Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 6/2023

01-09-2023 | Heart Failure | Original Article

Inhibition of lncRNA DANCR Prevents Heart Failure by Ameliorating Cardiac Hypertrophy and Fibrosis Via Regulation of the miR-758-3p/PRG4/Smad Axis

Authors: Qianwen Huang, Qian Huang

Published in: Journal of Cardiovascular Translational Research | Issue 6/2023

Login to get access

Abstract

The current work was developed to explore the functions and possible mechanism of PRG4 in cardiac hypertrophy and heart failure. Ang II-stimulated H9c2 cells and AC16 cells were used as in vitro cell models. The binding relation between genes in cells was explored using luciferase reporter assays and RNA immunoprecipitation assay. The cardiac functions of rats received transverse-ascending aortic constriction (TAC) surgery and adeno-associated virus (AAV) injection were examined with echocardiography. The myocardial histological changes were observed using H&E, wheat germ agglutinin, and sirius red staining. It was discovered that PRG4 silencing attenuated cell hypertrophy and fibrosis and inactivated the Smad pathway under Ang II treatment. PRG4 was targeted by miR-758-3p, and miR-758-3p interacted with long noncoding RNA DANCR. DANCR silencing inhibited cardiac dysfunction, fibrosis, and TGFβ1/Smad pathway. In addition, DANCR was highly expressed in myocardial extracellular vesicles. Overall, DANCR depletion prevents heart failure by inhibiting cardiac hypertrophy and fibrosis via the miR-758-3p/PRG4/Smad pathway.

Graphical Abstract

Appendix
Available only for authorised users
Literature
1.
go back to reference Vaidya, Y., S. Riaz, and A.S. Dhamoon, Left ventricular assist devices, in StatPearls. 2023, StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC.: Treasure Island (FL) ineligible companies. Disclosure: Sana Riaz declares no relevant financial relationships with ineligible companies. Disclosure: Amit Dhamoon declares no relevant financial relationships with ineligible companies. Vaidya, Y., S. Riaz, and A.S. Dhamoon, Left ventricular assist devices, in StatPearls. 2023, StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC.: Treasure Island (FL) ineligible companies. Disclosure: Sana Riaz declares no relevant financial relationships with ineligible companies. Disclosure: Amit Dhamoon declares no relevant financial relationships with ineligible companies.
4.
go back to reference Mouton AJ, et al. Interaction of obesity and hypertension on cardiac metabolic remodeling and survival following myocardial infarction. J Am Heart Assoc. 2021;10(6):e018212.CrossRefPubMedPubMedCentral Mouton AJ, et al. Interaction of obesity and hypertension on cardiac metabolic remodeling and survival following myocardial infarction. J Am Heart Assoc. 2021;10(6):e018212.CrossRefPubMedPubMedCentral
5.
go back to reference Funamoto, M., et al., Pyrazole-curcumin suppresses cardiomyocyte hypertrophy by disrupting the CDK9/CyclinT1 complex. Pharmaceutics, 2022; 14(6). Funamoto, M., et al., Pyrazole-curcumin suppresses cardiomyocyte hypertrophy by disrupting the CDK9/CyclinT1 complex. Pharmaceutics, 2022; 14(6).
6.
go back to reference Zhang Q, et al. Long noncoding RNA MAGI1-IT1 regulates cardiac hypertrophy by modulating miR-302e/DKK1/Wnt/beta-catenin signaling pathway. J Cell Physiol. 2020;235(1):245–53.CrossRefPubMed Zhang Q, et al. Long noncoding RNA MAGI1-IT1 regulates cardiac hypertrophy by modulating miR-302e/DKK1/Wnt/beta-catenin signaling pathway. J Cell Physiol. 2020;235(1):245–53.CrossRefPubMed
7.
go back to reference Zhang J, et al. Neohesperidin inhibits cardiac remodeling induced by Ang II in vivo and in vitro. Biomed Pharmacother. 2020;129:110364.CrossRefPubMed Zhang J, et al. Neohesperidin inhibits cardiac remodeling induced by Ang II in vivo and in vitro. Biomed Pharmacother. 2020;129:110364.CrossRefPubMed
8.
go back to reference Chen X, et al. Dapagliflozin attenuates myocardial fibrosis by inhibiting the TGF-β1/Smad signaling pathway in a normoglycemic rabbit model of chronic heart failure. Front Pharmacol. 2022;13:873108.CrossRefPubMedPubMedCentral Chen X, et al. Dapagliflozin attenuates myocardial fibrosis by inhibiting the TGF-β1/Smad signaling pathway in a normoglycemic rabbit model of chronic heart failure. Front Pharmacol. 2022;13:873108.CrossRefPubMedPubMedCentral
9.
go back to reference Venugopal, H., et al., Properties and functions of fibroblasts and myofibroblasts in myocardial infarction. Cells, 2022; 11(9). Venugopal, H., et al., Properties and functions of fibroblasts and myofibroblasts in myocardial infarction. Cells, 2022; 11(9).
10.
go back to reference Huang S, et al. Distinct roles of myofibroblast-specific Smad2 and Smad3 signaling in repair and remodeling of the infarcted heart. J Mol Cell Cardiol. 2019;132:84–97.CrossRefPubMedPubMedCentral Huang S, et al. Distinct roles of myofibroblast-specific Smad2 and Smad3 signaling in repair and remodeling of the infarcted heart. J Mol Cell Cardiol. 2019;132:84–97.CrossRefPubMedPubMedCentral
11.
go back to reference Zheng QN, et al. QiShenYiQi Pills(®) ameliorates ischemia/reperfusion-induced myocardial fibrosis involving RP S19-mediated TGFβ1/Smads signaling pathway. Pharmacol Res. 2019;146:104272.CrossRefPubMed Zheng QN, et al. QiShenYiQi Pills(®) ameliorates ischemia/reperfusion-induced myocardial fibrosis involving RP S19-mediated TGFβ1/Smads signaling pathway. Pharmacol Res. 2019;146:104272.CrossRefPubMed
12.
go back to reference Solakyildirim K, et al. Proteoglycan 4 (lubricin) is a highly sialylated glycoprotein associated with cardiac valve damage in animal models of infective endocarditis. Glycobiology. 2021;31(11):1582–95.CrossRefPubMedPubMedCentral Solakyildirim K, et al. Proteoglycan 4 (lubricin) is a highly sialylated glycoprotein associated with cardiac valve damage in animal models of infective endocarditis. Glycobiology. 2021;31(11):1582–95.CrossRefPubMedPubMedCentral
13.
go back to reference Seime, T., et al., Proteoglycan 4 modulates osteogenic smooth muscle cell differentiation during vascular remodeling and intimal calcification. Cells, 2021; 10(6). Seime, T., et al., Proteoglycan 4 modulates osteogenic smooth muscle cell differentiation during vascular remodeling and intimal calcification. Cells, 2021; 10(6).
14.
go back to reference Jiang XY, Ning QL. Expression profiling of long noncoding RNAs and the dynamic changes of lncRNA-NR024118 and Cdkn1c in angiotensin II-treated cardiac fibroblasts. Int J Clin Exp Pathol. 2014;7(4):1325–36.PubMedPubMedCentral Jiang XY, Ning QL. Expression profiling of long noncoding RNAs and the dynamic changes of lncRNA-NR024118 and Cdkn1c in angiotensin II-treated cardiac fibroblasts. Int J Clin Exp Pathol. 2014;7(4):1325–36.PubMedPubMedCentral
15.
go back to reference Artiach, G., et al., Proteoglycan 4 is increased in human calcified aortic valves and enhances valvular interstitial cell calcification. Cells, 2020; 9(3). Artiach, G., et al., Proteoglycan 4 is increased in human calcified aortic valves and enhances valvular interstitial cell calcification. Cells, 2020; 9(3).
16.
go back to reference Park DSJ, et al. Human pericardial proteoglycan 4 (lubricin): implications for postcardiotomy intrathoracic adhesion formation. J Thorac Cardiovasc Surg. 2018;156(4):1598-1608.e1.CrossRefPubMed Park DSJ, et al. Human pericardial proteoglycan 4 (lubricin): implications for postcardiotomy intrathoracic adhesion formation. J Thorac Cardiovasc Surg. 2018;156(4):1598-1608.e1.CrossRefPubMed
17.
go back to reference Sawada K, et al. Antiseptic solutions modulate the paracrine-like activity of bone chips: differential impact of chlorhexidine and sodium hypochlorite. J Clin Periodontol. 2015;42(9):883–91.CrossRefPubMed Sawada K, et al. Antiseptic solutions modulate the paracrine-like activity of bone chips: differential impact of chlorhexidine and sodium hypochlorite. J Clin Periodontol. 2015;42(9):883–91.CrossRefPubMed
18.
go back to reference Schmidt TA, et al. Differential regulation of proteoglycan 4 metabolism in cartilage by IL-1alpha, IGF-I, and TGF-beta1. Osteoarthr Cartil. 2008;16(1):90–7.CrossRef Schmidt TA, et al. Differential regulation of proteoglycan 4 metabolism in cartilage by IL-1alpha, IGF-I, and TGF-beta1. Osteoarthr Cartil. 2008;16(1):90–7.CrossRef
19.
go back to reference Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17(5):272–83.CrossRefPubMed Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17(5):272–83.CrossRefPubMed
20.
21.
go back to reference Zhu L, et al. Non-coding RNAs: the key detectors and regulators in cardiovascular disease. Genomics. 2021;113(1 Pt 2):1233–46.CrossRefPubMed Zhu L, et al. Non-coding RNAs: the key detectors and regulators in cardiovascular disease. Genomics. 2021;113(1 Pt 2):1233–46.CrossRefPubMed
23.
go back to reference Cai B, et al. Long noncoding RNA-DACH1 (Dachshund Homolog 1) regulates cardiac function by inhibiting SERCA2a (sarcoplasmic reticulum calcium ATPase 2a). Hypertension. 2019;74(4):833–42.CrossRefPubMed Cai B, et al. Long noncoding RNA-DACH1 (Dachshund Homolog 1) regulates cardiac function by inhibiting SERCA2a (sarcoplasmic reticulum calcium ATPase 2a). Hypertension. 2019;74(4):833–42.CrossRefPubMed
24.
go back to reference Zhang M, et al. LncRNA DANCR attenuates brain microvascular endothelial cell damage induced by oxygen-glucose deprivation through regulating of miR-33a-5p/XBP1s. Aging (Albany NY). 2020;12(2):1778–91.CrossRefPubMed Zhang M, et al. LncRNA DANCR attenuates brain microvascular endothelial cell damage induced by oxygen-glucose deprivation through regulating of miR-33a-5p/XBP1s. Aging (Albany NY). 2020;12(2):1778–91.CrossRefPubMed
25.
go back to reference Zhang Z, et al. Emerging role of lncRNA DANCR in progenitor cells: beyond cancer. Eur Rev Med Pharmacol Sci. 2021;25(3):1399–409.PubMed Zhang Z, et al. Emerging role of lncRNA DANCR in progenitor cells: beyond cancer. Eur Rev Med Pharmacol Sci. 2021;25(3):1399–409.PubMed
26.
go back to reference Li J, et al. Mir-30d regulates cardiac remodeling by intracellular and paracrine signaling. Circ Res. 2021;128(1):e1–23.CrossRefPubMed Li J, et al. Mir-30d regulates cardiac remodeling by intracellular and paracrine signaling. Circ Res. 2021;128(1):e1–23.CrossRefPubMed
27.
go back to reference McGeary, S.E., et al., The biochemical basis of microRNA targeting efficacy. Science, 2019; 366(6472). McGeary, S.E., et al., The biochemical basis of microRNA targeting efficacy. Science, 2019; 366(6472).
28.
go back to reference Li JH, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(Database issue):D92-7.CrossRefPubMed Li JH, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(Database issue):D92-7.CrossRefPubMed
29.
go back to reference Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127-d131.CrossRefPubMed Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127-d131.CrossRefPubMed
30.
go back to reference Xiao L, et al. The long noncoding RNA XIST regulates cardiac hypertrophy by targeting miR-101. J Cell Physiol. 2019;234(8):13680–92.CrossRefPubMed Xiao L, et al. The long noncoding RNA XIST regulates cardiac hypertrophy by targeting miR-101. J Cell Physiol. 2019;234(8):13680–92.CrossRefPubMed
31.
go back to reference Wei Q, et al. Long noncoding RNA NEAT1 promotes myocardiocyte apoptosis and suppresses proliferation through regulation of miR-129-5p. J Cardiovasc Pharmacol. 2019;74(6):535–41.CrossRefPubMed Wei Q, et al. Long noncoding RNA NEAT1 promotes myocardiocyte apoptosis and suppresses proliferation through regulation of miR-129-5p. J Cardiovasc Pharmacol. 2019;74(6):535–41.CrossRefPubMed
32.
go back to reference Forrester SJ, et al. Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev. 2018;98(3):1627–738.CrossRefPubMedPubMedCentral Forrester SJ, et al. Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev. 2018;98(3):1627–738.CrossRefPubMedPubMedCentral
33.
go back to reference Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007;292(1):C82-97.CrossRefPubMed Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007;292(1):C82-97.CrossRefPubMed
34.
go back to reference Ye S, et al. Celastrol attenuates angiotensin II-induced cardiac remodeling by targeting STAT3. Circ Res. 2020;126(8):1007–23.CrossRefPubMed Ye S, et al. Celastrol attenuates angiotensin II-induced cardiac remodeling by targeting STAT3. Circ Res. 2020;126(8):1007–23.CrossRefPubMed
35.
go back to reference Zhang M, et al. Contractile function during angiotensin-II activation: increased Nox2 activity modulates cardiac calcium handling via phospholamban phosphorylation. J Am Coll Cardiol. 2015;66(3):261–72.CrossRefPubMedPubMedCentral Zhang M, et al. Contractile function during angiotensin-II activation: increased Nox2 activity modulates cardiac calcium handling via phospholamban phosphorylation. J Am Coll Cardiol. 2015;66(3):261–72.CrossRefPubMedPubMedCentral
36.
go back to reference Mann S, et al. Effects of acute angiotensin II on ischemia reperfusion injury following myocardial infarction. J Renin Angiotensin Aldosterone Syst. 2015;16(1):13–22.CrossRefPubMed Mann S, et al. Effects of acute angiotensin II on ischemia reperfusion injury following myocardial infarction. J Renin Angiotensin Aldosterone Syst. 2015;16(1):13–22.CrossRefPubMed
37.
go back to reference Veselka J, Anavekar NS, Charron P. Hypertrophic obstructive cardiomyopathy. Lancet. 2017;389(10075):1253–67.CrossRefPubMed Veselka J, Anavekar NS, Charron P. Hypertrophic obstructive cardiomyopathy. Lancet. 2017;389(10075):1253–67.CrossRefPubMed
38.
go back to reference Song, C., et al., Inhibition of lncRNA Gm15834 attenuates autophagy-mediated myocardial hypertrophy via the miR-30b-3p/ULK1 axis in mice. Mol Ther, 2020. Song, C., et al., Inhibition of lncRNA Gm15834 attenuates autophagy-mediated myocardial hypertrophy via the miR-30b-3p/ULK1 axis in mice. Mol Ther, 2020.
40.
go back to reference Wang D, et al. Up-regulation of SNHG16 induced by CTCF accelerates cardiac hypertrophy by targeting miR-182-5p/IGF1 axis. Cell Biol Int. 2020;44(7):1426–35.CrossRefPubMed Wang D, et al. Up-regulation of SNHG16 induced by CTCF accelerates cardiac hypertrophy by targeting miR-182-5p/IGF1 axis. Cell Biol Int. 2020;44(7):1426–35.CrossRefPubMed
41.
go back to reference Zhang XH, et al. LncRNA DANCR-miR-758-3p-PAX6 molecular network regulates apoptosis and autophagy of breast cancer cells. Cancer Manag Res. 2020;12:4073–84.CrossRefPubMedPubMedCentral Zhang XH, et al. LncRNA DANCR-miR-758-3p-PAX6 molecular network regulates apoptosis and autophagy of breast cancer cells. Cancer Manag Res. 2020;12:4073–84.CrossRefPubMedPubMedCentral
42.
go back to reference Wang S, Jiang M. The long non-coding RNA-DANCR exerts oncogenic functions in non-small cell lung cancer via miR-758-3p. Biomed Pharmacother. 2018;103:94–100.CrossRefPubMed Wang S, Jiang M. The long non-coding RNA-DANCR exerts oncogenic functions in non-small cell lung cancer via miR-758-3p. Biomed Pharmacother. 2018;103:94–100.CrossRefPubMed
43.
go back to reference Yao Y, et al. Let-7f regulates the hypoxic response in cerebral ischemia by targeting NDRG3. Neurochem Res. 2017;42(2):446–54.CrossRefPubMed Yao Y, et al. Let-7f regulates the hypoxic response in cerebral ischemia by targeting NDRG3. Neurochem Res. 2017;42(2):446–54.CrossRefPubMed
44.
go back to reference Wang L, et al. Inhibitory effects of PRG4 on migration and proliferation of human venous cells. J Surg Res. 2020;253:53–62.CrossRefPubMed Wang L, et al. Inhibitory effects of PRG4 on migration and proliferation of human venous cells. J Surg Res. 2020;253:53–62.CrossRefPubMed
Metadata
Title
Inhibition of lncRNA DANCR Prevents Heart Failure by Ameliorating Cardiac Hypertrophy and Fibrosis Via Regulation of the miR-758-3p/PRG4/Smad Axis
Authors
Qianwen Huang
Qian Huang
Publication date
01-09-2023
Publisher
Springer US
Keyword
Heart Failure
Published in
Journal of Cardiovascular Translational Research / Issue 6/2023
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-023-10428-z

Other articles of this Issue 6/2023

Journal of Cardiovascular Translational Research 6/2023 Go to the issue