Skip to main content
Top
Published in: Cancer Microenvironment 1/2010

01-12-2010 | Review Paper

The Tumor Microenvironment in Colorectal Carcinogenesis

Authors: Vijay G. Peddareddigari, Dingzhi Wang, Raymond N. DuBois

Published in: Cancer Microenvironment | Issue 1/2010

Login to get access

Abstract

Colorectal cancer is the second leading cause of cancer-related mortality in the United States. Therapeutic developments in the past decade have extended life expectancy in patients with metastatic disease. However, metastatic colorectal cancers remain incurable. Numerous agents that were demonstrated to have significant antitumor activity in experimental models translated into disappointing results in extending patient survival. This has resulted in more attention being focused on the contribution of tumor microenvironment to the progression of a number of solid tumors including colorectal cancer. A more complete understanding of interactions between tumor epithelial cells and their stromal elements will enhance therapeutic options and improve clinical outcome. Here we will review the role of various stromal components in colorectal carcinogenesis and discuss the potential of targeting these components for the development of future therapeutic agents.
Literature
1.
go back to reference Whitlock EP, Lin JS, Liles E et al (2008) Screening for colorectal cancer: a targeted, updated systematic review for the U.S. Preventive Services Task Force. Ann Intern Med 149(9):638–658PubMed Whitlock EP, Lin JS, Liles E et al (2008) Screening for colorectal cancer: a targeted, updated systematic review for the U.S. Preventive Services Task Force. Ann Intern Med 149(9):638–658PubMed
2.
go back to reference Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70PubMed Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70PubMed
3.
go back to reference Mantovani A, Allavena P, Sica A et al (2008) Cancer-related inflammation. Nature 454(7203):436–444PubMed Mantovani A, Allavena P, Sica A et al (2008) Cancer-related inflammation. Nature 454(7203):436–444PubMed
4.
go back to reference Colotta F, Allavena P, Sica A et al (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30(7):1073–1081PubMed Colotta F, Allavena P, Sica A et al (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30(7):1073–1081PubMed
5.
go back to reference DuBois RN, Giardiello FM, Smalley WE (1996) Nonsteroidal anti-inflammatory drugs, eicosanoids, and colorectal cancer prevention. Gastroenterol Clin North Am 25(4):773–791PubMed DuBois RN, Giardiello FM, Smalley WE (1996) Nonsteroidal anti-inflammatory drugs, eicosanoids, and colorectal cancer prevention. Gastroenterol Clin North Am 25(4):773–791PubMed
6.
go back to reference Wang D, DuBois RN (2008) Pro-inflammatory prostaglandins and progression of colorectal cancer. Cancer Lett 267(2):197–203PubMed Wang D, DuBois RN (2008) Pro-inflammatory prostaglandins and progression of colorectal cancer. Cancer Lett 267(2):197–203PubMed
7.
go back to reference Smalley WE, DuBois RN (1998) Colorectal cancer and nonsteroidal anti-inflammatory drugs. Adv Pharmacol 39:1–20 Smalley WE, DuBois RN (1998) Colorectal cancer and nonsteroidal anti-inflammatory drugs. Adv Pharmacol 39:1–20
8.
go back to reference Gupta RA, Dubois RN (2001) Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 1(1):11–21PubMed Gupta RA, Dubois RN (2001) Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 1(1):11–21PubMed
9.
go back to reference Eberhart CE, Coffey RJ, Radhika A et al (1994) Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107(4):1183–1188PubMed Eberhart CE, Coffey RJ, Radhika A et al (1994) Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107(4):1183–1188PubMed
10.
go back to reference Wang D, Dubois RN (2006) Prostaglandins and cancer. Gut 55(1):115–122PubMed Wang D, Dubois RN (2006) Prostaglandins and cancer. Gut 55(1):115–122PubMed
11.
go back to reference Greenhough A, Smartt HJ, Moore AE et al (2009) The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30(3):377–386PubMed Greenhough A, Smartt HJ, Moore AE et al (2009) The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30(3):377–386PubMed
12.
go back to reference DuBois RN, Radhika A, Reddy BS et al (1996) Increased cyclooxygenase-2 levels in carcinogen-induced rat colonic tumors. Gastroenterology 110(4):1259–1262PubMed DuBois RN, Radhika A, Reddy BS et al (1996) Increased cyclooxygenase-2 levels in carcinogen-induced rat colonic tumors. Gastroenterology 110(4):1259–1262PubMed
13.
go back to reference Backlund MG, Mann JR, Dubois RN (2005) Mechanisms for the prevention of gastrointestinal cancer: the role of prostaglandin E2. Oncology 69(Suppl 1):28–32PubMed Backlund MG, Mann JR, Dubois RN (2005) Mechanisms for the prevention of gastrointestinal cancer: the role of prostaglandin E2. Oncology 69(Suppl 1):28–32PubMed
14.
go back to reference Rigas B, Goldman IS, Levine L (1993) Altered eicosanoid levels in human colon cancer. J Lab Clin Med 122(5):518–523PubMed Rigas B, Goldman IS, Levine L (1993) Altered eicosanoid levels in human colon cancer. J Lab Clin Med 122(5):518–523PubMed
15.
go back to reference Backlund MG, Mann JR, Holla VR et al (2005) 15-Hydroxyprostaglandin dehydrogenase is down-regulated in colorectal cancer. J Biol Chem 280(5):3217–3223PubMed Backlund MG, Mann JR, Holla VR et al (2005) 15-Hydroxyprostaglandin dehydrogenase is down-regulated in colorectal cancer. J Biol Chem 280(5):3217–3223PubMed
16.
go back to reference Backlund MG, Mann JR, Wang D et al (2006) Ras up-regulation of cyclooxygenase-2. Methods Enzymol 407:401–410PubMed Backlund MG, Mann JR, Wang D et al (2006) Ras up-regulation of cyclooxygenase-2. Methods Enzymol 407:401–410PubMed
17.
go back to reference Williams CS, Mann M, DuBois RN (1999) The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 18(55):7908–7916PubMed Williams CS, Mann M, DuBois RN (1999) The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 18(55):7908–7916PubMed
18.
go back to reference Tsujii M, Kawano S, Tsuji S et al (1998) Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93(5):705–716PubMed Tsujii M, Kawano S, Tsuji S et al (1998) Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93(5):705–716PubMed
19.
go back to reference Gout S, Huot J (2008) Role of cancer microenvironment in metastasis: focus on colon cancer. Cancer Microenviron 1(1):69–83PubMed Gout S, Huot J (2008) Role of cancer microenvironment in metastasis: focus on colon cancer. Cancer Microenviron 1(1):69–83PubMed
20.
go back to reference Murdoch C, Muthana M, Coffelt SB et al (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8(8):618–631PubMed Murdoch C, Muthana M, Coffelt SB et al (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8(8):618–631PubMed
21.
go back to reference Green CE, Liu T, Montel V et al (2009) Chemoattractant signaling between tumor cells and macrophages regulates cancer cell migration, metastasis and neovascularization. PLoS One 4(8):e6713PubMed Green CE, Liu T, Montel V et al (2009) Chemoattractant signaling between tumor cells and macrophages regulates cancer cell migration, metastasis and neovascularization. PLoS One 4(8):e6713PubMed
22.
go back to reference Tokunaga T, Oshika Y, Abe Y et al (1998) Vascular endothelial growth factor (VEGF) mRNA isoform expression pattern is correlated with liver metastasis and poor prognosis in colon cancer. Br J Cancer 77(6):998–1002PubMed Tokunaga T, Oshika Y, Abe Y et al (1998) Vascular endothelial growth factor (VEGF) mRNA isoform expression pattern is correlated with liver metastasis and poor prognosis in colon cancer. Br J Cancer 77(6):998–1002PubMed
23.
go back to reference Jedinak A, Dudhgaonkar S, Sliva D (2009) Activated macrophages induce metastatic behavior of colon cancer cells. Immunobiology. PMID: 19457576 Jedinak A, Dudhgaonkar S, Sliva D (2009) Activated macrophages induce metastatic behavior of colon cancer cells. Immunobiology. PMID: 19457576
24.
go back to reference Zins K, Abraham D, Sioud M et al (2007) Colon cancer cell-derived tumor necrosis factor-alpha mediates the tumor growth-promoting response in macrophages by up-regulating the colony-stimulating factor-1 pathway. Cancer Res 67(3):1038–1045PubMed Zins K, Abraham D, Sioud M et al (2007) Colon cancer cell-derived tumor necrosis factor-alpha mediates the tumor growth-promoting response in macrophages by up-regulating the colony-stimulating factor-1 pathway. Cancer Res 67(3):1038–1045PubMed
25.
go back to reference Wang D, Wang H, Brown J et al (2006) CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J Exp Med 203(4):941–951PubMed Wang D, Wang H, Brown J et al (2006) CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J Exp Med 203(4):941–951PubMed
26.
go back to reference Okada F, Kawaguchi T, Habelhah H et al (2000) Conversion of human colonic adenoma cells to adenocarcinoma cells through inflammation in nude mice. Lab Invest 80(11):1617–1628PubMed Okada F, Kawaguchi T, Habelhah H et al (2000) Conversion of human colonic adenoma cells to adenocarcinoma cells through inflammation in nude mice. Lab Invest 80(11):1617–1628PubMed
27.
go back to reference de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6(1):24–37PubMed de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6(1):24–37PubMed
28.
go back to reference Ishiguro K, Yoshida T, Yagishita H et al (2006) Epithelial and stromal genetic instability contributes to genesis of colorectal adenomas. Gut 55(5):695–702PubMed Ishiguro K, Yoshida T, Yagishita H et al (2006) Epithelial and stromal genetic instability contributes to genesis of colorectal adenomas. Gut 55(5):695–702PubMed
29.
go back to reference Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66(2):605–612PubMed Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66(2):605–612PubMed
30.
go back to reference Sica A, Allavena P, Mantovani A (2008) Cancer related inflammation: the macrophage connection. Cancer Lett 267(2):204–215PubMed Sica A, Allavena P, Mantovani A (2008) Cancer related inflammation: the macrophage connection. Cancer Lett 267(2):204–215PubMed
31.
go back to reference Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117(5):1155–1166PubMed Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117(5):1155–1166PubMed
32.
go back to reference Fricke I, Gabrilovich DI (2006) Dendritic cells and tumor microenvironment: a dangerous liaison. Immunol Invest 35(3–4):459–483PubMed Fricke I, Gabrilovich DI (2006) Dendritic cells and tumor microenvironment: a dangerous liaison. Immunol Invest 35(3–4):459–483PubMed
33.
go back to reference Sica A, Schioppa T, Mantovani A et al (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42(6):717–727PubMed Sica A, Schioppa T, Mantovani A et al (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42(6):717–727PubMed
34.
go back to reference Mantovani A, Sica A, Locati M (2007) New vistas on macrophage differentiation and activation. Eur J Immunol 37(1):14–16PubMed Mantovani A, Sica A, Locati M (2007) New vistas on macrophage differentiation and activation. Eur J Immunol 37(1):14–16PubMed
35.
go back to reference Mantovani A, Sica A, Sozzani S et al (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686PubMed Mantovani A, Sica A, Sozzani S et al (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686PubMed
36.
go back to reference Van Ginderachter JA, Movahedi K, Van den Bossche J et al (2008) Macrophages, PPARs, and Cancer. PPAR Res 2008:169414PubMed Van Ginderachter JA, Movahedi K, Van den Bossche J et al (2008) Macrophages, PPARs, and Cancer. PPAR Res 2008:169414PubMed
37.
go back to reference Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35PubMed Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35PubMed
38.
go back to reference Xu W, Schlagwein N, Roos A et al (2007) Human peritoneal macrophages show functional characteristics of M-CSF-driven anti-inflammatory type 2 macrophages. Eur J Immunol 37(6):1594–1599PubMed Xu W, Schlagwein N, Roos A et al (2007) Human peritoneal macrophages show functional characteristics of M-CSF-driven anti-inflammatory type 2 macrophages. Eur J Immunol 37(6):1594–1599PubMed
39.
go back to reference Hamilton JA (2008) Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 8(7):533–544PubMed Hamilton JA (2008) Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 8(7):533–544PubMed
40.
go back to reference Martinez FO, Gordon S, Locati M et al (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177(10):7303–7311PubMed Martinez FO, Gordon S, Locati M et al (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177(10):7303–7311PubMed
41.
go back to reference Biswas SK, Gangi L, Paul S et al (2006) A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107(5):2112–2122PubMed Biswas SK, Gangi L, Paul S et al (2006) A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107(5):2112–2122PubMed
42.
go back to reference Kristiansen M, Graversen JH, Jacobsen C et al (2001) Identification of the haemoglobin scavenger receptor. Nature 409(6817):198–201PubMed Kristiansen M, Graversen JH, Jacobsen C et al (2001) Identification of the haemoglobin scavenger receptor. Nature 409(6817):198–201PubMed
43.
go back to reference Stein M, Keshav S, Harris N et al (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176(1):287–292PubMed Stein M, Keshav S, Harris N et al (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176(1):287–292PubMed
44.
go back to reference Hagemann T, Wilson J, Burke F et al (2006) Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol 176(8):5023–5032PubMed Hagemann T, Wilson J, Burke F et al (2006) Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol 176(8):5023–5032PubMed
45.
go back to reference Xu W, Roos A, Schlagwein N et al (2006) IL-10-producing macrophages preferentially clear early apoptotic cells. Blood 107(12):4930–4937PubMed Xu W, Roos A, Schlagwein N et al (2006) IL-10-producing macrophages preferentially clear early apoptotic cells. Blood 107(12):4930–4937PubMed
46.
go back to reference Savage ND, de Boer T, Walburg KV et al (2008) Human anti-inflammatory macrophages induce Foxp3+ GITR+ CD25+ regulatory T cells, which suppress via membrane-bound TGFbeta-1. J Immunol 181(3):2220–2226PubMed Savage ND, de Boer T, Walburg KV et al (2008) Human anti-inflammatory macrophages induce Foxp3+ GITR+ CD25+ regulatory T cells, which suppress via membrane-bound TGFbeta-1. J Immunol 181(3):2220–2226PubMed
47.
go back to reference Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867PubMed Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867PubMed
48.
go back to reference Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826PubMed Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826PubMed
49.
go back to reference Bacman D, Merkel S, Croner R et al (2007) TGF-beta receptor 2 downregulation in tumour-associated stroma worsens prognosis and high-grade tumours show more tumour-associated macrophages and lower TGF-beta1 expression in colon carcinoma: a retrospective study. BMC Cancer 7:156PubMed Bacman D, Merkel S, Croner R et al (2007) TGF-beta receptor 2 downregulation in tumour-associated stroma worsens prognosis and high-grade tumours show more tumour-associated macrophages and lower TGF-beta1 expression in colon carcinoma: a retrospective study. BMC Cancer 7:156PubMed
50.
go back to reference Leek RD, Lewis CE, Whitehouse R (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56(20):4625–4629PubMed Leek RD, Lewis CE, Whitehouse R (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56(20):4625–4629PubMed
51.
go back to reference Takanami I, Takeuchi K, Kodaira S (1999) Tumor-associated macrophage infiltration in pulmonary adenocarcinoma: association with angiogenesis and poor prognosis. Oncology 57(2):138–142PubMed Takanami I, Takeuchi K, Kodaira S (1999) Tumor-associated macrophage infiltration in pulmonary adenocarcinoma: association with angiogenesis and poor prognosis. Oncology 57(2):138–142PubMed
52.
go back to reference Shieh YS, Hung YJ, Hsieh CB et al (2009) Tumor-associated macrophage correlated with angiogenesis and progression of mucoepidermoid carcinoma of salivary glands. Ann Surg Oncol 16(3):751–760PubMed Shieh YS, Hung YJ, Hsieh CB et al (2009) Tumor-associated macrophage correlated with angiogenesis and progression of mucoepidermoid carcinoma of salivary glands. Ann Surg Oncol 16(3):751–760PubMed
53.
go back to reference Barbera-Guillem E, Nyhus JK, Wolford CC et al (2002) Vascular endothelial growth factor secretion by tumor-infiltrating macrophages essentially supports tumor angiogenesis, and IgG immune complexes potentiate the process. Cancer Res 62(23):7042–7049PubMed Barbera-Guillem E, Nyhus JK, Wolford CC et al (2002) Vascular endothelial growth factor secretion by tumor-infiltrating macrophages essentially supports tumor angiogenesis, and IgG immune complexes potentiate the process. Cancer Res 62(23):7042–7049PubMed
54.
go back to reference Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2):263–266PubMed Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2):263–266PubMed
55.
go back to reference Lin EY, Li JF, Gnatovskiy L et al (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66(23):11238–11246PubMed Lin EY, Li JF, Gnatovskiy L et al (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66(23):11238–11246PubMed
56.
go back to reference Lin EY, Nguyen AV, Russell RG et al (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193(6):727–740PubMed Lin EY, Nguyen AV, Russell RG et al (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193(6):727–740PubMed
57.
go back to reference Zeisberger SM, Odermatt B, Marty C et al (2006) Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 95(3):272–281PubMed Zeisberger SM, Odermatt B, Marty C et al (2006) Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 95(3):272–281PubMed
58.
go back to reference Miselis NR, Wu ZJ, Van Rooijen N et al (2008) Targeting tumor-associated macrophages in an orthotopic murine model of diffuse malignant mesothelioma. Mol Cancer Ther 7(4):788–799PubMed Miselis NR, Wu ZJ, Van Rooijen N et al (2008) Targeting tumor-associated macrophages in an orthotopic murine model of diffuse malignant mesothelioma. Mol Cancer Ther 7(4):788–799PubMed
59.
go back to reference Herbeuval JP, Lelievre E, Lambert C et al (2004) Recruitment of STAT3 for production of IL-10 by colon carcinoma cells induced by macrophage-derived IL-6. J Immunol 172(7):4630–4636PubMed Herbeuval JP, Lelievre E, Lambert C et al (2004) Recruitment of STAT3 for production of IL-10 by colon carcinoma cells induced by macrophage-derived IL-6. J Immunol 172(7):4630–4636PubMed
60.
go back to reference Galizia G, Orditura M, Romano C et al (2002) Prognostic significance of circulating IL-10 and IL-6 serum levels in colon cancer patients undergoing surgery. Clin Immunol 102(2):169–178PubMed Galizia G, Orditura M, Romano C et al (2002) Prognostic significance of circulating IL-10 and IL-6 serum levels in colon cancer patients undergoing surgery. Clin Immunol 102(2):169–178PubMed
61.
go back to reference Popovic ZV, Sandhoff R, Sijmonsma TP et al (2007) Sulfated glycosphingolipid as mediator of phagocytosis: SM4s enhances apoptotic cell clearance and modulates macrophage activity. J Immunol 179(10):6770–6782PubMed Popovic ZV, Sandhoff R, Sijmonsma TP et al (2007) Sulfated glycosphingolipid as mediator of phagocytosis: SM4s enhances apoptotic cell clearance and modulates macrophage activity. J Immunol 179(10):6770–6782PubMed
62.
go back to reference Adegboyega PA, Ololade O, Saada J et al (2004) Subepithelial myofibroblasts express cyclooxygenase-2 in colorectal tubular adenomas. Clin Cancer Res 10(17):5870–5879PubMed Adegboyega PA, Ololade O, Saada J et al (2004) Subepithelial myofibroblasts express cyclooxygenase-2 in colorectal tubular adenomas. Clin Cancer Res 10(17):5870–5879PubMed
63.
go back to reference Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78PubMed Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78PubMed
64.
go back to reference Sickert D, Aust DE, Langer S et al (2005) Characterization of macrophage subpopulations in colon cancer using tissue microarrays. Histopathology 46(5):515–521PubMed Sickert D, Aust DE, Langer S et al (2005) Characterization of macrophage subpopulations in colon cancer using tissue microarrays. Histopathology 46(5):515–521PubMed
65.
go back to reference Burke B, Giannoudis A, Corke KP et al (2003) Hypoxia-induced gene expression in human macrophages: implications for ischemic tissues and hypoxia-regulated gene therapy. Am J Pathol 163(4):1233–1243PubMed Burke B, Giannoudis A, Corke KP et al (2003) Hypoxia-induced gene expression in human macrophages: implications for ischemic tissues and hypoxia-regulated gene therapy. Am J Pathol 163(4):1233–1243PubMed
66.
go back to reference Mizukami Y, Kohgo Y, Chung DC (2007) Hypoxia inducible factor-1 independent pathways in tumor angiogenesis. Clin Cancer Res 13(19):5670–5674PubMed Mizukami Y, Kohgo Y, Chung DC (2007) Hypoxia inducible factor-1 independent pathways in tumor angiogenesis. Clin Cancer Res 13(19):5670–5674PubMed
67.
go back to reference Etoh T, Shibuta K, Barnard GF et al (2000) Angiogenin expression in human colorectal cancer: the role of focal macrophage infiltration. Clin Cancer Res 6(9):3545–3551PubMed Etoh T, Shibuta K, Barnard GF et al (2000) Angiogenin expression in human colorectal cancer: the role of focal macrophage infiltration. Clin Cancer Res 6(9):3545–3551PubMed
68.
go back to reference Baier PK, Eggstein S, Wolff-Vorbeck G et al (2005) Chemokines in human colorectal carcinoma. Anticancer Res 25(5):3581–3584PubMed Baier PK, Eggstein S, Wolff-Vorbeck G et al (2005) Chemokines in human colorectal carcinoma. Anticancer Res 25(5):3581–3584PubMed
69.
go back to reference Kim SJ, Kim JS, Papadopoulos J et al (2009) Circulating monocytes expressing CD31: implications for acute and chronic angiogenesis. Am J Pathol 174(5):1972–1980PubMed Kim SJ, Kim JS, Papadopoulos J et al (2009) Circulating monocytes expressing CD31: implications for acute and chronic angiogenesis. Am J Pathol 174(5):1972–1980PubMed
70.
go back to reference Aharinejad S, Abraham D, Paulus P et al (2002) Colony-stimulating factor-1 antisense treatment suppresses growth of human tumor xenografts in mice. Cancer Res 62(18):5317–5324PubMed Aharinejad S, Abraham D, Paulus P et al (2002) Colony-stimulating factor-1 antisense treatment suppresses growth of human tumor xenografts in mice. Cancer Res 62(18):5317–5324PubMed
71.
go back to reference Bataille F, Rohrmeier C, Bates R et al (2008) Evidence for a role of epithelial mesenchymal transition during pathogenesis of fistulae in Crohn’s disease. Inflamm Bowel Dis 14(11):1514–1527PubMed Bataille F, Rohrmeier C, Bates R et al (2008) Evidence for a role of epithelial mesenchymal transition during pathogenesis of fistulae in Crohn’s disease. Inflamm Bowel Dis 14(11):1514–1527PubMed
72.
go back to reference Bates RC, Pursell BM, Mercurio AM (2007) Epithelial-mesenchymal transition and colorectal cancer: gaining insights into tumor progression using LIM 1863 cells. Cells Tissues Organs 185(1–3):29–39PubMed Bates RC, Pursell BM, Mercurio AM (2007) Epithelial-mesenchymal transition and colorectal cancer: gaining insights into tumor progression using LIM 1863 cells. Cells Tissues Organs 185(1–3):29–39PubMed
73.
go back to reference Bates RC, Mercurio AM (2003) Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol Biol Cell 14(5):1790–1800PubMed Bates RC, Mercurio AM (2003) Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol Biol Cell 14(5):1790–1800PubMed
74.
go back to reference Bates RC, DeLeo MJ III, Mercurio AM (2004) The epithelial-mesenchymal transition of colon carcinoma involves expression of IL-8 and CXCR-1-mediated chemotaxis. Exp Cell Res 299(2):315–324PubMed Bates RC, DeLeo MJ III, Mercurio AM (2004) The epithelial-mesenchymal transition of colon carcinoma involves expression of IL-8 and CXCR-1-mediated chemotaxis. Exp Cell Res 299(2):315–324PubMed
75.
go back to reference Liu G, Ding W, Liu X et al (2006) c-Fos is required for TGFbeta1 production and the associated paracrine migratory effects of human colon carcinoma cells. Mol Carcinog 45(8):582–593PubMed Liu G, Ding W, Liu X et al (2006) c-Fos is required for TGFbeta1 production and the associated paracrine migratory effects of human colon carcinoma cells. Mol Carcinog 45(8):582–593PubMed
76.
go back to reference Paduch R, Kandefer-Szerszen M (2009) Transforming growth factor-beta1 (TGF-beta1) and acetylcholine (ACh) alter nitric oxide (NO) and interleukin-1beta (IL-1beta) secretion in human colon adenocarcinoma cells. In Vitro Cell Dev Biol Anim 45(9):543–550PubMed Paduch R, Kandefer-Szerszen M (2009) Transforming growth factor-beta1 (TGF-beta1) and acetylcholine (ACh) alter nitric oxide (NO) and interleukin-1beta (IL-1beta) secretion in human colon adenocarcinoma cells. In Vitro Cell Dev Biol Anim 45(9):543–550PubMed
77.
go back to reference Mantovani A, Bottazzi B, Colotta F et al (1992) The origin and function of tumor-associated macrophages. Immunol Today 13(7):265–270PubMed Mantovani A, Bottazzi B, Colotta F et al (1992) The origin and function of tumor-associated macrophages. Immunol Today 13(7):265–270PubMed
78.
go back to reference Li F, Cao Y, Townsend CM Jr et al (2005) TGF-beta signaling in colon cancer cells. World J Surg 29(3):306–311PubMed Li F, Cao Y, Townsend CM Jr et al (2005) TGF-beta signaling in colon cancer cells. World J Surg 29(3):306–311PubMed
79.
go back to reference Reinacher-Schick A, Baldus SE, Romdhana B et al (2004) Loss of Smad4 correlates with loss of the invasion suppressor E-cadherin in advanced colorectal carcinomas. J Pathol 202(4):412–420PubMed Reinacher-Schick A, Baldus SE, Romdhana B et al (2004) Loss of Smad4 correlates with loss of the invasion suppressor E-cadherin in advanced colorectal carcinomas. J Pathol 202(4):412–420PubMed
80.
go back to reference Thuault S, Tan EJ, Peinado H et al (2008) HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem 283(48):33437–33446PubMed Thuault S, Tan EJ, Peinado H et al (2008) HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem 283(48):33437–33446PubMed
81.
go back to reference Thuault S, Valcourt U, Petersen M et al (2006) Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol 174(2):175–183PubMed Thuault S, Valcourt U, Petersen M et al (2006) Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol 174(2):175–183PubMed
82.
go back to reference Mook OR, Frederiks WM, Van Noorden CJ (2004) The role of gelatinases in colorectal cancer progression and metastasis. Biochim Biophys Acta 1705(2):69–89PubMed Mook OR, Frederiks WM, Van Noorden CJ (2004) The role of gelatinases in colorectal cancer progression and metastasis. Biochim Biophys Acta 1705(2):69–89PubMed
83.
go back to reference Illemann M, Bird N, Majeed A et al (2006) MMP-9 is differentially expressed in primary human colorectal adenocarcinomas and their metastases. Mol Cancer Res 4(5):293–302PubMed Illemann M, Bird N, Majeed A et al (2006) MMP-9 is differentially expressed in primary human colorectal adenocarcinomas and their metastases. Mol Cancer Res 4(5):293–302PubMed
84.
go back to reference Gounaris E, Tung CH, Restaino C et al (2008) Live imaging of cysteine-cathepsin activity reveals dynamics of focal inflammation, angiogenesis, and polyp growth. PLoS One 3(8):e2916PubMed Gounaris E, Tung CH, Restaino C et al (2008) Live imaging of cysteine-cathepsin activity reveals dynamics of focal inflammation, angiogenesis, and polyp growth. PLoS One 3(8):e2916PubMed
85.
go back to reference Mohamed MM, Sloane BF (2006) Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 6(10):764–775PubMed Mohamed MM, Sloane BF (2006) Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 6(10):764–775PubMed
86.
go back to reference Gocheva V, Joyce JA (2007) Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 6(1):60–64PubMed Gocheva V, Joyce JA (2007) Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 6(1):60–64PubMed
87.
go back to reference Harvey SR, Sait SN, Xu Y et al (1999) Demonstration of urokinase expression in cancer cells of colon adenocarcinomas by immunohistochemistry and in situ hybridization. Am J Pathol 155(4):1115–1120PubMed Harvey SR, Sait SN, Xu Y et al (1999) Demonstration of urokinase expression in cancer cells of colon adenocarcinomas by immunohistochemistry and in situ hybridization. Am J Pathol 155(4):1115–1120PubMed
88.
go back to reference Laufs S, Schumacher J, Allgayer H (2006) Urokinase-receptor (u-PAR): an essential player in multiple games of cancer: a review on its role in tumor progression, invasion, metastasis, proliferation/dormancy, clinical outcome and minimal residual disease. Cell Cycle 5(16):1760–1771PubMed Laufs S, Schumacher J, Allgayer H (2006) Urokinase-receptor (u-PAR): an essential player in multiple games of cancer: a review on its role in tumor progression, invasion, metastasis, proliferation/dormancy, clinical outcome and minimal residual disease. Cell Cycle 5(16):1760–1771PubMed
89.
go back to reference Lubbe WJ, Zuzga DS, Zhou Z et al (2009) Guanylyl cyclase C prevents colon cancer metastasis by regulating tumor epithelial cell matrix metalloproteinase-9. Cancer Res 69(8):3529–3536PubMed Lubbe WJ, Zuzga DS, Zhou Z et al (2009) Guanylyl cyclase C prevents colon cancer metastasis by regulating tumor epithelial cell matrix metalloproteinase-9. Cancer Res 69(8):3529–3536PubMed
90.
go back to reference Sinnamon MJ, Carter KJ, Fingleton B et al (2008) Matrix metalloproteinase-9 contributes to intestinal tumourigenesis in the adenomatous polyposis coli multiple intestinal neoplasia mouse. Int J Exp Pathol 89(6):466–475PubMed Sinnamon MJ, Carter KJ, Fingleton B et al (2008) Matrix metalloproteinase-9 contributes to intestinal tumourigenesis in the adenomatous polyposis coli multiple intestinal neoplasia mouse. Int J Exp Pathol 89(6):466–475PubMed
91.
go back to reference Baier PK, Wolff-Vorbeck G, Eggstein S et al (2005) Cytokine expression in colon carcinoma. Anticancer Res 25(3B):2135–2139PubMed Baier PK, Wolff-Vorbeck G, Eggstein S et al (2005) Cytokine expression in colon carcinoma. Anticancer Res 25(3B):2135–2139PubMed
92.
go back to reference Mantovani A, Sozzani S, Locati M et al (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555PubMed Mantovani A, Sozzani S, Locati M et al (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555PubMed
93.
go back to reference Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6(4):345–352PubMed Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6(4):345–352PubMed
94.
go back to reference Smyth MJ, Teng MW, Swann J et al (2006) CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol 176(3):1582–1587PubMed Smyth MJ, Teng MW, Swann J et al (2006) CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol 176(3):1582–1587PubMed
95.
go back to reference Sinicrope FA, Rego RL, Ansell SM, et al (2009) A low intraepithelial effector (CD3(+))/Regulatory (FoxP3(+)) T-cell ratio predicts adverse outcome of human colon carcinoma. Gastroenterology. 137(4):1270–1279 Sinicrope FA, Rego RL, Ansell SM, et al (2009) A low intraepithelial effector (CD3(+))/Regulatory (FoxP3(+)) T-cell ratio predicts adverse outcome of human colon carcinoma. Gastroenterology. 137(4):1270–1279
96.
go back to reference Gabrilovich DI, Bronte V, Chen SH et al (2007) The terminology issue for myeloid-derived suppressor cells. Cancer Res 67(1):425, author reply 426PubMed Gabrilovich DI, Bronte V, Chen SH et al (2007) The terminology issue for myeloid-derived suppressor cells. Cancer Res 67(1):425, author reply 426PubMed
97.
go back to reference Nagaraj S, Gabrilovich DI (2008) Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res 68(8):2561–2563PubMed Nagaraj S, Gabrilovich DI (2008) Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res 68(8):2561–2563PubMed
98.
go back to reference Mandruzzato S, Solito S, Falisi E et al (2009) IL4Ralpha+ myeloid-derived suppressor cell expansion in cancer patients. J Immunol 182(10):6562–6568PubMed Mandruzzato S, Solito S, Falisi E et al (2009) IL4Ralpha+ myeloid-derived suppressor cell expansion in cancer patients. J Immunol 182(10):6562–6568PubMed
99.
go back to reference Ochoa AC, Zea AH, Hernandez C et al (2007) Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res 13(2 Pt 2):721s–726sPubMed Ochoa AC, Zea AH, Hernandez C et al (2007) Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res 13(2 Pt 2):721s–726sPubMed
100.
go back to reference Almand B, Clark JI, Nikitina E et al (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166(1):678–689PubMed Almand B, Clark JI, Nikitina E et al (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166(1):678–689PubMed
101.
go back to reference Diaz-Montero CM, Salem ML, Nishimura MI et al (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58(1):49–59PubMed Diaz-Montero CM, Salem ML, Nishimura MI et al (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58(1):49–59PubMed
102.
go back to reference Umemura N, Saio M, Suwa T et al (2008) Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J Leukoc Biol 83(5):1136–1144PubMed Umemura N, Saio M, Suwa T et al (2008) Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J Leukoc Biol 83(5):1136–1144PubMed
103.
go back to reference Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174PubMed Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174PubMed
104.
go back to reference Cascio S, Ferla R, D’Andrea A et al (2009) Expression of angiogenic regulators, VEGF and leptin, is regulated by the EGF/PI3K/STAT3 pathway in colorectal cancer cells. J Cell Physiol 221(1):189–194PubMed Cascio S, Ferla R, D’Andrea A et al (2009) Expression of angiogenic regulators, VEGF and leptin, is regulated by the EGF/PI3K/STAT3 pathway in colorectal cancer cells. J Cell Physiol 221(1):189–194PubMed
105.
go back to reference Donkor MK, Lahue E, Hoke TA et al (2009) Mammary tumor heterogeneity in the expansion of myeloid-derived suppressor cells. Int Immunopharmacol 9(7–8):937–948PubMed Donkor MK, Lahue E, Hoke TA et al (2009) Mammary tumor heterogeneity in the expansion of myeloid-derived suppressor cells. Int Immunopharmacol 9(7–8):937–948PubMed
106.
go back to reference Nagaraj S, Gupta K, Pisarev V et al (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13(7):828–835PubMed Nagaraj S, Gupta K, Pisarev V et al (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13(7):828–835PubMed
107.
go back to reference Huang B, Pan PY, Li Q et al (2006) Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66(2):1123–1131PubMed Huang B, Pan PY, Li Q et al (2006) Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66(2):1123–1131PubMed
108.
go back to reference Yang L, DeBusk LM, Fukuda K et al (2004) Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6(4):409–421PubMed Yang L, DeBusk LM, Fukuda K et al (2004) Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6(4):409–421PubMed
109.
go back to reference Movahedi K, Guilliams M, Van den Bossche J et al (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111(8):4233–4244PubMed Movahedi K, Guilliams M, Van den Bossche J et al (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111(8):4233–4244PubMed
110.
go back to reference Sinha P, Clements VK, Fulton AM et al (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67(9):4507–4513PubMed Sinha P, Clements VK, Fulton AM et al (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67(9):4507–4513PubMed
111.
go back to reference Zhang Y, Liu Q, Zhang M et al (2009) Fas signal promotes lung cancer growth by recruiting myeloid-derived suppressor cells via cancer cell-derived PGE2. J Immunol 182(6):3801–3808PubMed Zhang Y, Liu Q, Zhang M et al (2009) Fas signal promotes lung cancer growth by recruiting myeloid-derived suppressor cells via cancer cell-derived PGE2. J Immunol 182(6):3801–3808PubMed
112.
go back to reference Kormelink TG, Abudukelimu A, Redegeld FA (2009) Mast cells as target in cancer therapy. Curr Pharm Des 15(16):1868–1878 Kormelink TG, Abudukelimu A, Redegeld FA (2009) Mast cells as target in cancer therapy. Curr Pharm Des 15(16):1868–1878
113.
go back to reference Ribatti D, Vacca A, Nico B et al (2001) The role of mast cells in tumour angiogenesis. Br J Haematol 115(3):514–521PubMed Ribatti D, Vacca A, Nico B et al (2001) The role of mast cells in tumour angiogenesis. Br J Haematol 115(3):514–521PubMed
114.
go back to reference Crivellato E, Nico B, Ribatti D (2008) Mast cells and tumour angiogenesis: new insight from experimental carcinogenesis. Cancer Lett 269(1):1–6PubMed Crivellato E, Nico B, Ribatti D (2008) Mast cells and tumour angiogenesis: new insight from experimental carcinogenesis. Cancer Lett 269(1):1–6PubMed
115.
go back to reference Fisher ER, Paik SM, Rockette H et al (1989) Prognostic significance of eosinophils and mast cells in rectal cancer: findings from the National Surgical Adjuvant Breast and Bowel Project (protocol R-01). Hum Pathol 20(2):159–163PubMed Fisher ER, Paik SM, Rockette H et al (1989) Prognostic significance of eosinophils and mast cells in rectal cancer: findings from the National Surgical Adjuvant Breast and Bowel Project (protocol R-01). Hum Pathol 20(2):159–163PubMed
116.
go back to reference Gulubova M, Vlaykova T (2009) Prognostic significance of mast cell number and microvascular density for the survival of patients with primary colorectal cancer. J Gastroenterol Hepatol 24(7):1265–1275PubMed Gulubova M, Vlaykova T (2009) Prognostic significance of mast cell number and microvascular density for the survival of patients with primary colorectal cancer. J Gastroenterol Hepatol 24(7):1265–1275PubMed
117.
go back to reference Huang B, Lei Z, Zhang GM et al (2008) SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 112(4):1269–1279PubMed Huang B, Lei Z, Zhang GM et al (2008) SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 112(4):1269–1279PubMed
118.
go back to reference Grutzkau A, Kruger-Krasagakes S, Baumeister H et al (1998) Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206. Mol Biol Cell 9(4):875–884PubMed Grutzkau A, Kruger-Krasagakes S, Baumeister H et al (1998) Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206. Mol Biol Cell 9(4):875–884PubMed
119.
go back to reference Qu Z, Liebler JM, Powers MR et al (1995) Mast cells are a major source of basic fibroblast growth factor in chronic inflammation and cutaneous hemangioma. Am J Pathol 147(3):564–573PubMed Qu Z, Liebler JM, Powers MR et al (1995) Mast cells are a major source of basic fibroblast growth factor in chronic inflammation and cutaneous hemangioma. Am J Pathol 147(3):564–573PubMed
120.
go back to reference Lin XP, Liu WX, Li J (2004) The study on expression of bFGF and quantity of mast cell in infant hemangiomas of grandulae parotid gland. Shanghai Kou Qiang Yi Xue 13(3):167, 172, 178PubMed Lin XP, Liu WX, Li J (2004) The study on expression of bFGF and quantity of mast cell in infant hemangiomas of grandulae parotid gland. Shanghai Kou Qiang Yi Xue 13(3):167, 172, 178PubMed
121.
go back to reference Hallgren J, Estrada S, Karlson U et al (2001) Heparin antagonists are potent inhibitors of mast cell tryptase. Biochemistry 40(24):7342–7349PubMed Hallgren J, Estrada S, Karlson U et al (2001) Heparin antagonists are potent inhibitors of mast cell tryptase. Biochemistry 40(24):7342–7349PubMed
122.
go back to reference Pejler G, Sadler JE (1999) Mechanism by which heparin proteoglycan modulates mast cell chymase activity. Biochemistry 38(37):12187–12195PubMed Pejler G, Sadler JE (1999) Mechanism by which heparin proteoglycan modulates mast cell chymase activity. Biochemistry 38(37):12187–12195PubMed
123.
go back to reference Bowrey PF, King J, Magarey C et al (2000) Histamine, mast cells and tumour cell proliferation in breast cancer: does preoperative cimetidine administration have an effect? Br J Cancer 82(1):167–170PubMed Bowrey PF, King J, Magarey C et al (2000) Histamine, mast cells and tumour cell proliferation in breast cancer: does preoperative cimetidine administration have an effect? Br J Cancer 82(1):167–170PubMed
124.
go back to reference Dvorak AM (2005) Mast cell-derived mediators of enhanced microvascular permeability, vascular permeability factor/vascular endothelial growth factor, histamine, and serotonin, cause leakage of macromolecules through a new endothelial cell permeability organelle, the vesiculo-vacuolar organelle. Chem Immunol Allergy 85:185–204PubMed Dvorak AM (2005) Mast cell-derived mediators of enhanced microvascular permeability, vascular permeability factor/vascular endothelial growth factor, histamine, and serotonin, cause leakage of macromolecules through a new endothelial cell permeability organelle, the vesiculo-vacuolar organelle. Chem Immunol Allergy 85:185–204PubMed
125.
go back to reference Nakae S, Suto H, Berry GJ et al (2007) Mast cell-derived TNF can promote Th17 cell-dependent neutrophil recruitment in ovalbumin-challenged OTII mice. Blood 109(9):3640–3648PubMed Nakae S, Suto H, Berry GJ et al (2007) Mast cell-derived TNF can promote Th17 cell-dependent neutrophil recruitment in ovalbumin-challenged OTII mice. Blood 109(9):3640–3648PubMed
126.
go back to reference Kneilling M, Mailhammer R, Hultner L et al (2009) Direct crosstalk between mast cell-TNF and TNFR1-expressing endothelia mediates local tissue inflammation. Blood 114(8):1696–1706PubMed Kneilling M, Mailhammer R, Hultner L et al (2009) Direct crosstalk between mast cell-TNF and TNFR1-expressing endothelia mediates local tissue inflammation. Blood 114(8):1696–1706PubMed
127.
go back to reference Nakayama T, Yao L, Tosato G (2004) Mast cell-derived angiopoietin-1 plays a critical role in the growth of plasma cell tumors. J Clin Invest 114(9):1317–1325PubMed Nakayama T, Yao L, Tosato G (2004) Mast cell-derived angiopoietin-1 plays a critical role in the growth of plasma cell tumors. J Clin Invest 114(9):1317–1325PubMed
128.
go back to reference Ribatti D, Crivellato E (2009) The controversial role of mast cells in tumor growth. Int Rev Cell Mol Biol 275:89–131PubMed Ribatti D, Crivellato E (2009) The controversial role of mast cells in tumor growth. Int Rev Cell Mol Biol 275:89–131PubMed
129.
go back to reference Ribatti D, Crivellato E, Molica S (2009) Mast cells and angiogenesis in haematological malignancies. Leuk Res 33(7):876–879PubMed Ribatti D, Crivellato E, Molica S (2009) Mast cells and angiogenesis in haematological malignancies. Leuk Res 33(7):876–879PubMed
130.
go back to reference Coussens LM, Raymond WW, Bergers G et al (1999) Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13(11):1382–1397PubMed Coussens LM, Raymond WW, Bergers G et al (1999) Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13(11):1382–1397PubMed
131.
go back to reference Gounaris E, Erdman SE, Restaino C et al (2007) Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci U S A 104(50):19977–19982PubMed Gounaris E, Erdman SE, Restaino C et al (2007) Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci U S A 104(50):19977–19982PubMed
132.
go back to reference Kashiwase Y, Inamura H, Morioka J et al (2008) Quantitative analysis of mast cells in benign and malignant colonic lesions: immunohistochemical study on formalin-fixed, paraffin-embedded tissues. Allergol Immunopathol (Madr) 36(5):271–276 Kashiwase Y, Inamura H, Morioka J et al (2008) Quantitative analysis of mast cells in benign and malignant colonic lesions: immunohistochemical study on formalin-fixed, paraffin-embedded tissues. Allergol Immunopathol (Madr) 36(5):271–276
133.
go back to reference Taweevisit M (2006) The association of stromal mast cell response and tumor cell differentiation in colorectal cancer. J Med Assoc Thai 89(Suppl 3):S69–S73PubMed Taweevisit M (2006) The association of stromal mast cell response and tumor cell differentiation in colorectal cancer. J Med Assoc Thai 89(Suppl 3):S69–S73PubMed
134.
go back to reference Yoshii M, Jikuhara A, Mori S et al (2005) Mast cell tryptase stimulates DLD-1 carcinoma through prostaglandin- and MAP kinase-dependent manners. J Pharmacol Sci 98(4):450–458PubMed Yoshii M, Jikuhara A, Mori S et al (2005) Mast cell tryptase stimulates DLD-1 carcinoma through prostaglandin- and MAP kinase-dependent manners. J Pharmacol Sci 98(4):450–458PubMed
135.
go back to reference Maltby S, Khazaie K, McNagny KM (2009) Mast cells in tumor growth: angiogenesis, tissue remodelling and immune-modulation. Biochim Biophys Acta 1796(1):19–26PubMed Maltby S, Khazaie K, McNagny KM (2009) Mast cells in tumor growth: angiogenesis, tissue remodelling and immune-modulation. Biochim Biophys Acta 1796(1):19–26PubMed
136.
go back to reference Nakae S, Suto H, Iikura M et al (2006) Mast cells enhance T cell activation: importance of mast cell costimulatory molecules and secreted TNF. J Immunol 176(4):2238–2248PubMed Nakae S, Suto H, Iikura M et al (2006) Mast cells enhance T cell activation: importance of mast cell costimulatory molecules and secreted TNF. J Immunol 176(4):2238–2248PubMed
137.
go back to reference Simson L, Ellyard JI, Dent LA et al (2007) Regulation of carcinogenesis by IL-5 and CCL11: a potential role for eosinophils in tumor immune surveillance. J Immunol 178(7):4222–4229PubMed Simson L, Ellyard JI, Dent LA et al (2007) Regulation of carcinogenesis by IL-5 and CCL11: a potential role for eosinophils in tumor immune surveillance. J Immunol 178(7):4222–4229PubMed
138.
go back to reference Hart PH, Townley SL, Grimbaldeston MA et al (2002) Mast cells, neuropeptides, histamine, and prostaglandins in UV-induced systemic immunosuppression. Methods 28(1):79–89PubMed Hart PH, Townley SL, Grimbaldeston MA et al (2002) Mast cells, neuropeptides, histamine, and prostaglandins in UV-induced systemic immunosuppression. Methods 28(1):79–89PubMed
139.
go back to reference Harizi H, Juzan M, Pitard V et al (2002) Cyclooxygenase-2-issued prostaglandin e(2) enhances the production of endogenous IL-10, which down-regulates dendritic cell functions. J Immunol 168(5):2255–2263PubMed Harizi H, Juzan M, Pitard V et al (2002) Cyclooxygenase-2-issued prostaglandin e(2) enhances the production of endogenous IL-10, which down-regulates dendritic cell functions. J Immunol 168(5):2255–2263PubMed
140.
go back to reference Sinnamon MJ, Carter KJ, Sims LP et al (2008) A protective role of mast cells in intestinal tumorigenesis. Carcinogenesis 29(4):880–886PubMed Sinnamon MJ, Carter KJ, Sims LP et al (2008) A protective role of mast cells in intestinal tumorigenesis. Carcinogenesis 29(4):880–886PubMed
141.
go back to reference Noviana D, Kono F, Nagakui Y et al (2001) Distribution and enzyme histochemical characterisation of mast cells in cats. Histochem J 33(11–12):597–603PubMed Noviana D, Kono F, Nagakui Y et al (2001) Distribution and enzyme histochemical characterisation of mast cells in cats. Histochem J 33(11–12):597–603PubMed
142.
go back to reference Shimizu H, Nagakui Y, Tsuchiya K et al (2001) Demonstration of chymotryptic and tryptic activities in mast cells of rodents: comparison of 17 species of the family Muridae. J Comp Pathol 125(1):76–79PubMed Shimizu H, Nagakui Y, Tsuchiya K et al (2001) Demonstration of chymotryptic and tryptic activities in mast cells of rodents: comparison of 17 species of the family Muridae. J Comp Pathol 125(1):76–79PubMed
143.
go back to reference Kitamura T, Kometani K, Hashida H et al (2007) SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nat Genet 39(4):467–475PubMed Kitamura T, Kometani K, Hashida H et al (2007) SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nat Genet 39(4):467–475PubMed
144.
go back to reference Drew E, Huettner CS, Tenen DG et al (2005) CD34 expression by mast cells: of mice and men. Blood 106(5):1885–1887PubMed Drew E, Huettner CS, Tenen DG et al (2005) CD34 expression by mast cells: of mice and men. Blood 106(5):1885–1887PubMed
145.
go back to reference Drew E, Merkens H, Chelliah S et al (2002) CD34 is a specific marker of mature murine mast cells. Exp Hematol 30(10):1211PubMed Drew E, Merkens H, Chelliah S et al (2002) CD34 is a specific marker of mature murine mast cells. Exp Hematol 30(10):1211PubMed
146.
go back to reference Drew E, Merzaban JS, Seo W et al (2005) CD34 and CD43 inhibit mast cell adhesion and are required for optimal mast cell reconstitution. Immunity 22(1):43–57PubMed Drew E, Merzaban JS, Seo W et al (2005) CD34 and CD43 inhibit mast cell adhesion and are required for optimal mast cell reconstitution. Immunity 22(1):43–57PubMed
147.
go back to reference Tanaka A, Yamane Y, Matsuda H (2001) Mast cell MMP-9 production enhanced by bacterial lipopolysaccharide. J Vet Med Sci 63(7):811–813PubMed Tanaka A, Yamane Y, Matsuda H (2001) Mast cell MMP-9 production enhanced by bacterial lipopolysaccharide. J Vet Med Sci 63(7):811–813PubMed
148.
go back to reference Linnekin D (1999) Early signaling pathways activated by c-Kit in hematopoietic cells. Int J Biochem Cell Biol 31(10):1053–1074PubMed Linnekin D (1999) Early signaling pathways activated by c-Kit in hematopoietic cells. Int J Biochem Cell Biol 31(10):1053–1074PubMed
149.
go back to reference Berger SA, Mak TW, Paige CJ (1994) Leukocyte common antigen (CD45) is required for immunoglobulin E-mediated degranulation of mast cells. J Exp Med 180(2):471–476PubMed Berger SA, Mak TW, Paige CJ (1994) Leukocyte common antigen (CD45) is required for immunoglobulin E-mediated degranulation of mast cells. J Exp Med 180(2):471–476PubMed
150.
go back to reference Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401PubMed Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401PubMed
151.
go back to reference Ostman A, Augsten M (2009) Cancer-associated fibroblasts and tumor growth—bystanders turning into key players. Curr Opin Genet Dev 19(1):67–73PubMed Ostman A, Augsten M (2009) Cancer-associated fibroblasts and tumor growth—bystanders turning into key players. Curr Opin Genet Dev 19(1):67–73PubMed
152.
go back to reference Sugimoto H, Mundel TM, Kieran MW et al (2006) Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther 5(12):1640–1646PubMed Sugimoto H, Mundel TM, Kieran MW et al (2006) Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther 5(12):1640–1646PubMed
153.
go back to reference Henry LR, Lee HO, Lee JS et al (2007) Clinical implications of fibroblast activation protein in patients with colon cancer. Clin Cancer Res 13(6):1736–1741PubMed Henry LR, Lee HO, Lee JS et al (2007) Clinical implications of fibroblast activation protein in patients with colon cancer. Clin Cancer Res 13(6):1736–1741PubMed
154.
go back to reference Nakagawa H, Liyanarachchi S, Davuluri RV et al (2004) Role of cancer-associated stromal fibroblasts in metastatic colon cancer to the liver and their expression profiles. Oncogene 23(44):7366–7377PubMed Nakagawa H, Liyanarachchi S, Davuluri RV et al (2004) Role of cancer-associated stromal fibroblasts in metastatic colon cancer to the liver and their expression profiles. Oncogene 23(44):7366–7377PubMed
155.
go back to reference Mueller L, Goumas FA, Affeldt M et al (2007) Stromal fibroblasts in colorectal liver metastases originate from resident fibroblasts and generate an inflammatory microenvironment. Am J Pathol 171(5):1608–1618PubMed Mueller L, Goumas FA, Affeldt M et al (2007) Stromal fibroblasts in colorectal liver metastases originate from resident fibroblasts and generate an inflammatory microenvironment. Am J Pathol 171(5):1608–1618PubMed
156.
go back to reference Direkze NC, Hodivala-Dilke K, Jeffery R et al (2004) Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res 64(23):8492–8495PubMed Direkze NC, Hodivala-Dilke K, Jeffery R et al (2004) Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res 64(23):8492–8495PubMed
157.
go back to reference Yang L, Lin C, Liu ZR (2006) P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from beta-catenin. Cell 127(1):139–155PubMed Yang L, Lin C, Liu ZR (2006) P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from beta-catenin. Cell 127(1):139–155PubMed
158.
go back to reference Joesting MS, Perrin S, Elenbaas B et al (2005) Identification of SFRP1 as a candidate mediator of stromal-to-epithelial signaling in prostate cancer. Cancer Res 65(22):10423–10430PubMed Joesting MS, Perrin S, Elenbaas B et al (2005) Identification of SFRP1 as a candidate mediator of stromal-to-epithelial signaling in prostate cancer. Cancer Res 65(22):10423–10430PubMed
159.
go back to reference Zhu CQ, Popova SN, Brown ER et al (2007) Integrin alpha 11 regulates IGF2 expression in fibroblasts to enhance tumorigenicity of human non-small-cell lung cancer cells. Proc Natl Acad Sci U S A 104(28):11754–11759PubMed Zhu CQ, Popova SN, Brown ER et al (2007) Integrin alpha 11 regulates IGF2 expression in fibroblasts to enhance tumorigenicity of human non-small-cell lung cancer cells. Proc Natl Acad Sci U S A 104(28):11754–11759PubMed
160.
go back to reference Taniwaki K, Fukamachi H, Komori K et al (2007) Stroma-derived matrix metalloproteinase (MMP)-2 promotes membrane type 1-MMP-dependent tumor growth in mice. Cancer Res 67(9):4311–4319PubMed Taniwaki K, Fukamachi H, Komori K et al (2007) Stroma-derived matrix metalloproteinase (MMP)-2 promotes membrane type 1-MMP-dependent tumor growth in mice. Cancer Res 67(9):4311–4319PubMed
161.
go back to reference Orimo A, Gupta PB, Sgroi DC et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348PubMed Orimo A, Gupta PB, Sgroi DC et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348PubMed
162.
go back to reference Orimo A, Weinberg RA (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5(15):1597–1601PubMed Orimo A, Weinberg RA (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5(15):1597–1601PubMed
163.
go back to reference Konstantinopoulos PA, Vandoros GP, Karamouzis MV et al (2007) EGF-R is expressed and AP-1 and NF-kappaB are activated in stromal myofibroblasts surrounding colon adenocarcinomas paralleling expression of COX-2 and VEGF. Cell Oncol 29(6):477–482PubMed Konstantinopoulos PA, Vandoros GP, Karamouzis MV et al (2007) EGF-R is expressed and AP-1 and NF-kappaB are activated in stromal myofibroblasts surrounding colon adenocarcinomas paralleling expression of COX-2 and VEGF. Cell Oncol 29(6):477–482PubMed
164.
go back to reference Vandoros GP, Konstantinopoulos PA, Sotiropoulou-Bonikou G et al (2006) PPAR-gamma is expressed and NF-kB pathway is activated and correlates positively with COX-2 expression in stromal myofibroblasts surrounding colon adenocarcinomas. J Cancer Res Clin Oncol 132(2):76–84PubMed Vandoros GP, Konstantinopoulos PA, Sotiropoulou-Bonikou G et al (2006) PPAR-gamma is expressed and NF-kB pathway is activated and correlates positively with COX-2 expression in stromal myofibroblasts surrounding colon adenocarcinomas. J Cancer Res Clin Oncol 132(2):76–84PubMed
165.
go back to reference Fodde R, Smits R, Clevers H (2001) APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 1(1):55–67PubMed Fodde R, Smits R, Clevers H (2001) APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 1(1):55–67PubMed
166.
go back to reference Fodde R, Brabletz T (2007) Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol 19(2):150–158PubMed Fodde R, Brabletz T (2007) Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol 19(2):150–158PubMed
167.
go back to reference Le NH, Franken P, Fodde R (2008) Tumour-stroma interactions in colorectal cancer: converging on beta-catenin activation and cancer stemness. Br J Cancer 98(12):1886–1893PubMed Le NH, Franken P, Fodde R (2008) Tumour-stroma interactions in colorectal cancer: converging on beta-catenin activation and cancer stemness. Br J Cancer 98(12):1886–1893PubMed
168.
go back to reference Eisinger AL, Nadauld LD, Shelton DN et al (2006) The adenomatous polyposis coli tumor suppressor gene regulates expression of cyclooxygenase-2 by a mechanism that involves retinoic acid. J Biol Chem 281(29):20474–20482PubMed Eisinger AL, Nadauld LD, Shelton DN et al (2006) The adenomatous polyposis coli tumor suppressor gene regulates expression of cyclooxygenase-2 by a mechanism that involves retinoic acid. J Biol Chem 281(29):20474–20482PubMed
169.
go back to reference Eisinger AL, Prescott SM, Jones DA et al (2007) The role of cyclooxygenase-2 and prostaglandins in colon cancer. Prostaglandins Other Lipid Mediat 82(1–4):147–154PubMed Eisinger AL, Prescott SM, Jones DA et al (2007) The role of cyclooxygenase-2 and prostaglandins in colon cancer. Prostaglandins Other Lipid Mediat 82(1–4):147–154PubMed
170.
go back to reference Wang D, Mann JR, DuBois RN (2004) WNT and cyclooxygenase-2 cross-talk accelerates adenoma growth. Cell Cycle 3(12):1512–1515PubMed Wang D, Mann JR, DuBois RN (2004) WNT and cyclooxygenase-2 cross-talk accelerates adenoma growth. Cell Cycle 3(12):1512–1515PubMed
171.
go back to reference Wang D, Wang H, Shi Q et al (2004) Prostaglandin E(2) promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor delta. Cancer Cell 6(3):285–295PubMed Wang D, Wang H, Shi Q et al (2004) Prostaglandin E(2) promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor delta. Cancer Cell 6(3):285–295PubMed
172.
go back to reference Kitadai Y, Sasaki T, Kuwai T et al (2006) Expression of activated platelet-derived growth factor receptor in stromal cells of human colon carcinomas is associated with metastatic potential. Int J Cancer 119(11):2567–2574PubMed Kitadai Y, Sasaki T, Kuwai T et al (2006) Expression of activated platelet-derived growth factor receptor in stromal cells of human colon carcinomas is associated with metastatic potential. Int J Cancer 119(11):2567–2574PubMed
173.
go back to reference Kitadai Y, Sasaki T, Kuwai T et al (2006) Targeting the expression of platelet-derived growth factor receptor by reactive stroma inhibits growth and metastasis of human colon carcinoma. Am J Pathol 169(6):2054–2065PubMed Kitadai Y, Sasaki T, Kuwai T et al (2006) Targeting the expression of platelet-derived growth factor receptor by reactive stroma inhibits growth and metastasis of human colon carcinoma. Am J Pathol 169(6):2054–2065PubMed
174.
go back to reference Crawford Y, Kasman I, Yu L et al (2009) PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15(1):21–34PubMed Crawford Y, Kasman I, Yu L et al (2009) PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15(1):21–34PubMed
175.
go back to reference Francia G, Emmenegger U, Kerbel RS (2009) Tumor-associated fibroblasts as “Trojan Horse” mediators of resistance to anti-VEGF therapy. Cancer Cell 15(1):3–5PubMed Francia G, Emmenegger U, Kerbel RS (2009) Tumor-associated fibroblasts as “Trojan Horse” mediators of resistance to anti-VEGF therapy. Cancer Cell 15(1):3–5PubMed
176.
go back to reference De Palma M, Venneri MA, Galli R et al (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8(3):211–226PubMed De Palma M, Venneri MA, Galli R et al (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8(3):211–226PubMed
177.
go back to reference Venneri MA, De Palma M, Ponzoni M et al (2007) Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood 109(12):5276–5285PubMed Venneri MA, De Palma M, Ponzoni M et al (2007) Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood 109(12):5276–5285PubMed
178.
go back to reference Murdoch C, Tazzyman S, Webster S et al (2007) Expression of Tie-2 by human monocytes and their responses to angiopoietin-2. J Immunol 178(11):7405–7411PubMed Murdoch C, Tazzyman S, Webster S et al (2007) Expression of Tie-2 by human monocytes and their responses to angiopoietin-2. J Immunol 178(11):7405–7411PubMed
179.
go back to reference Lewis CE, De Palma M, Naldini L (2007) Tie2-expressing monocytes and tumor angiogenesis: regulation by hypoxia and angiopoietin-2. Cancer Res 67(18):8429–8432PubMed Lewis CE, De Palma M, Naldini L (2007) Tie2-expressing monocytes and tumor angiogenesis: regulation by hypoxia and angiopoietin-2. Cancer Res 67(18):8429–8432PubMed
180.
go back to reference Ellis LM, Ahmad S, Fan F et al (2002) Angiopoietins and their role in colon cancer angiogenesis. Oncology (Williston Park) 16(4 Suppl 3):31–35 Ellis LM, Ahmad S, Fan F et al (2002) Angiopoietins and their role in colon cancer angiogenesis. Oncology (Williston Park) 16(4 Suppl 3):31–35
181.
go back to reference De Palma M, Naldini L (2009) Tie2-expressing monocytes (TEMs): novel targets and vehicles of anticancer therapy? Biochim Biophys Acta 1796(1):5–10PubMed De Palma M, Naldini L (2009) Tie2-expressing monocytes (TEMs): novel targets and vehicles of anticancer therapy? Biochim Biophys Acta 1796(1):5–10PubMed
182.
go back to reference Sarraf-Yazdi S, Mi J, Moeller BJ et al (2008) Inhibition of in vivo tumor angiogenesis and growth via systemic delivery of an angiopoietin 2-specific RNA aptamer. J Surg Res 146(1):16–23PubMed Sarraf-Yazdi S, Mi J, Moeller BJ et al (2008) Inhibition of in vivo tumor angiogenesis and growth via systemic delivery of an angiopoietin 2-specific RNA aptamer. J Surg Res 146(1):16–23PubMed
183.
go back to reference Eck M, Schmausser B, Scheller K et al (2003) Pleiotropic effects of CXC chemokines in gastric carcinoma: differences in CXCL8 and CXCL1 expression between diffuse and intestinal types of gastric carcinoma. Clin Exp Immunol 134(3):508–515PubMed Eck M, Schmausser B, Scheller K et al (2003) Pleiotropic effects of CXC chemokines in gastric carcinoma: differences in CXCL8 and CXCL1 expression between diffuse and intestinal types of gastric carcinoma. Clin Exp Immunol 134(3):508–515PubMed
184.
go back to reference Roncucci L, Mora E, Mariani F et al (2008) Myeloperoxidase-positive cell infiltration in colorectal carcinogenesis as indicator of colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 17(9):2291–2297PubMed Roncucci L, Mora E, Mariani F et al (2008) Myeloperoxidase-positive cell infiltration in colorectal carcinogenesis as indicator of colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 17(9):2291–2297PubMed
185.
go back to reference Roessner A, Kuester D, Malfertheiner P et al (2008) Oxidative stress in ulcerative colitis-associated carcinogenesis. Pathol Res Pract 204(7):511–524PubMed Roessner A, Kuester D, Malfertheiner P et al (2008) Oxidative stress in ulcerative colitis-associated carcinogenesis. Pathol Res Pract 204(7):511–524PubMed
186.
go back to reference Xie K (2001) Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev 12(4):375–391PubMed Xie K (2001) Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev 12(4):375–391PubMed
187.
go back to reference Tazzyman S, Lewis CE, Murdoch C (2009) Neutrophils: key mediators of tumour angiogenesis. Int J Exp Pathol 90(3):222–231PubMed Tazzyman S, Lewis CE, Murdoch C (2009) Neutrophils: key mediators of tumour angiogenesis. Int J Exp Pathol 90(3):222–231PubMed
188.
go back to reference Queen MM, Ryan RE, Holzer RG et al (2005) Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Res 65(19):8896–8904PubMed Queen MM, Ryan RE, Holzer RG et al (2005) Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Res 65(19):8896–8904PubMed
189.
go back to reference Hawinkels LJ, Zuidwijk K, Verspaget HW et al (2008) VEGF release by MMP-9 mediated heparan sulphate cleavage induces colorectal cancer angiogenesis. Eur J Cancer 44(13):1904–1913PubMed Hawinkels LJ, Zuidwijk K, Verspaget HW et al (2008) VEGF release by MMP-9 mediated heparan sulphate cleavage induces colorectal cancer angiogenesis. Eur J Cancer 44(13):1904–1913PubMed
190.
go back to reference McCourt M, Wang JH, Sookhai S et al (1999) Proinflammatory mediators stimulate neutrophil-directed angiogenesis. Arch Surg 134(12):1325–1331, discussion 1331–1322PubMed McCourt M, Wang JH, Sookhai S et al (1999) Proinflammatory mediators stimulate neutrophil-directed angiogenesis. Arch Surg 134(12):1325–1331, discussion 1331–1322PubMed
191.
go back to reference Cassatella MA (1999) Neutrophil-derived proteins: selling cytokines by the pound. Adv Immunol 73:369–509PubMed Cassatella MA (1999) Neutrophil-derived proteins: selling cytokines by the pound. Adv Immunol 73:369–509PubMed
192.
go back to reference Nozawa H, Chiu C, Hanahan D (2006) Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A 103(33):12493–12498PubMed Nozawa H, Chiu C, Hanahan D (2006) Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A 103(33):12493–12498PubMed
193.
go back to reference Knaapen AM, Schins RP, Polat D et al (2002) Mechanisms of neutrophil-induced DNA damage in respiratory tract epithelial cells. Mol Cell Biochem 234–235(1–2):143–151PubMed Knaapen AM, Schins RP, Polat D et al (2002) Mechanisms of neutrophil-induced DNA damage in respiratory tract epithelial cells. Mol Cell Biochem 234–235(1–2):143–151PubMed
194.
go back to reference Vermeer IT, Henderson LY, Moonen EJ et al (2004) Neutrophil-mediated formation of carcinogenic N-nitroso compounds in an in vitro model for intestinal inflammation. Toxicol Lett 154(3):175–182PubMed Vermeer IT, Henderson LY, Moonen EJ et al (2004) Neutrophil-mediated formation of carcinogenic N-nitroso compounds in an in vitro model for intestinal inflammation. Toxicol Lett 154(3):175–182PubMed
195.
go back to reference Ten Kate M, Aalbers AG, Sluiter W et al (2007) Polymorphonuclear leukocytes increase the adhesion of circulating tumor cells to microvascular endothelium. Anticancer Res 27(1A):17–22PubMed Ten Kate M, Aalbers AG, Sluiter W et al (2007) Polymorphonuclear leukocytes increase the adhesion of circulating tumor cells to microvascular endothelium. Anticancer Res 27(1A):17–22PubMed
196.
go back to reference van den Tol MP, ten Raa S, van Grevenstein WM et al (2007) The post-surgical inflammatory response provokes enhanced tumour recurrence: a crucial role for neutrophils. Dig Surg 24(5):388–394PubMed van den Tol MP, ten Raa S, van Grevenstein WM et al (2007) The post-surgical inflammatory response provokes enhanced tumour recurrence: a crucial role for neutrophils. Dig Surg 24(5):388–394PubMed
197.
go back to reference Di Carlo E, Forni G, Lollini P et al (2001) The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood 97(2):339–345PubMed Di Carlo E, Forni G, Lollini P et al (2001) The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood 97(2):339–345PubMed
198.
go back to reference di Carlo E, Iezzi M, Pannellini T et al (2001) Neutrophils in anti-cancer immunological strategies: old players in new games. J Hematother Stem Cell Res 10(6):739–748PubMed di Carlo E, Iezzi M, Pannellini T et al (2001) Neutrophils in anti-cancer immunological strategies: old players in new games. J Hematother Stem Cell Res 10(6):739–748PubMed
199.
go back to reference Scapini P, Lapinet-Vera JA, Gasperini S et al (2000) The neutrophil as a cellular source of chemokines. Immunol Rev 177:195–203PubMed Scapini P, Lapinet-Vera JA, Gasperini S et al (2000) The neutrophil as a cellular source of chemokines. Immunol Rev 177:195–203PubMed
200.
go back to reference van Gisbergen KP, Geijtenbeek TB, van Kooyk Y (2005) Close encounters of neutrophils and DCs. Trends Immunol 26(12):626–631PubMed van Gisbergen KP, Geijtenbeek TB, van Kooyk Y (2005) Close encounters of neutrophils and DCs. Trends Immunol 26(12):626–631PubMed
201.
go back to reference Fridlender ZG, Sun J, Kim S et al (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16(3):183–194PubMed Fridlender ZG, Sun J, Kim S et al (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16(3):183–194PubMed
202.
go back to reference Pages F, Berger A, Camus M et al (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353(25):2654–2666PubMed Pages F, Berger A, Camus M et al (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353(25):2654–2666PubMed
203.
go back to reference Morris M, Platell C, Iacopetta B (2008) Tumor-infiltrating lymphocytes and perforation in colon cancer predict positive response to 5-fluorouracil chemotherapy. Clin Cancer Res 14(5):1413–1417PubMed Morris M, Platell C, Iacopetta B (2008) Tumor-infiltrating lymphocytes and perforation in colon cancer predict positive response to 5-fluorouracil chemotherapy. Clin Cancer Res 14(5):1413–1417PubMed
204.
go back to reference Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964PubMed Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964PubMed
205.
go back to reference Waldner M, Schimanski CC, Neurath MF (2006) Colon cancer and the immune system: the role of tumor invading T cells. World J Gastroenterol 12(45):7233–7238PubMed Waldner M, Schimanski CC, Neurath MF (2006) Colon cancer and the immune system: the role of tumor invading T cells. World J Gastroenterol 12(45):7233–7238PubMed
206.
go back to reference Gounaris E, Blatner NR, Dennis K et al (2009) T-regulatory cells shift from a protective anti-inflammatory to a cancer-promoting proinflammatory phenotype in polyposis. Cancer Res 69(13):5490–5497PubMed Gounaris E, Blatner NR, Dennis K et al (2009) T-regulatory cells shift from a protective anti-inflammatory to a cancer-promoting proinflammatory phenotype in polyposis. Cancer Res 69(13):5490–5497PubMed
207.
go back to reference Colombo MP, Piconese S (2009) Polyps wrap mast cells and Treg within tumorigenic tentacles. Cancer Res 69(14):5619–5622PubMed Colombo MP, Piconese S (2009) Polyps wrap mast cells and Treg within tumorigenic tentacles. Cancer Res 69(14):5619–5622PubMed
208.
go back to reference Yaqub S, Henjum K, Mahic M et al (2008) Regulatory T cells in colorectal cancer patients suppress anti-tumor immune activity in a COX-2 dependent manner. Cancer Immunol Immunother 57(6):813–821PubMed Yaqub S, Henjum K, Mahic M et al (2008) Regulatory T cells in colorectal cancer patients suppress anti-tumor immune activity in a COX-2 dependent manner. Cancer Immunol Immunother 57(6):813–821PubMed
209.
go back to reference Lonnroth C, Andersson M, Arvidsson A et al (2008) Preoperative treatment with a non-steroidal anti-inflammatory drug (NSAID) increases tumor tissue infiltration of seemingly activated immune cells in colorectal cancer. Cancer Immun 8:5PubMed Lonnroth C, Andersson M, Arvidsson A et al (2008) Preoperative treatment with a non-steroidal anti-inflammatory drug (NSAID) increases tumor tissue infiltration of seemingly activated immune cells in colorectal cancer. Cancer Immun 8:5PubMed
210.
go back to reference Roux S, Apetoh L, Chalmin F et al (2008) CD4+CD25+ Tregs control the TRAIL-dependent cytotoxicity of tumor-infiltrating DCs in rodent models of colon cancer. J Clin Invest 118(11):3751–3761PubMed Roux S, Apetoh L, Chalmin F et al (2008) CD4+CD25+ Tregs control the TRAIL-dependent cytotoxicity of tumor-infiltrating DCs in rodent models of colon cancer. J Clin Invest 118(11):3751–3761PubMed
211.
go back to reference Shah S, Divekar AA, Hilchey SP et al (2005) Increased rejection of primary tumors in mice lacking B cells: inhibition of anti-tumor CTL and TH1 cytokine responses by B cells. Int J Cancer 117(4):574–586PubMed Shah S, Divekar AA, Hilchey SP et al (2005) Increased rejection of primary tumors in mice lacking B cells: inhibition of anti-tumor CTL and TH1 cytokine responses by B cells. Int J Cancer 117(4):574–586PubMed
212.
go back to reference Lanier LL (2003) Natural killer cell receptor signaling. Curr Opin Immunol 15(3):308–314PubMed Lanier LL (2003) Natural killer cell receptor signaling. Curr Opin Immunol 15(3):308–314PubMed
213.
go back to reference Moriwaki K, Noda K, Furukawa Y et al (2009) Deficiency of GMDS leads to escape from NK cell-mediated tumor surveillance through modulation of TRAIL signaling. Gastroenterology 137(1):188–198, 198 e181–182PubMed Moriwaki K, Noda K, Furukawa Y et al (2009) Deficiency of GMDS leads to escape from NK cell-mediated tumor surveillance through modulation of TRAIL signaling. Gastroenterology 137(1):188–198, 198 e181–182PubMed
214.
go back to reference Whiteside TL, Vujanovic NL, Herberman RB (1998) Natural killer cells and tumor therapy. Curr Top Microbiol Immunol 230:221–244PubMed Whiteside TL, Vujanovic NL, Herberman RB (1998) Natural killer cells and tumor therapy. Curr Top Microbiol Immunol 230:221–244PubMed
215.
go back to reference Doubrovina ES, Doubrovin MM, Vider E et al (2003) Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma. J Immunol 171(12):6891–6899PubMed Doubrovina ES, Doubrovin MM, Vider E et al (2003) Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma. J Immunol 171(12):6891–6899PubMed
216.
go back to reference Ryan AE, Shanahan F, O’Connell J et al (2006) Fas ligand promotes tumor immune evasion of colon cancer in vivo. Cell Cycle 5(3):246–249PubMed Ryan AE, Shanahan F, O’Connell J et al (2006) Fas ligand promotes tumor immune evasion of colon cancer in vivo. Cell Cycle 5(3):246–249PubMed
217.
go back to reference O’Callaghan G, Kelly J, Shanahan F et al (2008) Prostaglandin E2 stimulates Fas ligand expression via the EP1 receptor in colon cancer cells. Br J Cancer 99(3):502–512PubMed O’Callaghan G, Kelly J, Shanahan F et al (2008) Prostaglandin E2 stimulates Fas ligand expression via the EP1 receptor in colon cancer cells. Br J Cancer 99(3):502–512PubMed
218.
go back to reference Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252PubMed Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252PubMed
219.
go back to reference Pockaj BA, Basu GD, Pathangey LB et al (2004) Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 overexpression and prostaglandin E2 secretion in patients with breast cancer. Ann Surg Oncol 11(3):328–339PubMed Pockaj BA, Basu GD, Pathangey LB et al (2004) Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 overexpression and prostaglandin E2 secretion in patients with breast cancer. Ann Surg Oncol 11(3):328–339PubMed
220.
go back to reference Gabrilovich D, Ishida T, Oyama T et al (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92(11):4150–4166PubMed Gabrilovich D, Ishida T, Oyama T et al (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92(11):4150–4166PubMed
221.
go back to reference Curiel TJ, Cheng P, Mottram P et al (2004) Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res 64(16):5535–5538PubMed Curiel TJ, Cheng P, Mottram P et al (2004) Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res 64(16):5535–5538PubMed
222.
go back to reference Wu YG, Wu GZ, Wang L, et al (2009) Tumor cell lysate-pulsed dendritic cells induce a T cell response against colon cancer in vitro and in vivo. Med Oncol. PMID: 19669608 Wu YG, Wu GZ, Wang L, et al (2009) Tumor cell lysate-pulsed dendritic cells induce a T cell response against colon cancer in vitro and in vivo. Med Oncol. PMID: 19669608
223.
go back to reference Verheul HM, Pinedo HM (1998) Tumor growth: a putative role for platelets? Oncologist 3(2):IIPubMed Verheul HM, Pinedo HM (1998) Tumor growth: a putative role for platelets? Oncologist 3(2):IIPubMed
224.
go back to reference Nash GF, Turner LF, Scully MF et al (2002) Platelets and cancer. Lancet Oncol 3(7):425–430PubMed Nash GF, Turner LF, Scully MF et al (2002) Platelets and cancer. Lancet Oncol 3(7):425–430PubMed
225.
go back to reference Karpatkin S (2003) Role of thrombin in tumor angiogenesis, implantation, and metastasis. Pathophysiol Haemost Thromb 33(Suppl 1):54–55PubMed Karpatkin S (2003) Role of thrombin in tumor angiogenesis, implantation, and metastasis. Pathophysiol Haemost Thromb 33(Suppl 1):54–55PubMed
226.
go back to reference Falanga A, Rickles FR (1999) Pathophysiology of the thrombophilic state in the cancer patient. Semin Thromb Hemost 25(2):173–182PubMed Falanga A, Rickles FR (1999) Pathophysiology of the thrombophilic state in the cancer patient. Semin Thromb Hemost 25(2):173–182PubMed
227.
go back to reference Nash GF, Walsh DC, Kakkar AK (2001) The role of the coagulation system in tumour angiogenesis. Lancet Oncol 2(10):608–613PubMed Nash GF, Walsh DC, Kakkar AK (2001) The role of the coagulation system in tumour angiogenesis. Lancet Oncol 2(10):608–613PubMed
228.
go back to reference Stellos K, Bigalke B, Langer H et al (2009) Expression of stromal-cell-derived factor-1 on circulating platelets is increased in patients with acute coronary syndrome and correlates with the number of CD34+ progenitor cells. Eur Heart J 30(5):584–593PubMed Stellos K, Bigalke B, Langer H et al (2009) Expression of stromal-cell-derived factor-1 on circulating platelets is increased in patients with acute coronary syndrome and correlates with the number of CD34+ progenitor cells. Eur Heart J 30(5):584–593PubMed
229.
go back to reference Kopp HG, Placke T, Salih HR (2009) Platelet-derived transforming growth factor-{beta} down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res 69(19):7775–7783PubMed Kopp HG, Placke T, Salih HR (2009) Platelet-derived transforming growth factor-{beta} down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res 69(19):7775–7783PubMed
230.
go back to reference McCarty OJ, Mousa SA, Bray PF et al (2000) Immobilized platelets support human colon carcinoma cell tethering, rolling, and firm adhesion under dynamic flow conditions. Blood 96(5):1789–1797PubMed McCarty OJ, Mousa SA, Bray PF et al (2000) Immobilized platelets support human colon carcinoma cell tethering, rolling, and firm adhesion under dynamic flow conditions. Blood 96(5):1789–1797PubMed
231.
go back to reference Burdick MM, Konstantopoulos K (2004) Platelet-induced enhancement of LS174T colon carcinoma and THP-1 monocytoid cell adhesion to vascular endothelium under flow. Am J Physiol Cell Physiol 287(2):C539–C547PubMed Burdick MM, Konstantopoulos K (2004) Platelet-induced enhancement of LS174T colon carcinoma and THP-1 monocytoid cell adhesion to vascular endothelium under flow. Am J Physiol Cell Physiol 287(2):C539–C547PubMed
232.
go back to reference Ricci-Vitiani L, Fabrizi E, Palio E et al (2009) Colon cancer stem cells. J Mol Med 87(11):1097–1104PubMed Ricci-Vitiani L, Fabrizi E, Palio E et al (2009) Colon cancer stem cells. J Mol Med 87(11):1097–1104PubMed
233.
go back to reference Lin EH, Hassan M, Li Y et al (2007) Elevated circulating endothelial progenitor marker CD133 messenger RNA levels predict colon cancer recurrence. Cancer 110(3):534–542PubMed Lin EH, Hassan M, Li Y et al (2007) Elevated circulating endothelial progenitor marker CD133 messenger RNA levels predict colon cancer recurrence. Cancer 110(3):534–542PubMed
234.
go back to reference Kemp KC, Hows J, Donaldson C (2005) Bone marrow-derived mesenchymal stem cells. Leuk Lymphoma 46(11):1531–1544PubMed Kemp KC, Hows J, Donaldson C (2005) Bone marrow-derived mesenchymal stem cells. Leuk Lymphoma 46(11):1531–1544PubMed
235.
go back to reference Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147PubMed Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147PubMed
236.
go back to reference Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276(5309):71–74PubMed Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276(5309):71–74PubMed
237.
go back to reference Hall B, Andreeff M, Marini F (2007) The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handb Exp Pharmacol 180:263–283PubMed Hall B, Andreeff M, Marini F (2007) The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handb Exp Pharmacol 180:263–283PubMed
238.
go back to reference Karnoub AE, Dash AB, Vo AP et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563PubMed Karnoub AE, Dash AB, Vo AP et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563PubMed
239.
go back to reference Nauta AJ, Kruisselbrink AB, Lurvink E et al (2006) Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol 177(4):2080–2087PubMed Nauta AJ, Kruisselbrink AB, Lurvink E et al (2006) Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol 177(4):2080–2087PubMed
240.
go back to reference Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110(10):3499–3506PubMed Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110(10):3499–3506PubMed
241.
go back to reference Sanz L, Santos-Valle P, Alonso-Camino V et al (2008) Long-term in vivo imaging of human angiogenesis: critical role of bone marrow-derived mesenchymal stem cells for the generation of durable blood vessels. Microvasc Res 75(3):308–314PubMed Sanz L, Santos-Valle P, Alonso-Camino V et al (2008) Long-term in vivo imaging of human angiogenesis: critical role of bone marrow-derived mesenchymal stem cells for the generation of durable blood vessels. Microvasc Res 75(3):308–314PubMed
242.
go back to reference Ning H, Yang F, Jiang M et al (2008) The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia 22(3):593–599PubMed Ning H, Yang F, Jiang M et al (2008) The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia 22(3):593–599PubMed
243.
go back to reference Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358(19):2039–2049PubMed Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358(19):2039–2049PubMed
244.
go back to reference Choi HJ, Hyun MS, Jung GJ et al (1998) Tumor angiogenesis as a prognostic predictor in colorectal carcinoma with special reference to mode of metastasis and recurrence. Oncology 55(6):575–581PubMed Choi HJ, Hyun MS, Jung GJ et al (1998) Tumor angiogenesis as a prognostic predictor in colorectal carcinoma with special reference to mode of metastasis and recurrence. Oncology 55(6):575–581PubMed
245.
go back to reference Liao D, Johnson RS (2007) Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 26(2):281–290PubMed Liao D, Johnson RS (2007) Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 26(2):281–290PubMed
246.
go back to reference Fukuda R, Kelly B, Semenza GL (2003) Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Res 63(9):2330–2334PubMed Fukuda R, Kelly B, Semenza GL (2003) Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Res 63(9):2330–2334PubMed
247.
go back to reference Finetti F, Donnini S, Giachetti A et al (2009) Prostaglandin E2 primes the angiogenic switch via a synergic interaction with the endothelial fibroblast growth factor-2 pathway. Circ Res 105(7):657–666PubMed Finetti F, Donnini S, Giachetti A et al (2009) Prostaglandin E2 primes the angiogenic switch via a synergic interaction with the endothelial fibroblast growth factor-2 pathway. Circ Res 105(7):657–666PubMed
248.
go back to reference Gao J, Knutsen A, Arbman G et al (2009) Clinical and biological significance of angiogenesis and lymphangiogenesis in colorectal cancer. Dig Liver Dis 41(2):116–122PubMed Gao J, Knutsen A, Arbman G et al (2009) Clinical and biological significance of angiogenesis and lymphangiogenesis in colorectal cancer. Dig Liver Dis 41(2):116–122PubMed
249.
go back to reference Onogawa S, Kitadai Y, Tanaka S et al (2004) Regulation of vascular endothelial growth factor (VEGF)-C and VEGF-D expression by the organ microenvironment in human colon carcinoma. Eur J Cancer 40(10):1604–1609PubMed Onogawa S, Kitadai Y, Tanaka S et al (2004) Regulation of vascular endothelial growth factor (VEGF)-C and VEGF-D expression by the organ microenvironment in human colon carcinoma. Eur J Cancer 40(10):1604–1609PubMed
250.
go back to reference Tammela T, Petrova TV, Alitalo K (2005) Molecular lymphangiogenesis: new players. Trends Cell Biol 15(8):434–441PubMed Tammela T, Petrova TV, Alitalo K (2005) Molecular lymphangiogenesis: new players. Trends Cell Biol 15(8):434–441PubMed
251.
go back to reference Tammela T, Saaristo A, Lohela M et al (2005) Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood 105(12):4642–4648PubMed Tammela T, Saaristo A, Lohela M et al (2005) Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood 105(12):4642–4648PubMed
252.
go back to reference Kazama S, Watanabe T, Kanazawa T et al (2007) Vascular endothelial growth factor-C (VEGF-C) is a more specific risk factor for lymph node metastasis than VEGF-D in submucosal colorectal cancer. Hepatogastroenterology 54(73):71–76PubMed Kazama S, Watanabe T, Kanazawa T et al (2007) Vascular endothelial growth factor-C (VEGF-C) is a more specific risk factor for lymph node metastasis than VEGF-D in submucosal colorectal cancer. Hepatogastroenterology 54(73):71–76PubMed
253.
go back to reference Timpl R, Dziadek M (1986) Structure, development, and molecular pathology of basement membranes. Int Rev Exp Pathol 29:1–112PubMed Timpl R, Dziadek M (1986) Structure, development, and molecular pathology of basement membranes. Int Rev Exp Pathol 29:1–112PubMed
254.
go back to reference Hagios C, Lochter A, Bissell MJ (1998) Tissue architecture: the ultimate regulator of epithelial function? Philos Trans R Soc Lond B Biol Sci 353(1370):857–870PubMed Hagios C, Lochter A, Bissell MJ (1998) Tissue architecture: the ultimate regulator of epithelial function? Philos Trans R Soc Lond B Biol Sci 353(1370):857–870PubMed
255.
go back to reference Rabinovitz I, Mercurio AM (1997) The integrin alpha6beta4 functions in carcinoma cell migration on laminin-1 by mediating the formation and stabilization of actin-containing motility structures. J Cell Biol 139(7):1873–1884PubMed Rabinovitz I, Mercurio AM (1997) The integrin alpha6beta4 functions in carcinoma cell migration on laminin-1 by mediating the formation and stabilization of actin-containing motility structures. J Cell Biol 139(7):1873–1884PubMed
256.
go back to reference Zapatka M, Zboralski D, Radacz Y et al (2007) Basement membrane component laminin-5 is a target of the tumor suppressor Smad4. Oncogene 26(10):1417–1427PubMed Zapatka M, Zboralski D, Radacz Y et al (2007) Basement membrane component laminin-5 is a target of the tumor suppressor Smad4. Oncogene 26(10):1417–1427PubMed
257.
go back to reference Tsuruta D, Kobayashi H, Imanishi H et al (2008) Laminin-332-integrin interaction: a target for cancer therapy? Curr Med Chem 15(20):1968–1975PubMed Tsuruta D, Kobayashi H, Imanishi H et al (2008) Laminin-332-integrin interaction: a target for cancer therapy? Curr Med Chem 15(20):1968–1975PubMed
258.
go back to reference Kirkland SC (2009) Type I collagen inhibits differentiation and promotes a stem cell-like phenotype in human colorectal carcinoma cells. Br J Cancer 101(2):320–326PubMed Kirkland SC (2009) Type I collagen inhibits differentiation and promotes a stem cell-like phenotype in human colorectal carcinoma cells. Br J Cancer 101(2):320–326PubMed
259.
go back to reference Ding J, Li D, Wang X et al (2008) Fibronectin promotes invasiveness and focal adhesion kinase tyrosine phosphorylation of human colon cancer cell. Hepatogastroenterology 55(88):2072–2076PubMed Ding J, Li D, Wang X et al (2008) Fibronectin promotes invasiveness and focal adhesion kinase tyrosine phosphorylation of human colon cancer cell. Hepatogastroenterology 55(88):2072–2076PubMed
260.
go back to reference Hashimoto Y, Skacel M, Adams JC (2008) Association of loss of epithelial syndecan-1 with stage and local metastasis of colorectal adenocarcinomas: an immunohistochemical study of clinically annotated tumors. BMC Cancer 8:185PubMed Hashimoto Y, Skacel M, Adams JC (2008) Association of loss of epithelial syndecan-1 with stage and local metastasis of colorectal adenocarcinomas: an immunohistochemical study of clinically annotated tumors. BMC Cancer 8:185PubMed
261.
go back to reference Theocharis AD (2002) Human colon adenocarcinoma is associated with specific post-translational modifications of versican and decorin. Biochim Biophys Acta 1588(2):165–172PubMed Theocharis AD (2002) Human colon adenocarcinoma is associated with specific post-translational modifications of versican and decorin. Biochim Biophys Acta 1588(2):165–172PubMed
262.
go back to reference Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4(7):528–539PubMed Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4(7):528–539PubMed
263.
go back to reference Toole BP, Wight TN, Tammi MI (2002) Hyaluronan-cell interactions in cancer and vascular disease. J Biol Chem 277(7):4593–4596PubMed Toole BP, Wight TN, Tammi MI (2002) Hyaluronan-cell interactions in cancer and vascular disease. J Biol Chem 277(7):4593–4596PubMed
264.
go back to reference Kim HR, Wheeler MA, Wilson CM et al (2004) Hyaluronan facilitates invasion of colon carcinoma cells in vitro via interaction with CD44. Cancer Res 64(13):4569–4576PubMed Kim HR, Wheeler MA, Wilson CM et al (2004) Hyaluronan facilitates invasion of colon carcinoma cells in vitro via interaction with CD44. Cancer Res 64(13):4569–4576PubMed
265.
go back to reference Laurich C, Wheeler MA, Iida J et al (2004) Hyaluronan mediates adhesion of metastatic colon carcinoma cells. J Surg Res 122(1):70–74PubMed Laurich C, Wheeler MA, Iida J et al (2004) Hyaluronan mediates adhesion of metastatic colon carcinoma cells. J Surg Res 122(1):70–74PubMed
266.
go back to reference Dunn KM, Lee PK, Wilson CM et al (2009) Inhibition of hyaluronan synthases decreases matrix metalloproteinase-7 (MMP-7) expression and activity. Surgery 145(3):322–329PubMed Dunn KM, Lee PK, Wilson CM et al (2009) Inhibition of hyaluronan synthases decreases matrix metalloproteinase-7 (MMP-7) expression and activity. Surgery 145(3):322–329PubMed
267.
go back to reference Misra S, Toole BP, Ghatak S (2006) Hyaluronan constitutively regulates activation of multiple receptor tyrosine kinases in epithelial and carcinoma cells. J Biol Chem 281(46):34936–34941PubMed Misra S, Toole BP, Ghatak S (2006) Hyaluronan constitutively regulates activation of multiple receptor tyrosine kinases in epithelial and carcinoma cells. J Biol Chem 281(46):34936–34941PubMed
268.
go back to reference Ghatak S, Misra S, Toole BP (2005) Hyaluronan constitutively regulates ErbB2 phosphorylation and signaling complex formation in carcinoma cells. J Biol Chem 280(10):8875–8883PubMed Ghatak S, Misra S, Toole BP (2005) Hyaluronan constitutively regulates ErbB2 phosphorylation and signaling complex formation in carcinoma cells. J Biol Chem 280(10):8875–8883PubMed
269.
go back to reference Misra S, Obeid LM, Hannun YA et al (2008) Hyaluronan constitutively regulates activation of COX-2-mediated cell survival activity in intestinal epithelial and colon carcinoma cells. J Biol Chem 283(21):14335–14344PubMed Misra S, Obeid LM, Hannun YA et al (2008) Hyaluronan constitutively regulates activation of COX-2-mediated cell survival activity in intestinal epithelial and colon carcinoma cells. J Biol Chem 283(21):14335–14344PubMed
270.
go back to reference Yazawa K, Tsuno NH, Kitayama J et al (2005) Selective inhibition of cyclooxygenase-2 inhibits colon cancer cell adhesion to extracellular matrix by decreased expression of beta1 integrin. Cancer Sci 96(2):93–99PubMed Yazawa K, Tsuno NH, Kitayama J et al (2005) Selective inhibition of cyclooxygenase-2 inhibits colon cancer cell adhesion to extracellular matrix by decreased expression of beta1 integrin. Cancer Sci 96(2):93–99PubMed
271.
go back to reference Heino J, Kapyla J (2009) Cellular receptors of extracellular matrix molecules. Curr Pharm Des 15(12):1309–1317PubMed Heino J, Kapyla J (2009) Cellular receptors of extracellular matrix molecules. Curr Pharm Des 15(12):1309–1317PubMed
272.
go back to reference Broom OJ, Massoumi R, Sjolander A (2006) Alpha2beta1 integrin signalling enhances cyclooxygenase-2 expression in intestinal epithelial cells. J Cell Physiol 209(3):950–958PubMed Broom OJ, Massoumi R, Sjolander A (2006) Alpha2beta1 integrin signalling enhances cyclooxygenase-2 expression in intestinal epithelial cells. J Cell Physiol 209(3):950–958PubMed
273.
go back to reference Murillo CA, Rychahou PG, Evers BM (2004) Inhibition of alpha5 integrin decreases PI3K activation and cell adhesion of human colon cancers. Surgery 136(2):143–149PubMed Murillo CA, Rychahou PG, Evers BM (2004) Inhibition of alpha5 integrin decreases PI3K activation and cell adhesion of human colon cancers. Surgery 136(2):143–149PubMed
274.
go back to reference van Kempen LC, de Visser KE, Coussens LM (2006) Inflammation, proteases and cancer. Eur J Cancer 42(6):728–734PubMed van Kempen LC, de Visser KE, Coussens LM (2006) Inflammation, proteases and cancer. Eur J Cancer 42(6):728–734PubMed
275.
go back to reference Zucker S, Vacirca J (2004) Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev 23(1–2):101–117PubMed Zucker S, Vacirca J (2004) Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev 23(1–2):101–117PubMed
276.
go back to reference Toda D, Ota T, Tsukuda K et al (2006) Gefitinib decreases the synthesis of matrix metalloproteinase and the adhesion to extracellular matrix proteins of colon cancer cells. Anticancer Res 26(1A):129–134PubMed Toda D, Ota T, Tsukuda K et al (2006) Gefitinib decreases the synthesis of matrix metalloproteinase and the adhesion to extracellular matrix proteins of colon cancer cells. Anticancer Res 26(1A):129–134PubMed
277.
go back to reference Davidsen ML, Wurtz SO, Romer MU et al (2006) TIMP-1 gene deficiency increases tumour cell sensitivity to chemotherapy-induced apoptosis. Br J Cancer 95(8):1114–1120PubMed Davidsen ML, Wurtz SO, Romer MU et al (2006) TIMP-1 gene deficiency increases tumour cell sensitivity to chemotherapy-induced apoptosis. Br J Cancer 95(8):1114–1120PubMed
278.
go back to reference Sorensen NM, Bystrom P, Christensen IJ et al (2007) TIMP-1 is significantly associated with objective response and survival in metastatic colorectal cancer patients receiving combination of irinotecan, 5-fluorouracil, and folinic acid. Clin Cancer Res 13(14):4117–4122PubMed Sorensen NM, Bystrom P, Christensen IJ et al (2007) TIMP-1 is significantly associated with objective response and survival in metastatic colorectal cancer patients receiving combination of irinotecan, 5-fluorouracil, and folinic acid. Clin Cancer Res 13(14):4117–4122PubMed
279.
go back to reference Packer LM, Williams SJ, Callaghan S et al (2004) Expression of the cell surface mucin gene family in adenocarcinomas. Int J Oncol 25(4):1119–1126PubMed Packer LM, Williams SJ, Callaghan S et al (2004) Expression of the cell surface mucin gene family in adenocarcinomas. Int J Oncol 25(4):1119–1126PubMed
280.
go back to reference Baldus SE, Monig SP, Huxel S et al (2004) MUC1 and nuclear beta-catenin are coexpressed at the invasion front of colorectal carcinomas and are both correlated with tumor prognosis. Clin Cancer Res 10(8):2790–2796PubMed Baldus SE, Monig SP, Huxel S et al (2004) MUC1 and nuclear beta-catenin are coexpressed at the invasion front of colorectal carcinomas and are both correlated with tumor prognosis. Clin Cancer Res 10(8):2790–2796PubMed
281.
go back to reference Huang J, Che MI, Huang YT et al (2009) Overexpression of MUC15 activates extracellular signal-regulated kinase 1/2 and promotes the oncogenic potential of human colon cancer cells. Carcinogenesis 30(8):1452–1458PubMed Huang J, Che MI, Huang YT et al (2009) Overexpression of MUC15 activates extracellular signal-regulated kinase 1/2 and promotes the oncogenic potential of human colon cancer cells. Carcinogenesis 30(8):1452–1458PubMed
282.
go back to reference Wai PY, Kuo PC (2004) The role of osteopontin in tumor metastasis. J Surg Res 121(2):228–241PubMed Wai PY, Kuo PC (2004) The role of osteopontin in tumor metastasis. J Surg Res 121(2):228–241PubMed
283.
go back to reference El-Tanani MK (2008) Role of osteopontin in cellular signaling and metastatic phenotype. Front Biosci 13:4276–4284PubMed El-Tanani MK (2008) Role of osteopontin in cellular signaling and metastatic phenotype. Front Biosci 13:4276–4284PubMed
284.
go back to reference Wai PY, Mi Z, Guo H et al (2005) Osteopontin silencing by small interfering RNA suppresses in vitro and in vivo CT26 murine colon adenocarcinoma metastasis. Carcinogenesis 26(4):741–751PubMed Wai PY, Mi Z, Guo H et al (2005) Osteopontin silencing by small interfering RNA suppresses in vitro and in vivo CT26 murine colon adenocarcinoma metastasis. Carcinogenesis 26(4):741–751PubMed
285.
go back to reference Irby RB, McCarthy SM, Yeatman TJ (2004) Osteopontin regulates multiple functions contributing to human colon cancer development and progression. Clin Exp Metastasis 21(6):515–523PubMed Irby RB, McCarthy SM, Yeatman TJ (2004) Osteopontin regulates multiple functions contributing to human colon cancer development and progression. Clin Exp Metastasis 21(6):515–523PubMed
286.
go back to reference Zagani R, Hamzaoui N, Cacheux W et al (2009) Cyclooxygenase-2 inhibitors down-regulate osteopontin and Nr4a2—new therapeutic targets for colorectal cancers. Gastroenterology 137(4):1358–1366PubMed Zagani R, Hamzaoui N, Cacheux W et al (2009) Cyclooxygenase-2 inhibitors down-regulate osteopontin and Nr4a2—new therapeutic targets for colorectal cancers. Gastroenterology 137(4):1358–1366PubMed
287.
go back to reference Iacovazzi PA, Notarnicola M, Caruso MG, et al (2009) Serum levels of galectin-3 and its ligand 90 k/mac-2 bp in colorectal cancer patients. Immunopharmacol Immunotoxicol. PMID: 19686089 Iacovazzi PA, Notarnicola M, Caruso MG, et al (2009) Serum levels of galectin-3 and its ligand 90 k/mac-2 bp in colorectal cancer patients. Immunopharmacol Immunotoxicol. PMID: 19686089
288.
go back to reference Song S, Mazurek N, Liu C et al (2009) Galectin-3 mediates nuclear beta-catenin accumulation and Wnt signaling in human colon cancer cells by regulation of glycogen synthase kinase-3beta activity. Cancer Res 69(4):1343–1349PubMed Song S, Mazurek N, Liu C et al (2009) Galectin-3 mediates nuclear beta-catenin accumulation and Wnt signaling in human colon cancer cells by regulation of glycogen synthase kinase-3beta activity. Cancer Res 69(4):1343–1349PubMed
289.
go back to reference Nobumoto A, Nagahara K, Oomizu S et al (2008) Galectin-9 suppresses tumor metastasis by blocking adhesion to endothelium and extracellular matrices. Glycobiology 18(9):735–744PubMed Nobumoto A, Nagahara K, Oomizu S et al (2008) Galectin-9 suppresses tumor metastasis by blocking adhesion to endothelium and extracellular matrices. Glycobiology 18(9):735–744PubMed
290.
go back to reference Kikuchi Y, Kashima TG, Nishiyama T et al (2008) Periostin is expressed in pericryptal fibroblasts and cancer-associated fibroblasts in the colon. J Histochem Cytochem 56(8):753–764PubMed Kikuchi Y, Kashima TG, Nishiyama T et al (2008) Periostin is expressed in pericryptal fibroblasts and cancer-associated fibroblasts in the colon. J Histochem Cytochem 56(8):753–764PubMed
291.
go back to reference Ma C, Rong Y, Radiloff DR et al (2008) Extracellular matrix protein betaig-h3/TGFBI promotes metastasis of colon cancer by enhancing cell extravasation. Genes Dev 22(3):308–321PubMed Ma C, Rong Y, Radiloff DR et al (2008) Extracellular matrix protein betaig-h3/TGFBI promotes metastasis of colon cancer by enhancing cell extravasation. Genes Dev 22(3):308–321PubMed
Metadata
Title
The Tumor Microenvironment in Colorectal Carcinogenesis
Authors
Vijay G. Peddareddigari
Dingzhi Wang
Raymond N. DuBois
Publication date
01-12-2010
Publisher
Springer Netherlands
Published in
Cancer Microenvironment / Issue 1/2010
Print ISSN: 1875-2292
Electronic ISSN: 1875-2284
DOI
https://doi.org/10.1007/s12307-010-0038-3

Other articles of this Issue 1/2010

Cancer Microenvironment 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine