Skip to main content
Top
Published in: Breast Cancer 2/2018

01-03-2018 | Original Article

Investigating the therapeutic potential and mechanism of curcumin in breast cancer based on RNA sequencing and bioinformatics analysis

Authors: Rong Wang, Jinbin Li, Yulan Zhao, Yapeng Li, Ling Yin

Published in: Breast Cancer | Issue 2/2018

Login to get access

Abstract

Background

Breast cancer is a prevalent cancer in female. This study aims to investigate the therapeutic potential and mechanism of curcumin in breast cancer.

Methods

After cultivation, human breast cancer cells (MCF-7 cells) were treated with 0.1% (v/v) 15 µmol/ml curcumin-dimethylsulfoxide solution and 0.1% (v/v) dimethylsulfoxide, respectively, at 37 °C and 5% CO2 for 48 h. Total RNA was extracted, cDNA library was constructed, and cDNAs were amplified and sequenced. After data preprocessing, the Cufflinks software was utilized to identify differentially expressed genes (DEGs, |log2 fold change| > 0.5 and p value < 0.05). Then, functional and pathway enrichment analyses were performed through DAVID (p value < 0.05) and WebGestalt [false discovery rate (FDR) < 0.05], respectively. Furthermore, drug and disease association analyses (FDR < 0.05) were conducted through WebGestalt and DAVID, respectively. STRING was employed to construct protein–protein interaction (PPI) network (combined score > 0.4).

Results

After DEGs screening, 347 DEGs were identified. Up-regulated DEGs were enriched in 14 functions and 3 pathways, and associated with 12 drugs. Down-regulated DEGs were enriched in 14 functions and 9 pathways, and associated with 14 drugs. Moreover, 5 DEGs were associated with breast cancer, including PGAP3, MAP3K1, SERPINE1, PON2, and GSTO2. PPI network was constructed, and the top DEGs were FOS, VIM, FGF2, MAPK1, SPARC, TOMM7, PSMB10, TCEB2, SOCS1, COL4A1, UQCR11, SERPINE1, and ISG15.

Conclusion

Curcumin might have therapeutic potential in breast cancer through regulating breast cancer-related genes, including SERPINE1, PGAP3, MAP3K1, MAPK1, GSTO2, VIM, SPARC, and FGF2. However, validations are required.
Literature
1.
2.
go back to reference Zilli M, Grassadonia A, Tinari N, Di Giacobbe A, Gildetti S, Giampietro J, et al. Molecular mechanisms of endocrine resistance and their implication in the therapy of breast cancer. Biochim Biophys Acta. 2009;1795:62–81.PubMed Zilli M, Grassadonia A, Tinari N, Di Giacobbe A, Gildetti S, Giampietro J, et al. Molecular mechanisms of endocrine resistance and their implication in the therapy of breast cancer. Biochim Biophys Acta. 2009;1795:62–81.PubMed
3.
go back to reference Baselga J, Cortés J, Kim S-B, Im S-A, Hegg R, Im Y-H, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366:109–19.CrossRefPubMed Baselga J, Cortés J, Kim S-B, Im S-A, Hegg R, Im Y-H, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366:109–19.CrossRefPubMed
4.
go back to reference Basnet P, Skalko-Basnet N. Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules. 2011;16:4567–98.CrossRefPubMed Basnet P, Skalko-Basnet N. Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules. 2011;16:4567–98.CrossRefPubMed
5.
go back to reference Ozawa H, Imaizumi A, Sumi Y, Hashimoto T, Kanai M, Makino Y, et al. Curcumin β-d-Glucuronide plays an important role to keep high levels of free-form curcumin in the blood. Biol Pharm Bull. 2017;40:1515.CrossRefPubMed Ozawa H, Imaizumi A, Sumi Y, Hashimoto T, Kanai M, Makino Y, et al. Curcumin β-d-Glucuronide plays an important role to keep high levels of free-form curcumin in the blood. Biol Pharm Bull. 2017;40:1515.CrossRefPubMed
7.
go back to reference Choudhuri T, Pal S, Agwarwal ML, Das T, Sa G. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett. 2002;512:334–40.CrossRefPubMed Choudhuri T, Pal S, Agwarwal ML, Das T, Sa G. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett. 2002;512:334–40.CrossRefPubMed
8.
go back to reference Nagaraju GP, Aliya S, Zafar SF, Basha R, Diaz R, El-Rayes BF. The impact of curcumin on breast cancer. Integr Biol. 2012;4:996–1007.CrossRef Nagaraju GP, Aliya S, Zafar SF, Basha R, Diaz R, El-Rayes BF. The impact of curcumin on breast cancer. Integr Biol. 2012;4:996–1007.CrossRef
9.
go back to reference Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–78.CrossRefPubMedPubMedCentral Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–78.CrossRefPubMedPubMedCentral
10.
go back to reference Da Wei Huang BTS, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008;4:44–57.CrossRef Da Wei Huang BTS, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008;4:44–57.CrossRef
11.
go back to reference Wang J, Duncan D, Shi Z, Zhang B. WEB-based gene set analysis toolkit (WebGestalt): update 2013. Nucleic Acids Res. 2013;41:439. Wang J, Duncan D, Shi Z, Zhang B. WEB-based gene set analysis toolkit (WebGestalt): update 2013. Nucleic Acids Res. 2013;41:439.
12.
go back to reference Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41:D808–15.CrossRefPubMed Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41:D808–15.CrossRefPubMed
13.
go back to reference Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Data mining in proteomics. Berlin: Springer; 2011. p. 291–303. Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Data mining in proteomics. Berlin: Springer; 2011. p. 291–303.
14.
go back to reference Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig. 2011;121:2750–67.CrossRefPubMedPubMedCentral Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig. 2011;121:2750–67.CrossRefPubMedPubMedCentral
15.
go back to reference Asiedu MK, Ingle JN, Behrens MD, Radisky DC, Knutson KL. TGFβ/TNFα-mediated epithelial–mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Can Res. 2011;71:4707–19.CrossRef Asiedu MK, Ingle JN, Behrens MD, Radisky DC, Knutson KL. TGFβ/TNFα-mediated epithelial–mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Can Res. 2011;71:4707–19.CrossRef
16.
go back to reference Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486:400–4.PubMedPubMedCentral Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486:400–4.PubMedPubMedCentral
17.
go back to reference Zhang B, Zhao Y, Zhu J. Global gene regulatory and protein interaction networks in breast cancer metastasis. Cancer Res. 2013;73:A81.CrossRef Zhang B, Zhao Y, Zhu J. Global gene regulatory and protein interaction networks in breast cancer metastasis. Cancer Res. 2013;73:A81.CrossRef
18.
go back to reference Izrailit J, Berman HK, Datti A, Wrana JL, Reedijk M. High throughput kinase inhibitor screens reveal TRB3 and MAPK-ERK/TGFβ pathways as fundamental Notch regulators in breast cancer. Proc Natl Acad Sci. 2013;110:1714–9.CrossRefPubMedPubMedCentral Izrailit J, Berman HK, Datti A, Wrana JL, Reedijk M. High throughput kinase inhibitor screens reveal TRB3 and MAPK-ERK/TGFβ pathways as fundamental Notch regulators in breast cancer. Proc Natl Acad Sci. 2013;110:1714–9.CrossRefPubMedPubMedCentral
19.
go back to reference Masoudi M, Saadat I, Omidvari S, Saadat M. Association between N142D genetic polymorphism of GSTO2 and susceptibility to colorectal cancer. Mol Biol Rep. 2011;38:4309.CrossRefPubMed Masoudi M, Saadat I, Omidvari S, Saadat M. Association between N142D genetic polymorphism of GSTO2 and susceptibility to colorectal cancer. Mol Biol Rep. 2011;38:4309.CrossRefPubMed
20.
go back to reference Wang Z, Qu K, Huang Z, Xu X, Zhang J, Zhang L, et al. Glutathione S-transferase O2 gene rs157077 polymorphism predicts response to transarterial chemoembolization in hepatocellular carcinoma. Tumor Biol. 2015;36:6463–9.CrossRef Wang Z, Qu K, Huang Z, Xu X, Zhang J, Zhang L, et al. Glutathione S-transferase O2 gene rs157077 polymorphism predicts response to transarterial chemoembolization in hepatocellular carcinoma. Tumor Biol. 2015;36:6463–9.CrossRef
21.
go back to reference Pongstaporn W, Rochanawutanon M, Wilailak S, Linasamita V, Weerakiat S, Petmitr S. Genetic alterations in chromosome 10q24. 3 and glutathione S-transferase omega 2 gene polymorphism in ovarian cancer. J Exp Clin Cancer Res CR. 2006;25:107.PubMed Pongstaporn W, Rochanawutanon M, Wilailak S, Linasamita V, Weerakiat S, Petmitr S. Genetic alterations in chromosome 10q24. 3 and glutathione S-transferase omega 2 gene polymorphism in ovarian cancer. J Exp Clin Cancer Res CR. 2006;25:107.PubMed
22.
go back to reference Masoudi M, Saadat I, Omidvari S, Saadat M. Additive effects of genetic variations of xenobiotic detoxification enzymes and DNA repair gene XRCC1 on the susceptibility to breast cancer. Breast Cancer Res Treat. 2010;120:263–5.CrossRefPubMed Masoudi M, Saadat I, Omidvari S, Saadat M. Additive effects of genetic variations of xenobiotic detoxification enzymes and DNA repair gene XRCC1 on the susceptibility to breast cancer. Breast Cancer Res Treat. 2010;120:263–5.CrossRefPubMed
23.
go back to reference Andonova IE, Justenhoven C, Winter S, Hamann U, Baisch C, Rabstein S, et al. No evidence for glutathione S-transferases GSTA2, GSTM2, GSTO1, GSTO2, and GSTZ1 in breast cancer risk. Breast Cancer Res Treat. 2010;121:497–502.CrossRefPubMed Andonova IE, Justenhoven C, Winter S, Hamann U, Baisch C, Rabstein S, et al. No evidence for glutathione S-transferases GSTA2, GSTM2, GSTO1, GSTO2, and GSTZ1 in breast cancer risk. Breast Cancer Res Treat. 2010;121:497–502.CrossRefPubMed
24.
go back to reference Huang C-C, Tu S-H, Lien H-H, Jeng J-Y, Huang C-S, Huang C-J, et al. Concurrent gene signatures for han chinese breast cancers. PLoS One. 2013;8:e76421.CrossRefPubMedPubMedCentral Huang C-C, Tu S-H, Lien H-H, Jeng J-Y, Huang C-S, Huang C-J, et al. Concurrent gene signatures for han chinese breast cancers. PLoS One. 2013;8:e76421.CrossRefPubMedPubMedCentral
25.
go back to reference Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull JD, et al. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res. 2011;9:997–1007.CrossRefPubMedPubMedCentral Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull JD, et al. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res. 2011;9:997–1007.CrossRefPubMedPubMedCentral
26.
go back to reference Cheng C-W, Wang H-W, Chang C-W, Chu H-W, Chen C-Y, Yu J-C, et al. MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer. Breast Cancer Res Treat. 2012;134:1081–93.CrossRefPubMed Cheng C-W, Wang H-W, Chang C-W, Chu H-W, Chen C-Y, Yu J-C, et al. MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer. Breast Cancer Res Treat. 2012;134:1081–93.CrossRefPubMed
27.
go back to reference Basu G, Van Vickle G, Ghazalpour A, Ashfaq R, Gatalica Z, Blevins R, et al. Frequency distribution of SPARC in triple-negative breast cancer patients. J Clin Oncol. 2011;29:s27. Basu G, Van Vickle G, Ghazalpour A, Ashfaq R, Gatalica Z, Blevins R, et al. Frequency distribution of SPARC in triple-negative breast cancer patients. J Clin Oncol. 2011;29:s27.
28.
go back to reference Guillardoy T, Gorostiaga MA, Lanari C, Giulianelli S. FGF-2 stimulates breast cancer growth activating ER and PR. Mol Cancer Res. 2013;11:A006.CrossRef Guillardoy T, Gorostiaga MA, Lanari C, Giulianelli S. FGF-2 stimulates breast cancer growth activating ER and PR. Mol Cancer Res. 2013;11:A006.CrossRef
Metadata
Title
Investigating the therapeutic potential and mechanism of curcumin in breast cancer based on RNA sequencing and bioinformatics analysis
Authors
Rong Wang
Jinbin Li
Yulan Zhao
Yapeng Li
Ling Yin
Publication date
01-03-2018
Publisher
Springer Japan
Published in
Breast Cancer / Issue 2/2018
Print ISSN: 1340-6868
Electronic ISSN: 1880-4233
DOI
https://doi.org/10.1007/s12282-017-0816-6

Other articles of this Issue 2/2018

Breast Cancer 2/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine