2002;33(5):1362–8.PubMedCrossRef
71.
go back to reference Li Y, et al. Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology. 2001;56(12):1666–72.PubMedCrossRef Li Y, et al. Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology. 2001;56(12):1666–72.PubMedCrossRef
72.
go back to reference Chen J, et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res. 2003;92(6):692–9.PubMedCrossRef Chen J, et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res. 2003;92(6):692–9.PubMedCrossRef
73.
go back to reference Chen J, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32(11):2682–8.PubMedCrossRef Chen J, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32(11):2682–8.PubMedCrossRef
74.
go back to reference Willing AE, et al. Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res. 2003;73(3):296–307.PubMedCrossRef Willing AE, et al. Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res. 2003;73(3):296–307.PubMedCrossRef
75.
go back to reference Riess P, et al. Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery. 2002;51(4):1043–52. discussion 1052–4.PubMed Riess P, et al. Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery. 2002;51(4):1043–52. discussion 1052–4.PubMed
76.
go back to reference Zhao LR, et al. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol. 2002;174(1):11–20.PubMedCrossRef Zhao LR, et al. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol. 2002;174(1):11–20.PubMedCrossRef
77.
go back to reference Peled A, et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood. 2000;95(11):3289–96.PubMed Peled A, et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood. 2000;95(11):3289–96.PubMed
78.
go back to reference Yamaguchi J, et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation. 2003;107(9):1322–8.PubMedCrossRef Yamaguchi J, et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation. 2003;107(9):1322–8.PubMedCrossRef
79.
go back to reference Reyes M, et al. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest. 2002;109(3):337–46.PubMed Reyes M, et al. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest. 2002;109(3):337–46.PubMed
80.
go back to reference Rajantie I, et al. Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood. 2004;104(7):2084–6.PubMedCrossRef Rajantie I, et al. Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood. 2004;104(7):2084–6.PubMedCrossRef
81.
go back to reference Mahmood A, Lu D, Chopp M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma. 2004;21(1):33–9.PubMedCrossRef Mahmood A, Lu D, Chopp M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma. 2004;21(1):33–9.PubMedCrossRef
82.
go back to reference Stroke Therapy Academic Industry Roundtable (STAIR). Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke. 1999;30(12):2752–8. Stroke Therapy Academic Industry Roundtable (STAIR). Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke. 1999;30(12):2752–8.
83.
go back to reference Fukuda S, del Zoppo GJ. Models of focal cerebral ischemia in the nonhuman primate. ILAR J. 2003;44(2):96–104.PubMedCrossRef Fukuda S, del Zoppo GJ. Models of focal cerebral ischemia in the nonhuman primate. ILAR J. 2003;44(2):96–104.PubMedCrossRef
84.
go back to reference Neubuerger KT. Lesions of the human brain following circulatory arrest. J Neuropathol Exp Neurol. 1954;13(1):144–60.PubMedCrossRef Neubuerger KT. Lesions of the human brain following circulatory arrest. J Neuropathol Exp Neurol. 1954;13(1):144–60.PubMedCrossRef
85.
go back to reference Brierley JB, et al. Brain damage in the rhesus monkey resulting from profound arterial hypotension: I. Its nature, distribution and general physiological correlates. Brain Res. 1969;13(1):68–100.PubMedCrossRef Brierley JB, et al. Brain damage in the rhesus monkey resulting from profound arterial hypotension: I. Its nature, distribution and general physiological correlates. Brain Res. 1969;13(1):68–100.PubMedCrossRef
86.
87.
go back to reference Wolin LR, Massopust Jr LC, Taslitz N. Tolerance to arrest of cerebral circulation in the rhesus monkey. Exp Neurol. 1971;30(1):103–15.PubMedCrossRef Wolin LR, Massopust Jr LC, Taslitz N. Tolerance to arrest of cerebral circulation in the rhesus monkey. Exp Neurol. 1971;30(1):103–15.PubMedCrossRef
88.
go back to reference Pulsinelli WA, Brierley JB, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol. 1982;11(5):491–8.PubMedCrossRef Pulsinelli WA, Brierley JB, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol. 1982;11(5):491–8.PubMedCrossRef
89.
go back to reference Smith ML, Auer RN, Siesjo BK. The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol. 1984;64(4):319–32.PubMedCrossRef Smith ML, Auer RN, Siesjo BK. The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol. 1984;64(4):319–32.PubMedCrossRef
90.
go back to reference Kirino T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res. 1982;239(1):57–69.PubMedCrossRef Kirino T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res. 1982;239(1):57–69.PubMedCrossRef
91.
go back to reference Zola-Morgan S, Squire LR, Amaral DG. Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci. 1986;6(10):2950–67.PubMed Zola-Morgan S, Squire LR, Amaral DG. Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci. 1986;6(10):2950–67.PubMed
92.
go back to reference Rempel-Clower NL, et al. Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J Neurosci. 1996;16(16):5233–55.PubMed Rempel-Clower NL, et al. Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J Neurosci. 1996;16(16):5233–55.PubMed
93.
go back to reference Petito CK, Lapinski RL. Postischemic alterations in ultrastructural cytochemistry of neuronal Golgi apparatus. Lab Investig. 1986;55(6):696–702.PubMed Petito CK, Lapinski RL. Postischemic alterations in ultrastructural cytochemistry of neuronal Golgi apparatus. Lab Investig. 1986;55(6):696–702.PubMed
94.
go back to reference Fujioka M, et al. Hippocampal damage in the human brain after cardiac arrest. Cerebrovasc Dis. 2000;10(1):2–7.PubMedCrossRef Fujioka M, et al. Hippocampal damage in the human brain after cardiac arrest. Cerebrovasc Dis. 2000;10(1):2–7.PubMedCrossRef
95.
go back to reference Zola-Morgan S, et al. Enduring memory impairment in monkeys after ischemic damage to the hippocampus. J Neurosci. 1992;12(7):2582–96.PubMed Zola-Morgan S, et al. Enduring memory impairment in monkeys after ischemic damage to the hippocampus. J Neurosci. 1992;12(7):2582–96.PubMed
96.
go back to reference Tabuchi E, et al. Hippocampal neuronal damage after transient forebrain ischemia in monkeys. Brain Res Bull. 1992;29(5):685–90.PubMedCrossRef Tabuchi E, et al. Hippocampal neuronal damage after transient forebrain ischemia in monkeys. Brain Res Bull. 1992;29(5):685–90.PubMedCrossRef
97.
go back to reference Tabuchi E, et al. Ischemic neuronal damage specific to monkey hippocampus: histological investigation. Brain Res Bull. 1995;37(1):73–87.PubMedCrossRef Tabuchi E, et al. Ischemic neuronal damage specific to monkey hippocampus: histological investigation. Brain Res Bull. 1995;37(1):73–87.PubMedCrossRef
98.
go back to reference Yamashima T. Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates. Prog Neurobiol. 2000;62(3):273–95.PubMedCrossRef Yamashima T. Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates. Prog Neurobiol. 2000;62(3):273–95.PubMedCrossRef
99.
go back to reference Yamashima T, et al. Inhibition of ischaemic hippocampal neuronal death in primates with cathepsin B inhibitor CA-074: a novel strategy for neuroprotection based on 'calpain-cathepsin hypothesis'. Eur J Neurosci. 1998;10(5):1723–33.PubMedCrossRef Yamashima T, et al. Inhibition of ischaemic hippocampal neuronal death in primates with cathepsin B inhibitor CA-074: a novel strategy for neuroprotection based on 'calpain-cathepsin hypothesis'. Eur J Neurosci. 1998;10(5):1723–33.PubMedCrossRef
100.
go back to reference Yamashima T, et al. Transient brain ischaemia provokes Ca2+, PIP2 and calpain responses prior to delayed neuronal death in monkeys. Eur J Neurosci. 1996;8(9):1932–44.PubMedCrossRef Yamashima T, et al. Transient brain ischaemia provokes Ca2+, PIP2 and calpain responses prior to delayed neuronal death in monkeys. Eur J Neurosci. 1996;8(9):1932–44.PubMedCrossRef
101.
go back to reference Yamashima T, et al. Sustained calpain activation associated with lysosomal rupture executes necrosis of the postischemic CA1 neurons in primates. Hippocampus. 2003;13(7):791–800.PubMedCrossRef Yamashima T, et al. Sustained calpain activation associated with lysosomal rupture executes necrosis of the postischemic CA1 neurons in primates. Hippocampus. 2003;13(7):791–800.PubMedCrossRef
102.
go back to reference Frykholm P, et al. Relationship between cerebral blood flow and oxygen metabolism, and extracellular glucose and lactate concentrations during middle cerebral artery occlusion and reperfusion: a microdialysis and positron emission tomography study in nonhuman primates. J Neurosurg. 2005;102(6):1076–84.PubMedCrossRef Frykholm P, et al. Relationship between cerebral blood flow and oxygen metabolism, and extracellular glucose and lactate concentrations during middle cerebral artery occlusion and reperfusion: a microdialysis and positron emission tomography study in nonhuman primates. J Neurosurg. 2005;102(6):1076–84.PubMedCrossRef
103.
go back to reference Nemoto EM, et al. Hyperthermia and hypermetabolism in focal cerebral ischemia. Adv Exp Med Biol. 2005;566:83–9.PubMedCrossRef Nemoto EM, et al. Hyperthermia and hypermetabolism in focal cerebral ischemia. Adv Exp Med Biol. 2005;566:83–9.PubMedCrossRef
104.
go back to reference Schmahmann JD, Rosene DL, Pandya DN. Ataxia after pontine stroke: insights from pontocerebellar fibers in monkey. Ann Neurol. 2004;55(4):585–9.PubMedCrossRef Schmahmann JD, Rosene DL, Pandya DN. Ataxia after pontine stroke: insights from pontocerebellar fibers in monkey. Ann Neurol. 2004;55(4):585–9.PubMedCrossRef
105.
go back to reference Vaitkevicius PV, et al. A cross-link breaker has sustained effects on arterial and ventricular properties in older rhesus monkeys. Proc Natl Acad Sci U S A. 2001;98(3):1171–5.PubMedCrossRef Vaitkevicius PV, et al. A cross-link breaker has sustained effects on arterial and ventricular properties in older rhesus monkeys. Proc Natl Acad Sci U S A. 2001;98(3):1171–5.PubMedCrossRef
106.
go back to reference Tsukada T, Watanabe M, Yamashima T. Implications of CAD and DNase II in ischemic neuronal necrosis specific for the primate hippocampus. J Neurochem. 2001;79(6):1196–206.PubMedCrossRef Tsukada T, Watanabe M, Yamashima T. Implications of CAD and DNase II in ischemic neuronal necrosis specific for the primate hippocampus. J Neurochem. 2001;79(6):1196–206.PubMedCrossRef
107.
go back to reference Hara K, et al. Hippocampal CA1 cell loss in a non-human primate model of transient global ischemia: a pilot study. Brain Res Bull. 2007;74(1–3):164–71.PubMedCrossRef Hara K, et al. Hippocampal CA1 cell loss in a non-human primate model of transient global ischemia: a pilot study. Brain Res Bull. 2007;74(1–3):164–71.PubMedCrossRef
108.
go back to reference Nudo RJ, et al. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science. 1996;272(5269):1791–4.PubMedCrossRef Nudo RJ, et al. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science. 1996;272(5269):1791–4.PubMedCrossRef
109.
go back to reference Branston NM, et al. Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp Neurol. 1974;45(2):195–208.PubMedCrossRef Branston NM, et al. Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp Neurol. 1974;45(2):195–208.PubMedCrossRef
110.
go back to reference Roitberg B, et al. Chronic ischemic stroke model in cynomolgus monkeys: behavioral, neuroimaging and anatomical study. Neurol Res. 2003;25(1):68–78.PubMedCrossRef Roitberg B, et al. Chronic ischemic stroke model in cynomolgus monkeys: behavioral, neuroimaging and anatomical study. Neurol Res. 2003;25(1):68–78.PubMedCrossRef
111.
112.
go back to reference Del Zoppo GJ, et al. Experimental acute thrombotic stroke in baboons. Stroke. 1986;17(6):1254–65.PubMedCrossRef Del Zoppo GJ, et al. Experimental acute thrombotic stroke in baboons. Stroke. 1986;17(6):1254–65.PubMedCrossRef
113.
go back to reference Marshall JW, Ridley RM. Assessment of cognitive and motor deficits in a marmoset model of stroke. ILAR J. 2003;44(2):153–60.PubMedCrossRef Marshall JW, Ridley RM. Assessment of cognitive and motor deficits in a marmoset model of stroke. ILAR J. 2003;44(2):153–60.PubMedCrossRef
114.
go back to reference Yukie M, Yamaguchi K, Yamashima T. Impairments in recognition memory for object and for location after transient brain ischemia in monkeys. Rev Neurosci. 2006;17(1–2):201–14.PubMed Yukie M, Yamaguchi K, Yamashima T. Impairments in recognition memory for object and for location after transient brain ischemia in monkeys. Rev Neurosci. 2006;17(1–2):201–14.PubMed
115.
go back to reference Yoshida M, et al. Primate neurons show different vulnerability to transient ischemia and response to cathepsin inhibition. Acta Neuropathol. 2002;104(3):267–72.PubMed Yoshida M, et al. Primate neurons show different vulnerability to transient ischemia and response to cathepsin inhibition. Acta Neuropathol. 2002;104(3):267–72.PubMed
116.
go back to reference Borlongan CV. Cell therapy for stroke: remaining issues to address before embarking on clinical trials. Stroke. 2009;40(3 Suppl):S146–8.PubMedCrossRef Borlongan CV. Cell therapy for stroke: remaining issues to address before embarking on clinical trials. Stroke. 2009;40(3 Suppl):S146–8.PubMedCrossRef
117.
go back to reference Wechsler L, Steindler D, Borlongan C, Chopp M, et al. Stem Cell Therapies as an Emerging Paradigm in Stroke (STEPS): bridging basic and clinical science for cellular and neurogenic factor therapy in treating stroke. Stroke. 2009;40(2):510–5. Wechsler L, Steindler D, Borlongan C, Chopp M, et al. Stem Cell Therapies as an Emerging Paradigm in Stroke (STEPS): bridging basic and clinical science for cellular and neurogenic factor therapy in treating stroke. Stroke. 2009;40(2):510–5.
118.
go back to reference Chopp M, et al. Who's in favor of translational cell therapy for stroke: STEPS forward please? Cell Transplant. 2009;18(7):691–3.PubMedCrossRef Chopp M, et al. Who's in favor of translational cell therapy for stroke: STEPS forward please? Cell Transplant. 2009;18(7):691–3.PubMedCrossRef
119.
go back to reference Borlongan CV, et al. Potential of stem/progenitor cells in treating stroke: the missing steps in translating cell therapy from laboratory to clinic. Regen Med. 2008;3(3):249–50.PubMedCrossRef Borlongan CV, et al. Potential of stem/progenitor cells in treating stroke: the missing steps in translating cell therapy from laboratory to clinic. Regen Med. 2008;3(3):249–50.PubMedCrossRef
121.
go back to reference Crowell RM, et al. Temporary occlusion of the middle cerebral artery in the monkey: clinical and pathological observations. Stroke. 1970;1(6):439–48. Crowell RM, et al. Temporary occlusion of the middle cerebral artery in the monkey: clinical and pathological observations. Stroke. 1970;1(6):439–48.
122.
go back to reference Molinari GF, Moseley JI, Laurent JP. Segmental middle cerebral artery occlusion in primates: an experimental method requiring minimal surgery and anesthesia. Stroke. 1974;5(3):334–9. Molinari GF, Moseley JI, Laurent JP. Segmental middle cerebral artery occlusion in primates: an experimental method requiring minimal surgery and anesthesia. Stroke. 1974;5(3):334–9.
123.
go back to reference Symon L. Experimental model of stroke in the baboon. Adv Neurol. 1975;10:199–212. Symon L. Experimental model of stroke in the baboon. Adv Neurol. 1975;10:199–212.
124.
go back to reference Spetzler RF, Selman WR. New design for an implantable vessel occluder. Surg Neurol. 1980;13(4):317–9. Spetzler RF, Selman WR. New design for an implantable vessel occluder. Surg Neurol. 1980;13(4):317–9.
125.
go back to reference Crowell RM, Marcoux FW, DeGirolami U. Variability and reversibility of focal cerebral ischemia in unanesthetized monkeys. Neurology. 1981;31(10):1295–1302. Crowell RM, Marcoux FW, DeGirolami U. Variability and reversibility of focal cerebral ischemia in unanesthetized monkeys. Neurology. 1981;31(10):1295–1302.
126.
go back to reference Yonas H, et al. Stable xenon-enhanced CT measurement of cerebral blood flow in reversible focal ischemia in baboons. J Neurosurg. 1990;73(2):266–73. Yonas H, et al. Stable xenon-enhanced CT measurement of cerebral blood flow in reversible focal ischemia in baboons. J Neurosurg. 1990;73(2):266–73.
Metadata
Title
In Vivo Animal Stroke Models
A Rationale for Rodent and Non-Human Primate Models
Authors
Naoki Tajiri
Travis Dailey
Christopher Metcalf
Yusef I. Mosley
Tsz Lau
Meaghan Staples
Harry van Loveren
Seung U. Kim
Tetsumori Yamashima
Takao Yasuhara
Isao Date
Yuji Kaneko
Cesario V. Borlongan
Publication date
01-06-2013
Publisher
Springer-Verlag
Published in
Translational Stroke Research / Issue 3/2013
Print ISSN: 1868-4483
Electronic ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-012-0241-2

Other articles of this Issue 3/2013

Translational Stroke Research 3/2013 Go to the issue