Skip to main content
Top
Published in: Breast Cancer 6/2019

01-11-2019 | Ultrasound | Original Article

Simultaneous comparison between strain and shear wave elastography of breast masses for the differentiation of benign and malignant lesions by qualitative and quantitative assessments

Authors: Tomoyuki Fujioka, Mio Mori, Kazunori Kubota, Yuka Kikuchi, Leona Katsuta, Mai Kasahara, Goshi Oda, Toshiyuki Ishiba, Tsuyoshi Nakagawa, Ukihide Tateishi

Published in: Breast Cancer | Issue 6/2019

Login to get access

Abstract

Purpose

To compare the addition of diagnostic strain elastography (SE) and shear wave elastography (SWE) values to the conventional B-mode ultrasonography in differentiating between benign and malignant breast masses by qualitative and quantitative assessments.

Materials and methods

B-mode ultrasound, SE, and SWE were simultaneously performed using one ultrasound system in 148 breast masses; 88 of them were malignant. The breast imaging reporting and data system category in the B-mode, Tsukuba score (SETsu), Fat-Lesion-Ratio (SEFLR) in SE, and five-point color assessment (SWEcol) and elasticity values (SWEela) in SWE were assessed. The results were compared using the area under the receiver-operating characteristic curve (AUC).

Result

The AUC for B-mode and each elastography were similar (B-mode, 0.889; SETsu, 0.885; SEFLR, 0.875; SWEcol, 0.881; SWEela, 0.885; P > 0.05). The combined sets between B-mode and either of the elastography technique showed good diagnostic performance (B-mode + SETsu, 0.903; B-mode + SEFLR, 0.909; B-mode + SWEcol, 0.919; B-mode + SWEela, 0.914). B-mode + SWEcol and B-mode + SWEela showed a higher AUC than B-mode alone (P = 0.026 and 0.029), and B-mode + SETsu and B-mode + SEFLR showed comparable AUC to B-mode alone (P = 0.196 and 0.085). There was no significant difference between qualitative and quantitative assessments for the combined sets of B-mode and elastography (P > 0.05).

Conclusion

The addition of both SE and SWE to B-mode ultrasound improved the diagnostic performance with increased AUC, and especially SWE was more useful than SE, and no significant difference was found between qualitative and quantitative assessments.
Literature
1.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.CrossRef
2.
go back to reference Kornecki A. Current status of breast ultrasound. Can Assoc Radiol J. 2011;62:31–40.CrossRef Kornecki A. Current status of breast ultrasound. Can Assoc Radiol J. 2011;62:31–40.CrossRef
3.
go back to reference Hooley RJ, Scoutt LM, Philpotts LE. Breast ultrasonography: state of the art. Radiology. 2013;268:642–59.CrossRef Hooley RJ, Scoutt LM, Philpotts LE. Breast ultrasonography: state of the art. Radiology. 2013;268:642–59.CrossRef
4.
go back to reference D’Orsi CJ, Sickles EA, Mendelson EB, Morris EA. ACR BI-RADS atlas, breast imaging reporting and data system. Reston, VA: American College of Radiology; 2013. D’Orsi CJ, Sickles EA, Mendelson EB, Morris EA. ACR BI-RADS atlas, breast imaging reporting and data system. Reston, VA: American College of Radiology; 2013.
5.
go back to reference Rao AA, Feneis J, Lalonde C, Ojeda-Fournier H. A pictorial review of changes in the BI-RADS fifth edition. Radiographics. 2016;36:623–39.CrossRef Rao AA, Feneis J, Lalonde C, Ojeda-Fournier H. A pictorial review of changes in the BI-RADS fifth edition. Radiographics. 2016;36:623–39.CrossRef
6.
go back to reference Choi EJ, Lee EH, Kim YM, Chang YW, Lee JH, Park YM, et al. Interobserver agreement in breast ultrasound categorization in the mammography and ultrasonography study for breast cancer screening effectiveness (MUST-BE) trial: results of a preliminary study. Ultrasonography. 2018;38:172–80.CrossRef Choi EJ, Lee EH, Kim YM, Chang YW, Lee JH, Park YM, et al. Interobserver agreement in breast ultrasound categorization in the mammography and ultrasonography study for breast cancer screening effectiveness (MUST-BE) trial: results of a preliminary study. Ultrasonography. 2018;38:172–80.CrossRef
7.
go back to reference Shiina T, Nightingale KR, Palmeri ML, Hall TJ, Bamber JC, Barr RG, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography, part 1: basic principles and terminology. Ultrasound Med Biol. 2015;41:1126–47.CrossRef Shiina T, Nightingale KR, Palmeri ML, Hall TJ, Bamber JC, Barr RG, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography, part 1: basic principles and terminology. Ultrasound Med Biol. 2015;41:1126–47.CrossRef
8.
go back to reference Garra BS, Cespedes EI, Ophir J, Spratt SR, Zuurbier RA, Magnant CM, et al. Elastography of breast lesions: initial clinical results. Radiology. 1997;202:79–86.CrossRef Garra BS, Cespedes EI, Ophir J, Spratt SR, Zuurbier RA, Magnant CM, et al. Elastography of breast lesions: initial clinical results. Radiology. 1997;202:79–86.CrossRef
9.
go back to reference Itoh A, Ueno E, Tohno E, Kamma H, Takahashi H, Shiina T, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology. 2006;239:341–50.CrossRef Itoh A, Ueno E, Tohno E, Kamma H, Takahashi H, Shiina T, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology. 2006;239:341–50.CrossRef
10.
go back to reference Sadigh G, Carlos RC, Neal CH. Dwamena BA. Ultrasonographic differentiation of malignant from benign breast lesions: a meta-analytic comparison of elasticity and BIRADS scoring. Breast Cancer Res Treat. 2012;133:23–35.CrossRef Sadigh G, Carlos RC, Neal CH. Dwamena BA. Ultrasonographic differentiation of malignant from benign breast lesions: a meta-analytic comparison of elasticity and BIRADS scoring. Breast Cancer Res Treat. 2012;133:23–35.CrossRef
11.
go back to reference Athanasiou A, Tardivon A, Tanter M, Sigal-Zafrani B, Bercoff J, Deffieux T, et al. Breast lesions: quantitative elastography with supersonic shear imaging–preliminary results. Radiology. 2010;256:297–303.CrossRef Athanasiou A, Tardivon A, Tanter M, Sigal-Zafrani B, Bercoff J, Deffieux T, et al. Breast lesions: quantitative elastography with supersonic shear imaging–preliminary results. Radiology. 2010;256:297–303.CrossRef
12.
go back to reference Xu H, Rao M, Varghese T, Sommer A, Baker S, Hall TJ, et al. Axial-shear strain imaging for differentiating benign and malignant breast masses. Ultrasound Med Biol. 2010;36:1813–24.CrossRef Xu H, Rao M, Varghese T, Sommer A, Baker S, Hall TJ, et al. Axial-shear strain imaging for differentiating benign and malignant breast masses. Ultrasound Med Biol. 2010;36:1813–24.CrossRef
13.
go back to reference Berg WA, Cosgrove DO, Doré CJ, Schäfer FK, Svensson WE, Hooley RJ, et al. Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology. 2012;262:435–49.CrossRef Berg WA, Cosgrove DO, Doré CJ, Schäfer FK, Svensson WE, Hooley RJ, et al. Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses. Radiology. 2012;262:435–49.CrossRef
14.
go back to reference Evans A, Whelehan P, Thomson K, Brauer K, Jordan L, Purdie C, et al. Differentiating benign from malignant solid breast masses: value of shear wave elastography according to lesion stiffness combined with greyscale ultrasound according to BI-RADS classification. Br J Cancer. 2012;107:224–9.CrossRef Evans A, Whelehan P, Thomson K, Brauer K, Jordan L, Purdie C, et al. Differentiating benign from malignant solid breast masses: value of shear wave elastography according to lesion stiffness combined with greyscale ultrasound according to BI-RADS classification. Br J Cancer. 2012;107:224–9.CrossRef
15.
go back to reference Song EJ, Sohn YM, Seo M. Diagnostic performances of shear-wave elastography and B-mode ultrasound to differentiate benign and malignant breast lesions: the emphasis on the cutoff value of qualitative and quantitative parameters. Clin Imaging. 2018;50:302–7.CrossRef Song EJ, Sohn YM, Seo M. Diagnostic performances of shear-wave elastography and B-mode ultrasound to differentiate benign and malignant breast lesions: the emphasis on the cutoff value of qualitative and quantitative parameters. Clin Imaging. 2018;50:302–7.CrossRef
16.
go back to reference Chang JM, Won JK, Lee KB, Park IA, Yi A, Moon WK. Comparison of shear-wave and strain ultrasound elastography in the differentiation of benign and malignant breast lesions. AJR Am J Roentgenol. 2013;201:347–56.CrossRef Chang JM, Won JK, Lee KB, Park IA, Yi A, Moon WK. Comparison of shear-wave and strain ultrasound elastography in the differentiation of benign and malignant breast lesions. AJR Am J Roentgenol. 2013;201:347–56.CrossRef
17.
go back to reference Youk JH, Son EJ, Gweon HM, Kim H, Park YJ, Kim JA. Comparison of strain and shear wave elastography for the differentiation of benign from malignant breast lesions, combined with B-mode ultrasonography: qualitative and quantitative assessments. Ultrasound Med Biol. 2014;40:2336–44.CrossRef Youk JH, Son EJ, Gweon HM, Kim H, Park YJ, Kim JA. Comparison of strain and shear wave elastography for the differentiation of benign from malignant breast lesions, combined with B-mode ultrasonography: qualitative and quantitative assessments. Ultrasound Med Biol. 2014;40:2336–44.CrossRef
18.
go back to reference Seo M, Ahn HS, Park SH, Lee JB, Choi BI, Sohn YM, et al. Comparison and combination of strain and shear wave elastography of breast masses for differentiation of benign and malignant lesions by quantitative assessment: preliminary study. J Ultrasound Med. 2018;37:99–109.CrossRef Seo M, Ahn HS, Park SH, Lee JB, Choi BI, Sohn YM, et al. Comparison and combination of strain and shear wave elastography of breast masses for differentiation of benign and malignant lesions by quantitative assessment: preliminary study. J Ultrasound Med. 2018;37:99–109.CrossRef
19.
go back to reference Kim HJ, Kim SM, Kim B, La Yun B, Jang M, Ko Y, et al. Comparison of strain and shear wave elastography for qualitative and quantitative assessment of breast masses in the same population. Sci Rep. 2018;8:6197.CrossRef Kim HJ, Kim SM, Kim B, La Yun B, Jang M, Ko Y, et al. Comparison of strain and shear wave elastography for qualitative and quantitative assessment of breast masses in the same population. Sci Rep. 2018;8:6197.CrossRef
20.
go back to reference Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.CrossRef Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.CrossRef
21.
go back to reference Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;25(139):891–906.CrossRef Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;25(139):891–906.CrossRef
22.
go back to reference Desmedt C, Haibe-Kains B, Wirapati P, Buyse M, Larsimont D, Bontempi G, et al. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res. 2008;14:5158–65.CrossRef Desmedt C, Haibe-Kains B, Wirapati P, Buyse M, Larsimont D, Bontempi G, et al. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res. 2008;14:5158–65.CrossRef
23.
go back to reference Fujioka T, Kubota K, Kikuchi Y, Tsuchiya J, Tateishi U, Kasaharak M, et al. The feasibility of using 18F-FDG-PET/CT in patients with mucinous breast carcinoma. Nucl Med Commun. 2018;39:1033–8.CrossRef Fujioka T, Kubota K, Kikuchi Y, Tsuchiya J, Tateishi U, Kasaharak M, et al. The feasibility of using 18F-FDG-PET/CT in patients with mucinous breast carcinoma. Nucl Med Commun. 2018;39:1033–8.CrossRef
24.
go back to reference Fujioka T, Kubota K, Toriihara A, Machida Y, Okazawa K, Nakagawa T, et al. Tumor characteristics of ductal carcinoma in situ of breast visualized on [F-18] fluorodeoxyglucose-positron emission tomography/computed tomography: results from a retrospective study. World J Radiol. 2016;28(8):743–9.CrossRef Fujioka T, Kubota K, Toriihara A, Machida Y, Okazawa K, Nakagawa T, et al. Tumor characteristics of ductal carcinoma in situ of breast visualized on [F-18] fluorodeoxyglucose-positron emission tomography/computed tomography: results from a retrospective study. World J Radiol. 2016;28(8):743–9.CrossRef
25.
go back to reference Chang JM, Park IA, Lee SH, Kim WH, Bae MS, Koo HR, et al. Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer. Eur Radiol. 2013;23:2450–8.CrossRef Chang JM, Park IA, Lee SH, Kim WH, Bae MS, Koo HR, et al. Stiffness of tumours measured by shear-wave elastography correlated with subtypes of breast cancer. Eur Radiol. 2013;23:2450–8.CrossRef
26.
go back to reference Youk JH, Gweon HM, Son EJ, Kim JA, Jeong J. Shear-wave elastography of invasive breast cancer: correlation between quantitative mean elasticity value and immunohistochemical profile. Breast Cancer Res Treat. 2013;138:119–26.CrossRef Youk JH, Gweon HM, Son EJ, Kim JA, Jeong J. Shear-wave elastography of invasive breast cancer: correlation between quantitative mean elasticity value and immunohistochemical profile. Breast Cancer Res Treat. 2013;138:119–26.CrossRef
27.
go back to reference Evans A, Whelehan P, Thomson K, McLean D, Brauer K, Purdie C, et al. Invasive breast cancer: relationship between shear-wave elastographic findings and histologic prognostic factors. Radiology. 2012;263:673–7.CrossRef Evans A, Whelehan P, Thomson K, McLean D, Brauer K, Purdie C, et al. Invasive breast cancer: relationship between shear-wave elastographic findings and histologic prognostic factors. Radiology. 2012;263:673–7.CrossRef
Metadata
Title
Simultaneous comparison between strain and shear wave elastography of breast masses for the differentiation of benign and malignant lesions by qualitative and quantitative assessments
Authors
Tomoyuki Fujioka
Mio Mori
Kazunori Kubota
Yuka Kikuchi
Leona Katsuta
Mai Kasahara
Goshi Oda
Toshiyuki Ishiba
Tsuyoshi Nakagawa
Ukihide Tateishi
Publication date
01-11-2019
Publisher
Springer Japan
Published in
Breast Cancer / Issue 6/2019
Print ISSN: 1340-6868
Electronic ISSN: 1880-4233
DOI
https://doi.org/10.1007/s12282-019-00985-0

Other articles of this Issue 6/2019

Breast Cancer 6/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine