Skip to main content
Top
Published in: Anatomical Science International 4/2017

01-09-2017 | Original Article

In vitro and in vivo study of microporous ceramics using MC3T3 cells, CAM assay and a pig animal model

Authors: Marek Tomco, Eva Petrovova, Maria Giretova, Viera Almasiova, Katarina Holovska, Viera Cigankova, Andrej Jenca Jr., Janka Jencova, Andrej Jenca, Martin Boldizar, Kosa Balazs, Lubomir Medvecky

Published in: Anatomical Science International | Issue 4/2017

Login to get access

Abstract

Bone tissue engineering combines biomaterials with biologically active factors and cells to hold promise for reconstructing craniofacial defects. In this study the biological activity of biphasic hydroxyapatite ceramics (HA; a bone substitute that is a mixture of hydroxyapatite and β-tricalcium phosphate in fixed ratios) was characterized (1) in vitro by assessing the growth of MC3T3 mouse osteoblast lineage cells, (2) in ovo by using the chick chorioallantoic membrane (CAM) assay and (3) in an in vivo pig animal model. Biocompatibility, bioactivity, bone formation and biomaterial degradation were detected microscopically and by radiology and histology. HA ceramics alone demonstrated great biocompatibility on the CAM as well as bioactivity by increased proliferation and alkaline phosphatase secretion of mouse osteoblasts. The in vivo implantation of HA ceramics with bone marrow mesenchymal stem cells (MMSCs) showed de novo intramembranous bone healing of critical-size bone defects in the right lateral side of pig mandibular bodies after 3 and 9 weeks post-implantation. Compared with the HA ceramics without MMSCs, the progress of bone formation was slower with less-developed features. This article highlights the clinical use of microporous biphasic HA ceramics despite the unusually shaped elongated micropores with a high length/width aspect ratio (up to 20) and absence of preferable macropores (>100 µm) in bone regenerative medicine.
Literature
go back to reference Abou Neel EA, Chrzanowski W, Salih VM, Kim HW, Knowles JC (2014) Tissue engineering in dentistry. J Dent 42:915–928CrossRefPubMed Abou Neel EA, Chrzanowski W, Salih VM, Kim HW, Knowles JC (2014) Tissue engineering in dentistry. J Dent 42:915–928CrossRefPubMed
go back to reference Ball M, Grant DM, Lo WJ, Schotchford CA (2008) The effect of different surface morphology and roughness on osteoblast-like cells. J Biomed Mater Res Part A 86:637–647CrossRef Ball M, Grant DM, Lo WJ, Schotchford CA (2008) The effect of different surface morphology and roughness on osteoblast-like cells. J Biomed Mater Res Part A 86:637–647CrossRef
go back to reference Barérre F, van Blitterswijk C, de Groot K (2006) Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomed 1:317–332 Barérre F, van Blitterswijk C, de Groot K (2006) Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomed 1:317–332
go back to reference Barradas AMC, Yuan H, van Blitterswijk CA, Habibovic P (2011) Osteoinductive biomaterials: current knowledge of properties, experimental modls and biological mechanisms. Eur Cell Mater 21:407–429CrossRefPubMed Barradas AMC, Yuan H, van Blitterswijk CA, Habibovic P (2011) Osteoinductive biomaterials: current knowledge of properties, experimental modls and biological mechanisms. Eur Cell Mater 21:407–429CrossRefPubMed
go back to reference Biolusova G, Jun DH, King KB et al (2011) Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vivo and in vitro. Stem Cells 29:206–216CrossRef Biolusova G, Jun DH, King KB et al (2011) Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vivo and in vitro. Stem Cells 29:206–216CrossRef
go back to reference Bradamante S, Barenghi L, Maier JAM (2014) Stem cells toward the future: the space challange. Life (Basel) 4:267–280 Bradamante S, Barenghi L, Maier JAM (2014) Stem cells toward the future: the space challange. Life (Basel) 4:267–280
go back to reference Campana V, Milano G, Pagano E et al (2014) Bone substitutes in orthopedic surgery: from basic science to clinical practice. J Mater Sci Mater Med 25:2445–2461CrossRefPubMedPubMedCentral Campana V, Milano G, Pagano E et al (2014) Bone substitutes in orthopedic surgery: from basic science to clinical practice. J Mater Sci Mater Med 25:2445–2461CrossRefPubMedPubMedCentral
go back to reference Chan O, Coathup MJ, Nesbitt A et al (2012) The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials. Acta Biomater 8:2788–2794CrossRefPubMed Chan O, Coathup MJ, Nesbitt A et al (2012) The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials. Acta Biomater 8:2788–2794CrossRefPubMed
go back to reference Cheng YH, Zhao GJ, Li SL (2000) Bone dinamics of repair of mandibular defect with collagen/hydroxyapatite. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 14:159–161PubMed Cheng YH, Zhao GJ, Li SL (2000) Bone dinamics of repair of mandibular defect with collagen/hydroxyapatite. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 14:159–161PubMed
go back to reference Ciocca L, De Crescenzio F, Fantini M, Scotti R (2009) CAD/CAM and rapid prototyped scaffold construction for bone regenerative medicine and surgical transfer of virtual planning:a pilot study. Comput Med Imaging Graph 33:58–62CrossRefPubMed Ciocca L, De Crescenzio F, Fantini M, Scotti R (2009) CAD/CAM and rapid prototyped scaffold construction for bone regenerative medicine and surgical transfer of virtual planning:a pilot study. Comput Med Imaging Graph 33:58–62CrossRefPubMed
go back to reference Danko J, Simon F (2012) Veterinary dictionary. Ikar, Bratislava Danko J, Simon F (2012) Veterinary dictionary. Ikar, Bratislava
go back to reference Danko J, Simon F, Artimova J (2011) Nomina anatomica veterinaria. University of Veterinary Medicine and Pharmacy, Kosice Danko J, Simon F, Artimova J (2011) Nomina anatomica veterinaria. University of Veterinary Medicine and Pharmacy, Kosice
go back to reference Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF (2001) Effect of surface rougness of hydroxyapatite on human bone marrow cell adhesion, proliferation and detachment strength. Biomaterials 22:87–96CrossRefPubMed Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF (2001) Effect of surface rougness of hydroxyapatite on human bone marrow cell adhesion, proliferation and detachment strength. Biomaterials 22:87–96CrossRefPubMed
go back to reference D’Lima JP, Paul J, Palathingal P, Varma B, Bhat M, Mohanty M (2014) Histological and histometrical evaluation of two synthetic hydroxyapatite based biomaterials in the experimental periodontal defects in dogs. J Clin Diagn Res 8:52–55 D’Lima JP, Paul J, Palathingal P, Varma B, Bhat M, Mohanty M (2014) Histological and histometrical evaluation of two synthetic hydroxyapatite based biomaterials in the experimental periodontal defects in dogs. J Clin Diagn Res 8:52–55
go back to reference Fellah BH, Gauthier O, Weiss P, Chappard D, Layrolle P (2008) Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials 29:1177–1188CrossRefPubMed Fellah BH, Gauthier O, Weiss P, Chappard D, Layrolle P (2008) Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials 29:1177–1188CrossRefPubMed
go back to reference Guo J, Meng Z, Chen G et al (2012) Restoration of critical-size defects in the rabbit mandible using porous nanohydroxyapatite-polyamide scaffolds. Tissue Eng Part A 18:1239–1252CrossRefPubMed Guo J, Meng Z, Chen G et al (2012) Restoration of critical-size defects in the rabbit mandible using porous nanohydroxyapatite-polyamide scaffolds. Tissue Eng Part A 18:1239–1252CrossRefPubMed
go back to reference Harvanova D, Hornak S, Amrichova J et al (2014) Isolation, cultivation and characterisation of pigeon osteoblasts seeded on xenogeneic demineralised cancellous bone scaffold for bone grafting. Vet Res Commun 38:221–228CrossRefPubMed Harvanova D, Hornak S, Amrichova J et al (2014) Isolation, cultivation and characterisation of pigeon osteoblasts seeded on xenogeneic demineralised cancellous bone scaffold for bone grafting. Vet Res Commun 38:221–228CrossRefPubMed
go back to reference Herten M, Rothamel D, Schwarz F, Friesen K, Koegler G, Becker J (2009) Surface-and nonsurface-dependent in vitro effects of bone substitutes on cell viability. Clin Oral Invest 13:149–155CrossRef Herten M, Rothamel D, Schwarz F, Friesen K, Koegler G, Becker J (2009) Surface-and nonsurface-dependent in vitro effects of bone substitutes on cell viability. Clin Oral Invest 13:149–155CrossRef
go back to reference Jensen SS, Bornstein MM, Dard M, Bosshardt D, Buser D (2009) Comparative study of bisphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A long-term histomorphometric study in minipigs. J Biomed Mater Res B Appl Biomater 90:171–181PubMed Jensen SS, Bornstein MM, Dard M, Bosshardt D, Buser D (2009) Comparative study of bisphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A long-term histomorphometric study in minipigs. J Biomed Mater Res B Appl Biomater 90:171–181PubMed
go back to reference Jiang H, Zuo Y, Zou Q et al (2013) Biomimetic spiral-cylindrical scaffold based on hybrid chitosan/cellulose/nanohydroxyapatite membrane for bone regeneration. ASC Appl Mater Interfaces 5:12036–12044CrossRef Jiang H, Zuo Y, Zou Q et al (2013) Biomimetic spiral-cylindrical scaffold based on hybrid chitosan/cellulose/nanohydroxyapatite membrane for bone regeneration. ASC Appl Mater Interfaces 5:12036–12044CrossRef
go back to reference Keller JC, Collins JG, Niederauer GG, McGee TD (1997) In vitro attachment of osteoblast-like cells to osteoceramic materials. Dent Mater 13:62–68CrossRefPubMed Keller JC, Collins JG, Niederauer GG, McGee TD (1997) In vitro attachment of osteoblast-like cells to osteoceramic materials. Dent Mater 13:62–68CrossRefPubMed
go back to reference Kirchhoff M, Lenz S, Henkel KO et al (2011) Lateral augmentation of the mandible in minipigs with a synthetic nanostructured hydroxyapatite block. J Biomed Mater Res B Appl Biomater 96:342–350CrossRefPubMed Kirchhoff M, Lenz S, Henkel KO et al (2011) Lateral augmentation of the mandible in minipigs with a synthetic nanostructured hydroxyapatite block. J Biomed Mater Res B Appl Biomater 96:342–350CrossRefPubMed
go back to reference Kurashina K, Kurita H, Wu Q, Ohtsuka A, Kobayashi H (2002) Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits. Biomaterials 23:407–412CrossRefPubMed Kurashina K, Kurita H, Wu Q, Ohtsuka A, Kobayashi H (2002) Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits. Biomaterials 23:407–412CrossRefPubMed
go back to reference LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81–98CrossRef LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81–98CrossRef
go back to reference Lin FH, Liao CJ, Chen KS, Sun JS, Lin CP (2001) Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water. Biomaterials 22:2981–2992CrossRefPubMed Lin FH, Liao CJ, Chen KS, Sun JS, Lin CP (2001) Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water. Biomaterials 22:2981–2992CrossRefPubMed
go back to reference Liu X, Wang X, Horii A (2012) In vivo studies on angiogenic activity of two designer self-assembling peptide scaffold hydrogels in the chicken embryo chorioallantoic membrane. Nanoscale 4:2720–2727CrossRefPubMed Liu X, Wang X, Horii A (2012) In vivo studies on angiogenic activity of two designer self-assembling peptide scaffold hydrogels in the chicken embryo chorioallantoic membrane. Nanoscale 4:2720–2727CrossRefPubMed
go back to reference Lobo SE, Arinzeh TL (2010) Biphasic calcium phosphate ceramics for bone regeneration and tissue engineering applications. Materials 3:815–826CrossRef Lobo SE, Arinzeh TL (2010) Biphasic calcium phosphate ceramics for bone regeneration and tissue engineering applications. Materials 3:815–826CrossRef
go back to reference Medvecky L, Giretova M, Stulajterova R (2012) Chemical modification of hydroxyapatite ceramic surface by calcium phosphate coatings and in vitro osteoblast response. Powder Metall Prog 12:224–233 Medvecky L, Giretova M, Stulajterova R (2012) Chemical modification of hydroxyapatite ceramic surface by calcium phosphate coatings and in vitro osteoblast response. Powder Metall Prog 12:224–233
go back to reference Mello A, Hong Z, Rossi AM et al (2007) Osteoblast proliferation on hydroxyapatite thin coatings produced by right angle magnetron sputtering. Biomed Mater 2:67–77CrossRefPubMed Mello A, Hong Z, Rossi AM et al (2007) Osteoblast proliferation on hydroxyapatite thin coatings produced by right angle magnetron sputtering. Biomed Mater 2:67–77CrossRefPubMed
go back to reference Musumeci G, Castrogiovanni P, Leonardi R et al (2014) New perspectives for articular cartilage repair treatment through tissue engineering: a contemporary review. World J Orthop 5:80–88CrossRefPubMedPubMedCentral Musumeci G, Castrogiovanni P, Leonardi R et al (2014) New perspectives for articular cartilage repair treatment through tissue engineering: a contemporary review. World J Orthop 5:80–88CrossRefPubMedPubMedCentral
go back to reference Naujoks C, Langenbach F, Berr K et al (2011) Biocompatibility of osteogenic predifferentiated human cord blood stem cells with biomaterials and the influence of the biomaterial on the process of differentiation. J Biomater Appl 25:497–512CrossRefPubMed Naujoks C, Langenbach F, Berr K et al (2011) Biocompatibility of osteogenic predifferentiated human cord blood stem cells with biomaterials and the influence of the biomaterial on the process of differentiation. J Biomater Appl 25:497–512CrossRefPubMed
go back to reference Noshi T, Yoshikawa T, Ikeuchi M et al (2000) Enhancement of the in vivo osteogenic potential of marrow/hydroxyapatite composites by bovine bone morphogenic protein. J Biomed Mater Res 52:621–630CrossRefPubMed Noshi T, Yoshikawa T, Ikeuchi M et al (2000) Enhancement of the in vivo osteogenic potential of marrow/hydroxyapatite composites by bovine bone morphogenic protein. J Biomed Mater Res 52:621–630CrossRefPubMed
go back to reference Ong JL, Hoppe CA, Cardenas HL et al (1998) Osteoblast precursor cell activity on HA surfaces of different treatments. J Biomed Mat Res Part A 39:176–183CrossRef Ong JL, Hoppe CA, Cardenas HL et al (1998) Osteoblast precursor cell activity on HA surfaces of different treatments. J Biomed Mat Res Part A 39:176–183CrossRef
go back to reference Pieri F, Lucarelli E, Corinaldesi G et al (2008) Mesenchymal stem cells and platelet-rich plasma enhance bone formation in sinus grafting: a histomorphometric study in minipigs. J Clin Periodontol 35:539–546CrossRefPubMed Pieri F, Lucarelli E, Corinaldesi G et al (2008) Mesenchymal stem cells and platelet-rich plasma enhance bone formation in sinus grafting: a histomorphometric study in minipigs. J Clin Periodontol 35:539–546CrossRefPubMed
go back to reference Rajzer I, Menaszek E, Kwiatkowski R, Chrzanowski W (2014) Bioactive nanocomposite PLDL/nano-hydroxyapatite electrospun membranes for bone tissue engineering. J Mater Sci Mater Med 25:1239–1247CrossRefPubMedPubMedCentral Rajzer I, Menaszek E, Kwiatkowski R, Chrzanowski W (2014) Bioactive nanocomposite PLDL/nano-hydroxyapatite electrospun membranes for bone tissue engineering. J Mater Sci Mater Med 25:1239–1247CrossRefPubMedPubMedCentral
go back to reference Ribatti D, Nico B, Vacca A, Presta M (2006) The gelatin sponge-chorioallantoic membrane assay. Nat Protoc 1(1):85–91CrossRefPubMed Ribatti D, Nico B, Vacca A, Presta M (2006) The gelatin sponge-chorioallantoic membrane assay. Nat Protoc 1(1):85–91CrossRefPubMed
go back to reference Rumpel E, Wolf E, Kauschke E et al (2006) The biodegradation of hydroxyapatite bone graft substitues in vivo. Folia Morphol (Warsz) 65:43–48 Rumpel E, Wolf E, Kauschke E et al (2006) The biodegradation of hydroxyapatite bone graft substitues in vivo. Folia Morphol (Warsz) 65:43–48
go back to reference Smith LA, Liu X, Hu J, Ma PX (2010) The enhancement of human embryonic stem cell osteogenic differentiation with nano-fibrous scaffolding. Biomaterials 31:5526–5535CrossRefPubMedPubMedCentral Smith LA, Liu X, Hu J, Ma PX (2010) The enhancement of human embryonic stem cell osteogenic differentiation with nano-fibrous scaffolding. Biomaterials 31:5526–5535CrossRefPubMedPubMedCentral
go back to reference Suzuki O, Nakamura M, Miyasaka Y, Kagayama M, Sakurai M (1991) Bone formation on synthetic precursors of hydroxyapatite. Tohoku J Exp Med 164:37–50CrossRefPubMed Suzuki O, Nakamura M, Miyasaka Y, Kagayama M, Sakurai M (1991) Bone formation on synthetic precursors of hydroxyapatite. Tohoku J Exp Med 164:37–50CrossRefPubMed
go back to reference Tovar N, Jimbo R, Witek L et al (2014) The physicochemical characterization and in vivo response of micro/nanoporous bioactive ceramic particulate bone graft materials. Mater Sci Eng C Mater Biol Appl 43:472–480CrossRefPubMed Tovar N, Jimbo R, Witek L et al (2014) The physicochemical characterization and in vivo response of micro/nanoporous bioactive ceramic particulate bone graft materials. Mater Sci Eng C Mater Biol Appl 43:472–480CrossRefPubMed
go back to reference Yoo JJ, Kim HJ, Seo SM, Oh KS (2014) Preparation of a hemiporous hydroxyapatite scaffold and evaluation as a cell-mediated bone substitute. Ceram Int 40:3079–3087CrossRef Yoo JJ, Kim HJ, Seo SM, Oh KS (2014) Preparation of a hemiporous hydroxyapatite scaffold and evaluation as a cell-mediated bone substitute. Ceram Int 40:3079–3087CrossRef
go back to reference Yuann H, Kurashina K, de Bruijn JD, Li Y, de Groot K, Zhang X (1999) A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 20:1799–1806CrossRef Yuann H, Kurashina K, de Bruijn JD, Li Y, de Groot K, Zhang X (1999) A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 20:1799–1806CrossRef
go back to reference Yun JH, Han SH, Choi SH et al (2014) Effects of bone marrow-derived mesenchymal stem cells and platelet-rich plasma on bone regeneration for osseointegration of dental implants: preliminary study in canine three-wall intrabony defects. J Biomed Mater Res B Appl Biomater 102:1021–1030CrossRefPubMed Yun JH, Han SH, Choi SH et al (2014) Effects of bone marrow-derived mesenchymal stem cells and platelet-rich plasma on bone regeneration for osseointegration of dental implants: preliminary study in canine three-wall intrabony defects. J Biomed Mater Res B Appl Biomater 102:1021–1030CrossRefPubMed
go back to reference Zhang Q, Lu H, Kawazoe N, Chen G (2013) Preparation of collagen scaffolds with controlled pore structures and improved mechanical property for cartilage tissue engineering. J Bioact Compat Polym 28:426–438CrossRef Zhang Q, Lu H, Kawazoe N, Chen G (2013) Preparation of collagen scaffolds with controlled pore structures and improved mechanical property for cartilage tissue engineering. J Bioact Compat Polym 28:426–438CrossRef
go back to reference Zwadlo-Klarwasser G, Görlitz K, Hafemann B, Klee D, Klosterfalfen B (2001) The chorioallantoic membrane of the chick embryo as a simple model for the study of the angiogenic and inflammatory response to biomaterials. J Mater Sci Mater Med 12:195–199CrossRefPubMed Zwadlo-Klarwasser G, Görlitz K, Hafemann B, Klee D, Klosterfalfen B (2001) The chorioallantoic membrane of the chick embryo as a simple model for the study of the angiogenic and inflammatory response to biomaterials. J Mater Sci Mater Med 12:195–199CrossRefPubMed
Metadata
Title
In vitro and in vivo study of microporous ceramics using MC3T3 cells, CAM assay and a pig animal model
Authors
Marek Tomco
Eva Petrovova
Maria Giretova
Viera Almasiova
Katarina Holovska
Viera Cigankova
Andrej Jenca Jr.
Janka Jencova
Andrej Jenca
Martin Boldizar
Kosa Balazs
Lubomir Medvecky
Publication date
01-09-2017
Publisher
Springer Japan
Published in
Anatomical Science International / Issue 4/2017
Print ISSN: 1447-6959
Electronic ISSN: 1447-073X
DOI
https://doi.org/10.1007/s12565-016-0362-x

Other articles of this Issue 4/2017

Anatomical Science International 4/2017 Go to the issue