Skip to main content
Top
Published in: Pathology & Oncology Research 1/2019

01-01-2019 | Original Article

Suppression of Angiotensin-(1–7) on the Disruption of Blood-Brain Barrier in Rat of Brain Glioma

Authors: Xiaohui Li, Xinjun Wang, Jingwei Xie, Bo Liang, Jianheng Wu

Published in: Pathology & Oncology Research | Issue 1/2019

Login to get access

Abstract

Glioblastoma multiforme (GBM) is the most primary brain tumor, specially characterized with the damage of blood-brain barrier (BBB). The Ang-(1–7) was proven to have an inhibitory effect on glioblastoma growth. However, its role on blood–brain barrier (BBB) and the underlying molecular mechanism remains unclear. In this study, Ang-(1–7) significantly relieved the damage of blood-brain barrier in rats with intracranial U87 gliomas as evaluated by magnetic resonance imaging (MRI). Furthermore, its treatment attenuated BBB permeability, tumor growth and edema formation. Similarly, Ang-(1–7) also decreased U87 glioma cells barrier permeability in vitro. Further analysis showed that Ang-(1–7) could effectively restore tight junction protein (claudin-5 and ZO-1) expression levels both in rats and U87 glioma cells by affecting the activation of JNK pathway. SP600125, an inhibitor of JNK, significantly enhanced the expression of Claudin-5 and ZO-1, and decreased the disruption of BBB and enhanced the efficiency of Ang-(1–7) in glioma rats. Taken together, this study demonstrated a protective role of Ang-(1–7) in glioma-induced blood-brain barrier damage by regulating tight junction protein expression. Accordingly, Ang-(1–7) may become a promising therapeutic agent against glioma.
Literature
1.
go back to reference Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185CrossRefPubMed Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185CrossRefPubMed
3.
go back to reference Wang Z, Leng Y, Tsai L-K, Leeds P, Chuang DM (2011) Valproic acid attenuates blood–brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition. J Cereb Blood Flow Metab 31(1):52–57CrossRefPubMed Wang Z, Leng Y, Tsai L-K, Leeds P, Chuang DM (2011) Valproic acid attenuates blood–brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition. J Cereb Blood Flow Metab 31(1):52–57CrossRefPubMed
4.
go back to reference Mendes B, Marques C, Carvalho I, Costa P, Martins S, Ferreira D, Sarmento B (2015) Influence of glioma cells on a new co-culture in vitro blood-brain barrier model for characterization and validation of permeability. Int J Pharm 490(1–2):94–101CrossRefPubMed Mendes B, Marques C, Carvalho I, Costa P, Martins S, Ferreira D, Sarmento B (2015) Influence of glioma cells on a new co-culture in vitro blood-brain barrier model for characterization and validation of permeability. Int J Pharm 490(1–2):94–101CrossRefPubMed
5.
go back to reference Barrier L, Fauconneau B, Noël A, Ingrand S (2010) Ceramide and related-sphingolipid levels are not altered in disease-associated brain regions of APPSL, and APPSL/PS1M146L mouse models of alzheimer's disease: relationship with the lack of neurodegeneration. Int J Alzheimers Dis 2011:920958 Barrier L, Fauconneau B, Noël A, Ingrand S (2010) Ceramide and related-sphingolipid levels are not altered in disease-associated brain regions of APPSL, and APPSL/PS1M146L mouse models of alzheimer's disease: relationship with the lack of neurodegeneration. Int J Alzheimers Dis 2011:920958
6.
go back to reference Jiao H, Wang Z, Liu Y, Wang P, Xue Y (2011) Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood–brain barrier in a focal cerebral ischemic insult. J Mol Neurosci 44(2):130–139CrossRefPubMed Jiao H, Wang Z, Liu Y, Wang P, Xue Y (2011) Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood–brain barrier in a focal cerebral ischemic insult. J Mol Neurosci 44(2):130–139CrossRefPubMed
7.
go back to reference Ferrario CM, Jessup J, Gallagher PE, Averill DB, Brosnihan KB, Ann Tallant E, Smith RD, Chappell MC (2005) Effects of renin-angiotensin system blockade on renal angiotensin-(1-7) forming enzymes and receptors. Kidney Int 68(5):2189–2196CrossRefPubMed Ferrario CM, Jessup J, Gallagher PE, Averill DB, Brosnihan KB, Ann Tallant E, Smith RD, Chappell MC (2005) Effects of renin-angiotensin system blockade on renal angiotensin-(1-7) forming enzymes and receptors. Kidney Int 68(5):2189–2196CrossRefPubMed
8.
go back to reference Nishimura Y, Ito T, Saavedra JM (2000) Angiotensin II AT1 blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. Stroke 31(10):2478–2486CrossRefPubMed Nishimura Y, Ito T, Saavedra JM (2000) Angiotensin II AT1 blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. Stroke 31(10):2478–2486CrossRefPubMed
9.
go back to reference Fleegal-DeMotta MA, Doghu S, Banks WA (2009) Angiotensin II modulates BBB permeability via activation of the AT1 receptor in brain endothelial cells. J Cereb Blood Flow Metab 29(3):640–647CrossRefPubMed Fleegal-DeMotta MA, Doghu S, Banks WA (2009) Angiotensin II modulates BBB permeability via activation of the AT1 receptor in brain endothelial cells. J Cereb Blood Flow Metab 29(3):640–647CrossRefPubMed
10.
go back to reference Benter IF, Yousif MH, Cojocel C et al (2007) Angiotensin-(1–7) prevents diabetes-induced cardiovascular dysfunction. Am J Phys Heart Circ Phys 292(1):H666–H672 Benter IF, Yousif MH, Cojocel C et al (2007) Angiotensin-(1–7) prevents diabetes-induced cardiovascular dysfunction. Am J Phys Heart Circ Phys 292(1):H666–H672
11.
go back to reference Weidensteiner C, Reichardt W, Shami PJ et al (2013) Effects of the nitric oxide donor JS-K on the blood-tumor barrier and on orthotopic U87 rat gliomas assessed by MRI. Nitric Oxide 30:17–25CrossRefPubMedPubMedCentral Weidensteiner C, Reichardt W, Shami PJ et al (2013) Effects of the nitric oxide donor JS-K on the blood-tumor barrier and on orthotopic U87 rat gliomas assessed by MRI. Nitric Oxide 30:17–25CrossRefPubMedPubMedCentral
12.
go back to reference Patabendige A, Skinner RA, Abbott NJ (2013) Establishment of a simplified< i> in vitro</i> porcine blood–brain barrier model with high transendothelial electrical resistance. Brain Res 1521:1–15CrossRefPubMedPubMedCentral Patabendige A, Skinner RA, Abbott NJ (2013) Establishment of a simplified< i> in vitro</i> porcine blood–brain barrier model with high transendothelial electrical resistance. Brain Res 1521:1–15CrossRefPubMedPubMedCentral
13.
go back to reference Amasheh S, Schmidt T, Mahn M, Florian P, Mankertz J, Tavalali S, Gitter AH, Schulzke JD, Fromm M (2005) Contribution of claudin-5 to barrier properties in tight junctions of epithelial cells. Cell Tissue Res 321(1):89–96CrossRefPubMed Amasheh S, Schmidt T, Mahn M, Florian P, Mankertz J, Tavalali S, Gitter AH, Schulzke JD, Fromm M (2005) Contribution of claudin-5 to barrier properties in tight junctions of epithelial cells. Cell Tissue Res 321(1):89–96CrossRefPubMed
14.
go back to reference Alsadi R, Ye D, Boivin M et al (2013) Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene. PLoS One 9(3):e85345CrossRef Alsadi R, Ye D, Boivin M et al (2013) Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene. PLoS One 9(3):e85345CrossRef
15.
go back to reference Huhndorf M, Moussavi A, Kramann N, Will O, Hattermann K, Stadelmann C, Jansen O, Boretius S (2016) Alterations of the blood-brain barrier and regional perfusion in tumor development: MRI insights from a rat C6 glioma model. PLoS One 11(12):e0168174CrossRefPubMedPubMedCentral Huhndorf M, Moussavi A, Kramann N, Will O, Hattermann K, Stadelmann C, Jansen O, Boretius S (2016) Alterations of the blood-brain barrier and regional perfusion in tumor development: MRI insights from a rat C6 glioma model. PLoS One 11(12):e0168174CrossRefPubMedPubMedCentral
16.
go back to reference Subashi E, Cordero FJ, Halvorson KG et al (2016) Tumor location, but not H3.3K27M, significantly influences the blood–brain-barrier permeability in a genetic mouse model of pediatric high-grade glioma. J Neuro-Oncol 126(2):1–9CrossRef Subashi E, Cordero FJ, Halvorson KG et al (2016) Tumor location, but not H3.3K27M, significantly influences the blood–brain-barrier permeability in a genetic mouse model of pediatric high-grade glioma. J Neuro-Oncol 126(2):1–9CrossRef
17.
go back to reference Stegmayr C, Oliveira D, Niemietz N et al (2017) Influence of bevacizumab on blood-brain barrier permeability and O-(2-18F-fluoroethyl)-L-tyrosine uptake in rat gliomas. Eur J Nucl Med Mol Imaging 44(3):408–416CrossRefPubMed Stegmayr C, Oliveira D, Niemietz N et al (2017) Influence of bevacizumab on blood-brain barrier permeability and O-(2-18F-fluoroethyl)-L-tyrosine uptake in rat gliomas. Eur J Nucl Med Mol Imaging 44(3):408–416CrossRefPubMed
18.
go back to reference Huang Y, Hoffman C, Rajappa P, Kim JH, Hu W, Huse J, Tang Z, Li X, Weksler B, Bromberg J, Lyden DC, Greenfield JP (2013) Oligodendrocyte progenitor cells promote neovascularization in glioma by disrupting the blood-brain barrier. Cancer Res 74(4):1011–1021CrossRefPubMed Huang Y, Hoffman C, Rajappa P, Kim JH, Hu W, Huse J, Tang Z, Li X, Weksler B, Bromberg J, Lyden DC, Greenfield JP (2013) Oligodendrocyte progenitor cells promote neovascularization in glioma by disrupting the blood-brain barrier. Cancer Res 74(4):1011–1021CrossRefPubMed
19.
go back to reference Liu Y, Wang D, Wang H et al (2014) The protective effect of HET0016 on brain edema and blood–brain barrier dysfunction after cerebral ischemia/reperfusion. Brain Res 1544:45–53CrossRefPubMed Liu Y, Wang D, Wang H et al (2014) The protective effect of HET0016 on brain edema and blood–brain barrier dysfunction after cerebral ischemia/reperfusion. Brain Res 1544:45–53CrossRefPubMed
20.
go back to reference Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57(2):178–201CrossRefPubMed Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57(2):178–201CrossRefPubMed
21.
go back to reference Walter FR, Veszelka S, Pásztói M, Péterfi ZA, Tóth A, Rákhely G, Cervenak L, Ábrahám CS, Deli MA (2015) Tesmilifene modifies brain endothelial functions and opens the blood–brain/blood–glioma barrier. J Neurochem 134(6):1040–1054CrossRefPubMed Walter FR, Veszelka S, Pásztói M, Péterfi ZA, Tóth A, Rákhely G, Cervenak L, Ábrahám CS, Deli MA (2015) Tesmilifene modifies brain endothelial functions and opens the blood–brain/blood–glioma barrier. J Neurochem 134(6):1040–1054CrossRefPubMed
22.
go back to reference Huang Y, Hoffman C, Rajappa P, Kim JH, Hu W, Huse J, Tang Z, Li X, Weksler B, Bromberg J, Lyden DC, Greenfield JP (2014) Oligodendrocyte progenitor cells promote neovascularization in glioma by disrupting the blood-brain barrier. Cancer Res 74(4):1011–1021CrossRefPubMed Huang Y, Hoffman C, Rajappa P, Kim JH, Hu W, Huse J, Tang Z, Li X, Weksler B, Bromberg J, Lyden DC, Greenfield JP (2014) Oligodendrocyte progenitor cells promote neovascularization in glioma by disrupting the blood-brain barrier. Cancer Res 74(4):1011–1021CrossRefPubMed
23.
go back to reference Ostergaard L, Hochberg FH, Rabinov JD et al (1999) Early changes measured by magnetic resonance imaging in cerebral blood flow, blood volume, and blood-brain barrier permeability following dexamethasone treatment in patients with brain tumors. J Neurosurg 90(2):300–305CrossRefPubMed Ostergaard L, Hochberg FH, Rabinov JD et al (1999) Early changes measured by magnetic resonance imaging in cerebral blood flow, blood volume, and blood-brain barrier permeability following dexamethasone treatment in patients with brain tumors. J Neurosurg 90(2):300–305CrossRefPubMed
24.
go back to reference Higashida T, Peng C, Li J, Dornbos D, Teng K, Li X, Kinni H, Guthikonda M, Ding Y (2011) Hypoxia-inducible factor-1α contributes to brain edema after stroke by regulating aquaporins and glycerol distribution in brain. Curr Neurovasc Res 8(1):44–51CrossRefPubMed Higashida T, Peng C, Li J, Dornbos D, Teng K, Li X, Kinni H, Guthikonda M, Ding Y (2011) Hypoxia-inducible factor-1α contributes to brain edema after stroke by regulating aquaporins and glycerol distribution in brain. Curr Neurovasc Res 8(1):44–51CrossRefPubMed
25.
go back to reference Doolittle ND, Miner ME, Hall WA, Siegal T, Hanson EJ, Osztie E, McAllister LD, Bubalo JS, Kraemer DF, Fortin D, Nixon R, Muldoon LL, Neuwelt EA (2000) Safety and efficacy of a multicenter study using intraarterial chemotherapy in conjunction with osmotic opening of the blood-brain barrier for the treatment of patients with malignant brain tumors. Cancer 88(3):637–647CrossRefPubMed Doolittle ND, Miner ME, Hall WA, Siegal T, Hanson EJ, Osztie E, McAllister LD, Bubalo JS, Kraemer DF, Fortin D, Nixon R, Muldoon LL, Neuwelt EA (2000) Safety and efficacy of a multicenter study using intraarterial chemotherapy in conjunction with osmotic opening of the blood-brain barrier for the treatment of patients with malignant brain tumors. Cancer 88(3):637–647CrossRefPubMed
26.
go back to reference Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5–deficient mice. J Cell Biol 161(3):653–660CrossRefPubMedPubMedCentral Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5–deficient mice. J Cell Biol 161(3):653–660CrossRefPubMedPubMedCentral
27.
go back to reference Rodgers LS, Beam MT, Anderson JM, Fanning AS (2013) Epithelial barrier assembly requires coordinated activity of multiple domains of the tight junction protein ZO-1. J Cell Sci 126(7):1565–1575CrossRefPubMedPubMedCentral Rodgers LS, Beam MT, Anderson JM, Fanning AS (2013) Epithelial barrier assembly requires coordinated activity of multiple domains of the tight junction protein ZO-1. J Cell Sci 126(7):1565–1575CrossRefPubMedPubMedCentral
28.
go back to reference Koto T, Takubo K, Ishida S, Shinoda H, Inoue M, Tsubota K, Okada Y, Ikeda E (2007) Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am J Pathol 170(4):1389–1397CrossRefPubMedPubMedCentral Koto T, Takubo K, Ishida S, Shinoda H, Inoue M, Tsubota K, Okada Y, Ikeda E (2007) Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am J Pathol 170(4):1389–1397CrossRefPubMedPubMedCentral
29.
go back to reference Chen D, Wei XT, Guan JH, Yuan JW, Peng YT, Song L, Liu YH (2012) Inhibition of c-Jun N-terminal kinase prevents blood-brain barrier disruption and normalizes the expression of tight junction proteins clautin-5 and ZO-1 in a rat model of subarachnoid hemorrhage. Acta Neurochir 154(8):1469–1476CrossRefPubMed Chen D, Wei XT, Guan JH, Yuan JW, Peng YT, Song L, Liu YH (2012) Inhibition of c-Jun N-terminal kinase prevents blood-brain barrier disruption and normalizes the expression of tight junction proteins clautin-5 and ZO-1 in a rat model of subarachnoid hemorrhage. Acta Neurochir 154(8):1469–1476CrossRefPubMed
Metadata
Title
Suppression of Angiotensin-(1–7) on the Disruption of Blood-Brain Barrier in Rat of Brain Glioma
Authors
Xiaohui Li
Xinjun Wang
Jingwei Xie
Bo Liang
Jianheng Wu
Publication date
01-01-2019
Publisher
Springer Netherlands
Published in
Pathology & Oncology Research / Issue 1/2019
Print ISSN: 1219-4956
Electronic ISSN: 1532-2807
DOI
https://doi.org/10.1007/s12253-018-0471-z

Other articles of this Issue 1/2019

Pathology & Oncology Research 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine