Skip to main content
Top
Published in: Translational Stroke Research 1/2011

01-03-2011

Manganese Superoxide Dismutase Deficiency Exacerbates Ischemic Brain Damage Under Hyperglycemic Conditions by Altering Autophagy

Authors: Suresh L. Mehta, Yanling Lin, Wenge Chen, Fengshan Yu, Luyi Cao, Qingping He, Pak H. Chan, P. Andy Li

Published in: Translational Stroke Research | Issue 1/2011

Login to get access

Abstract

Both preischemic hyperglycemia and suppression of SOD2 activity aggravate ischemic brain damage. This study was undertaken to assess the effect of SOD2 mutation on ischemic brain damage and its relation to the factors involved in autophagy regulation in hyperglycemic wild-type (WT) and heterozygous SOD2 knockout (SOD2–/+) mice subjected to 30-min transient focal ischemia. The brain samples were analyzed at 5 and 24 h after recirculation for ischemic lesion volume, superoxide production, and oxidative DNA damage and protein levels of Beclin 1, damage-regulated autophagy modulator (DRAM), and microtubule-associated protein 1 light chain 3 (LC3). The results revealed a significant increase in infarct volume in hyperglycemic SOD2–/+ mice, and this was accompanied with an early (5 h) significant rise in superoxide production and reduced SOD2 activity in SOD2–/+ mice as compared to WT mice. The superoxide production is associated with oxidative DNA damage as indicated by colocalization of the dihydroethidium (DHE) signal with 8-OHdG fluorescence in SOD2–/+ mice. In addition, while ischemia in WT hyperglycemics increased the levels of autophagy markers Beclin 1, DRAM, and LC3, ischemia in hyperglycemic, SOD2-deficient mice suppressed the levels of autophagy stimulators. These results suggest that SOD2 knockdown exacerbates ischemic brain damage under hyperglycemic conditions via increased oxidative stress and DNA oxidation. Such effect is associated with suppression of autophagy regulators.
Literature
1.
go back to reference Li PA, Siesjö BK. Role of hyperglycaemia-related acidosis in ischaemic brain damage. Acta Physiol Scand. 1997;161:567–80.CrossRefPubMed Li PA, Siesjö BK. Role of hyperglycaemia-related acidosis in ischaemic brain damage. Acta Physiol Scand. 1997;161:567–80.CrossRefPubMed
2.
go back to reference Muranyi M, Ding C, He Q, Lin Y, Li PA. Streptozotocin-induced diabetes causes astrocyte death after ischemia and reperfusion injury. Diabetes. 2006;55:349–55.CrossRefPubMed Muranyi M, Ding C, He Q, Lin Y, Li PA. Streptozotocin-induced diabetes causes astrocyte death after ischemia and reperfusion injury. Diabetes. 2006;55:349–55.CrossRefPubMed
3.
go back to reference Kamada H, Yu F, Nito C, Chan PH. Influence of hyperglycemia on oxidative stress and matrix metalloproteinase-9 activation after focal cerebral ischemia/reperfusion in rats: relation to blood–brain barrier dysfunction. Stroke. 2007;38:1044–9.CrossRefPubMed Kamada H, Yu F, Nito C, Chan PH. Influence of hyperglycemia on oxidative stress and matrix metalloproteinase-9 activation after focal cerebral ischemia/reperfusion in rats: relation to blood–brain barrier dysfunction. Stroke. 2007;38:1044–9.CrossRefPubMed
4.
go back to reference Sugawara T, Chan PH. Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid Redox Signal. 2003;5:597–607.CrossRefPubMed Sugawara T, Chan PH. Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid Redox Signal. 2003;5:597–607.CrossRefPubMed
5.
go back to reference Murakami K, Kondo T, Kawase M, Li Y, Sato S, Chen SF, et al. Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J Neurosci. 1998;18:205–13.PubMed Murakami K, Kondo T, Kawase M, Li Y, Sato S, Chen SF, et al. Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J Neurosci. 1998;18:205–13.PubMed
6.
go back to reference Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441:885–9.CrossRefPubMed Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441:885–9.CrossRefPubMed
7.
go back to reference Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, et al. Cerebral ischemia–hypoxia induces intravascular coagulation and autophagy. Am J Pathol. 2006;169:566–83.CrossRefPubMed Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, et al. Cerebral ischemia–hypoxia induces intravascular coagulation and autophagy. Am J Pathol. 2006;169:566–83.CrossRefPubMed
8.
go back to reference Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007;26:1749–60.CrossRefPubMed Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007;26:1749–60.CrossRefPubMed
9.
go back to reference Rami A, Langhagen A, Steiger S. Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol Dis. 2008;29:132–41.CrossRefPubMed Rami A, Langhagen A, Steiger S. Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol Dis. 2008;29:132–41.CrossRefPubMed
10.
go back to reference Li PA, Gisselsson L, Keuker J, Vogel J, Smith ML, Kuschinsky W, et al. Hyperglycemia-exaggerated ischemic brain damage following 30 min of middle cerebral artery occlusion is not due to capillary obstruction. Brain Res. 1998;804:36–44.CrossRefPubMed Li PA, Gisselsson L, Keuker J, Vogel J, Smith ML, Kuschinsky W, et al. Hyperglycemia-exaggerated ischemic brain damage following 30 min of middle cerebral artery occlusion is not due to capillary obstruction. Brain Res. 1998;804:36–44.CrossRefPubMed
11.
go back to reference Crapo JD, McCord JM, Fridovich I. Preparation and assay of superoxide dismutases. Meth Enzymol. 1978;53:382–93.CrossRefPubMed Crapo JD, McCord JM, Fridovich I. Preparation and assay of superoxide dismutases. Meth Enzymol. 1978;53:382–93.CrossRefPubMed
12.
go back to reference Copin JC, Gasche Y, Chan PH. Overexpression of copper/zinc superoxide dismutase does not prevent neonatal lethality in mutant mice that lack manganese superoxide dismutase. Free Radic Biol Med. 2000;28:1571–6.CrossRefPubMed Copin JC, Gasche Y, Chan PH. Overexpression of copper/zinc superoxide dismutase does not prevent neonatal lethality in mutant mice that lack manganese superoxide dismutase. Free Radic Biol Med. 2000;28:1571–6.CrossRefPubMed
13.
go back to reference Li PA, He QP, Hu BR, Siesjö BK. Phosphorylation of extracellular signal-regulated kinase after transient cerebral ischemia in hyperglycemic rats. Neurobiol Dis. 2001;8:127–35.CrossRefPubMed Li PA, He QP, Hu BR, Siesjö BK. Phosphorylation of extracellular signal-regulated kinase after transient cerebral ischemia in hyperglycemic rats. Neurobiol Dis. 2001;8:127–35.CrossRefPubMed
14.
go back to reference Kim GW, Kondo T, Noshita N, Chan PH. Manganese superoxide dismutase deficiency exacerbates cerebral infarction after focal cerebral ischemia/reperfusion in mice: implications for the production and role of superoxide radicals. Stroke. 2002;33:809–15.CrossRefPubMed Kim GW, Kondo T, Noshita N, Chan PH. Manganese superoxide dismutase deficiency exacerbates cerebral infarction after focal cerebral ischemia/reperfusion in mice: implications for the production and role of superoxide radicals. Stroke. 2002;33:809–15.CrossRefPubMed
15.
go back to reference Fujimura M, Morita-Fujimura Y, Kawase M, Copin JC, Calagui B, Epstein CJ, et al. Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome C and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice. J Neurosci. 1999;19:3414–22.PubMed Fujimura M, Morita-Fujimura Y, Kawase M, Copin JC, Calagui B, Epstein CJ, et al. Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome C and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice. J Neurosci. 1999;19:3414–22.PubMed
16.
go back to reference Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404:787–90.CrossRefPubMed Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404:787–90.CrossRefPubMed
17.
go back to reference Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen HC, Germeyer A, et al. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci. 1998;18:687–97.PubMed Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen HC, Germeyer A, et al. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci. 1998;18:687–97.PubMed
18.
go back to reference Du X, Matsumura T, Edelstein D, Rossetti L, Zsengellér Z, Szabó C, et al. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest. 2003;112:1049–57.PubMed Du X, Matsumura T, Edelstein D, Rossetti L, Zsengellér Z, Szabó C, et al. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest. 2003;112:1049–57.PubMed
19.
go back to reference Wakade C, Khan MM, De Sevilla LM, Zhang QG, Mahesh VB, Brann DW. Tamoxifen neuroprotection in cerebral ischemia involves attenuation of kinase activation and superoxide production and potentiation of mitochondrial superoxide dismutase. Endocrinology. 2008;149:367–79.CrossRefPubMed Wakade C, Khan MM, De Sevilla LM, Zhang QG, Mahesh VB, Brann DW. Tamoxifen neuroprotection in cerebral ischemia involves attenuation of kinase activation and superoxide production and potentiation of mitochondrial superoxide dismutase. Endocrinology. 2008;149:367–79.CrossRefPubMed
Metadata
Title
Manganese Superoxide Dismutase Deficiency Exacerbates Ischemic Brain Damage Under Hyperglycemic Conditions by Altering Autophagy
Authors
Suresh L. Mehta
Yanling Lin
Wenge Chen
Fengshan Yu
Luyi Cao
Qingping He
Pak H. Chan
P. Andy Li
Publication date
01-03-2011
Publisher
Springer-Verlag
Published in
Translational Stroke Research / Issue 1/2011
Print ISSN: 1868-4483
Electronic ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-010-0027-3

Other articles of this Issue 1/2011

Translational Stroke Research 1/2011 Go to the issue