Skip to main content
Top
Published in: The Cerebellum 2/2009

01-06-2009

PPAR-γ Agonist Azelaoyl PAF Increases Frataxin Protein and mRNA Expression. New Implications for the Friedreich’s Ataxia Therapy

Authors: Daniele Marmolino, Fabio Acquaviva, Michele Pinelli, Antonella Monticelli, Imma Castaldo, Alessandro Filla, Sergio Cocozza

Published in: The Cerebellum | Issue 2/2009

Login to get access

Abstract

Friedreich’s ataxia is a neurodegenerative disease due to frataxin deficiency, and thus, drugs increasing the frataxin amount are excellent candidates for therapy. By screening Gene Expression Omnibus profiles, we identified records showing a frataxin response to the peroxisome proliferator-activated receptors gamma (PPAR-γ) agonist rosiglitazone. We decided to investigate the effect of the PPAR-γ agonist Azelaoyl PAF on the frataxin protein and mRNA expression profile. We treated human neuroblastoma cells SKNBE and primary fibroblasts from skin biopsies from Friedreich’s ataxia (FRDA) patients and healthy controls with the PPAR-γ agonist Azelaoyl PAF. We show in this paper for the first time that Azelaoyl PAF significantly increases the intracellular frataxin levels by twofold in the neuroblastoma cell line SKNBE and fibroblasts from FRDA patients and that Azelaoyl PAF increases frataxin protein through a transcriptional mechanism. PPAR-γ agonist Azelaoyl PAF increases both messenger RNA and protein levels of frataxin. We hypothesize that PPAR-γ agonists could play a role in the treatment of FRDA, and our results offer the logical bases to further investigate the usefulness of this group of agents for the treatment of the FRDA.
Literature
1.
go back to reference Campuzano V, Montermini L, Lutz Y, Cova L, Hindelang C, Jiralerspong S, Trottier Y, Kish SJ, Faucheux B, Trouillas P, Authier FJ, Dürr A, Mandel JL, Vescovi A, Pandolfo M, Koenig M (1997) Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet 6:1771–1780PubMedCrossRef Campuzano V, Montermini L, Lutz Y, Cova L, Hindelang C, Jiralerspong S, Trottier Y, Kish SJ, Faucheux B, Trouillas P, Authier FJ, Dürr A, Mandel JL, Vescovi A, Pandolfo M, Koenig M (1997) Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet 6:1771–1780PubMedCrossRef
2.
go back to reference Pianese L, Turano M, Lo Casale MS, De Biase I, Giacchetti M, Monticelli A, Criscuolo C, Filla A, Cocozza S (2004) Real time PCR quantification of frataxin mRNA in the peripheral blood leucocytes of Friedreich ataxia patients and carriers. J Neurol Neurosurg Psychiatry 75:1061–1063PubMedCrossRef Pianese L, Turano M, Lo Casale MS, De Biase I, Giacchetti M, Monticelli A, Criscuolo C, Filla A, Cocozza S (2004) Real time PCR quantification of frataxin mRNA in the peripheral blood leucocytes of Friedreich ataxia patients and carriers. J Neurol Neurosurg Psychiatry 75:1061–1063PubMedCrossRef
4.
go back to reference Herman D, Jenssen K, Burnett R, Soragni E, Perlman SL, Gottesfeld JM (2006) Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat Chem Biol 2:551–558PubMedCrossRef Herman D, Jenssen K, Burnett R, Soragni E, Perlman SL, Gottesfeld JM (2006) Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat Chem Biol 2:551–558PubMedCrossRef
5.
go back to reference Greene E, Mahishi L, Entezam A, Kumari D, Usdin K (2007) Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia. Nucleic Acids Res 35:3383–3390PubMedCrossRef Greene E, Mahishi L, Entezam A, Kumari D, Usdin K (2007) Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia. Nucleic Acids Res 35:3383–3390PubMedCrossRef
6.
go back to reference Castaldo I, Pinelli M, Monticelli A, Acquaviva F, Giacchetti M, Filla A, Sacchetti S, Keller S, Avvedimento VE, Chiariotti L, Cocozza S (2008) DNA methylation in intron 1 of the frataxin gene is related to GAA repeat length and age of onset in Friedreich’s ataxia patients. J Med Gen 45(12):808–812.CrossRef Castaldo I, Pinelli M, Monticelli A, Acquaviva F, Giacchetti M, Filla A, Sacchetti S, Keller S, Avvedimento VE, Chiariotti L, Cocozza S (2008) DNA methylation in intron 1 of the frataxin gene is related to GAA repeat length and age of onset in Friedreich’s ataxia patients. J Med Gen 45(12):808–812.CrossRef
7.
go back to reference Babcock M, de Silva D, Oaks R, Davis-Kaplan S, Jiralerspong S, Montermini L, Pandolfo M, Kaplan J (1997) Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276:1709–1712PubMedCrossRef Babcock M, de Silva D, Oaks R, Davis-Kaplan S, Jiralerspong S, Montermini L, Pandolfo M, Kaplan J (1997) Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276:1709–1712PubMedCrossRef
8.
go back to reference Gakh O, Park S, Liu G, Macomber L, Imlay JA, Ferreira GC, Isaya G (2006) Mitochondrial iron detoxification is a primary function of frataxin that limits oxidative damage and preserves cell longevity. Hum Mol Genet 15:467–479PubMedCrossRef Gakh O, Park S, Liu G, Macomber L, Imlay JA, Ferreira GC, Isaya G (2006) Mitochondrial iron detoxification is a primary function of frataxin that limits oxidative damage and preserves cell longevity. Hum Mol Genet 15:467–479PubMedCrossRef
9.
10.
go back to reference Blanquart C, Barbier O, Fruchart JC, Staels B, Glineur C (2003) Peroxisome proliferator-activated receptors: regulation of transcriptional activities and roles in inflammation. J Steroid Biochem Mol Biol 85:267–273PubMedCrossRef Blanquart C, Barbier O, Fruchart JC, Staels B, Glineur C (2003) Peroxisome proliferator-activated receptors: regulation of transcriptional activities and roles in inflammation. J Steroid Biochem Mol Biol 85:267–273PubMedCrossRef
11.
go back to reference Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124PubMedCrossRef Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124PubMedCrossRef
12.
go back to reference Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18:357–368PubMedCrossRef Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18:357–368PubMedCrossRef
13.
go back to reference Richter B, Bandeira-Echtler E, Bergerhoff K, Clar C, Ebrahim SH (2007) Rosiglitazone for type 2 diabetes mellitus. Cochrane Database Syst Rev 18(3):CD006063 Richter B, Bandeira-Echtler E, Bergerhoff K, Clar C, Ebrahim SH (2007) Rosiglitazone for type 2 diabetes mellitus. Cochrane Database Syst Rev 18(3):CD006063
14.
go back to reference Heneka MT, Landreth GE (2007) PPARs in the brain. Biochim Biophys Acta 1771:1031–1045PubMed Heneka MT, Landreth GE (2007) PPARs in the brain. Biochim Biophys Acta 1771:1031–1045PubMed
15.
go back to reference Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK, Rosenfeld MG (1997) The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387:677–684PubMedCrossRef Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK, Rosenfeld MG (1997) The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387:677–684PubMedCrossRef
16.
go back to reference Acquaviva F, Castaldo I, Filla A, Giacchetti M, Marmolino D, Monticelli A, Pinelli M, Saccà F, Cocozza S (2008) Recombinant human erythropoietin increases frataxin protein expression without increasing mRNA Expression. Cerebellum 7(3):360–365PubMedCrossRef Acquaviva F, Castaldo I, Filla A, Giacchetti M, Marmolino D, Monticelli A, Pinelli M, Saccà F, Cocozza S (2008) Recombinant human erythropoietin increases frataxin protein expression without increasing mRNA Expression. Cerebellum 7(3):360–365PubMedCrossRef
17.
go back to reference Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408PubMedCrossRef Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408PubMedCrossRef
18.
go back to reference Keen HL, Ryan MJ, Beyer A, Mathur S et al (2004) Gene expression profiling of potential PPARgamma target genes in mouse aorta. Physiol Genomics 18(1):33–42PubMedCrossRef Keen HL, Ryan MJ, Beyer A, Mathur S et al (2004) Gene expression profiling of potential PPARgamma target genes in mouse aorta. Physiol Genomics 18(1):33–42PubMedCrossRef
19.
go back to reference Girnun GD, Naseri E, Vafai SB, Qu L, Szwaya JD, Bronson R, Alberta JA, Spiegelman BM (2007) Synergy between PPARgamma ligands and platinum-based drugs in cancer. Cancer Cell 11:395–406PubMedCrossRef Girnun GD, Naseri E, Vafai SB, Qu L, Szwaya JD, Bronson R, Alberta JA, Spiegelman BM (2007) Synergy between PPARgamma ligands and platinum-based drugs in cancer. Cancer Cell 11:395–406PubMedCrossRef
20.
21.
go back to reference Pandolfo M (2008) Drug Insight: antioxidant therapy in inherited ataxias. Nat Clin Pract Neurol 4:86–96PubMedCrossRef Pandolfo M (2008) Drug Insight: antioxidant therapy in inherited ataxias. Nat Clin Pract Neurol 4:86–96PubMedCrossRef
22.
go back to reference Lim F, Palomo GM, Mauritz C, Giménez-Cassina A, Illana B, Wandosell F, Díaz-Nido J (2007) Functional recovery in a Friedreich’s ataxia mouse model by frataxin gene transfer using an HSV-1 amplicon vector. Mol Ther 15(6):1072–1078PubMed Lim F, Palomo GM, Mauritz C, Giménez-Cassina A, Illana B, Wandosell F, Díaz-Nido J (2007) Functional recovery in a Friedreich’s ataxia mouse model by frataxin gene transfer using an HSV-1 amplicon vector. Mol Ther 15(6):1072–1078PubMed
23.
go back to reference Runko AP, Griswold AJ, Min KT (2008) Overexpression of frataxin in the mitochondria increases resistance to oxidative stress and extends lifespan in Drosophila. FEBS Lett 582:715–719PubMedCrossRef Runko AP, Griswold AJ, Min KT (2008) Overexpression of frataxin in the mitochondria increases resistance to oxidative stress and extends lifespan in Drosophila. FEBS Lett 582:715–719PubMedCrossRef
24.
go back to reference Turano M, Tammaro A, De Biase I, Lo Casale MS, Ruggiero G, Monticelli A, Cocozza S, Pianese L (2003) 3-Nitropropionic acid increases frataxin expression in human lymphoblasts and in transgenic rat PC12 cells. Neurosci Lett 350:184–186PubMedCrossRef Turano M, Tammaro A, De Biase I, Lo Casale MS, Ruggiero G, Monticelli A, Cocozza S, Pianese L (2003) 3-Nitropropionic acid increases frataxin expression in human lymphoblasts and in transgenic rat PC12 cells. Neurosci Lett 350:184–186PubMedCrossRef
25.
go back to reference Sarsero JP, Li L, Wardan H, Sitte K, Williamson R, Ioannou PA (2003) Upregulation of expression from the FRDA genomic locus for the therapy of Friedreich ataxia. J Gene Med 5:72–81PubMedCrossRef Sarsero JP, Li L, Wardan H, Sitte K, Williamson R, Ioannou PA (2003) Upregulation of expression from the FRDA genomic locus for the therapy of Friedreich ataxia. J Gene Med 5:72–81PubMedCrossRef
26.
go back to reference Rai M, Soragni E, Jenssen K, Burnett R, Herman D, Coppola G, Geschwind DH, Gottesfeld JM, Pandolfo M (2008) HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS One 3:e1958PubMedCrossRef Rai M, Soragni E, Jenssen K, Burnett R, Herman D, Coppola G, Geschwind DH, Gottesfeld JM, Pandolfo M (2008) HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS One 3:e1958PubMedCrossRef
27.
go back to reference Sturm B, Stupphann D, Kaun C, Boesch S, Schranzhofer M, Wojta J, Goldenberg H, Scheiber-Mojdehkar B (2005) Recombinant human erythropoietin: effects on frataxin expression in vitro. Eur J Clin Invest 35:711–717PubMedCrossRef Sturm B, Stupphann D, Kaun C, Boesch S, Schranzhofer M, Wojta J, Goldenberg H, Scheiber-Mojdehkar B (2005) Recombinant human erythropoietin: effects on frataxin expression in vitro. Eur J Clin Invest 35:711–717PubMedCrossRef
28.
go back to reference Ahmed W, Ziouzenkova O, Brown J, Devchand P, Francis S, Kadakia M, Kanda T, Orasanu G, Sharlach M, Zandbergen F, Plutzky J (2007) PPARs and their metabolic modulation: new mechanisms for transcriptional regulation? J Intern Med 262:184–198PubMedCrossRef Ahmed W, Ziouzenkova O, Brown J, Devchand P, Francis S, Kadakia M, Kanda T, Orasanu G, Sharlach M, Zandbergen F, Plutzky J (2007) PPARs and their metabolic modulation: new mechanisms for transcriptional regulation? J Intern Med 262:184–198PubMedCrossRef
29.
go back to reference Lee KJ, Jang YH, Lee H, Yoo HS, Lee SR (2008) PPARgamma agonist pioglitazone reduces [corrected] neuronal cell damage after transient global cerebral ischemia through matrix metalloproteinase inhibition. Eur J Neurosci 27:334–342PubMedCrossRef Lee KJ, Jang YH, Lee H, Yoo HS, Lee SR (2008) PPARgamma agonist pioglitazone reduces [corrected] neuronal cell damage after transient global cerebral ischemia through matrix metalloproteinase inhibition. Eur J Neurosci 27:334–342PubMedCrossRef
Metadata
Title
PPAR-γ Agonist Azelaoyl PAF Increases Frataxin Protein and mRNA Expression. New Implications for the Friedreich’s Ataxia Therapy
Authors
Daniele Marmolino
Fabio Acquaviva
Michele Pinelli
Antonella Monticelli
Imma Castaldo
Alessandro Filla
Sergio Cocozza
Publication date
01-06-2009
Publisher
Springer-Verlag
Published in
The Cerebellum / Issue 2/2009
Print ISSN: 1473-4222
Electronic ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-008-0087-z

Other articles of this Issue 2/2009

The Cerebellum 2/2009 Go to the issue