Skip to main content
Top
Published in: Pathology & Oncology Research 1/2017

01-01-2017 | Original Article

The Promoting Effect of Radiation on Glucose Metabolism in Breast Cancer Cells under the Treatment of Cobalt Chloride

Authors: Chun-bo Zhao, Lei Shi, Hai-hong Pu, Qing-yuan Zhang

Published in: Pathology & Oncology Research | Issue 1/2017

Login to get access

Abstract

We aimed to investigate the influence of radiation on hypoxia-treated breast cancers cells and its underlying mechanism. We mimicked the hypoxic response in MCF-7 cells by the treatment of CoCl2. Meanwhile, hypoxic MCF-7 cells induced by CoCl2 or untreated MCF-7 cells were treated with or without radiation, and then treated with or without hypoxia inducible factors-1α (HIF-1α) inhibitor. Subsequently, glucose update and lactate release rate were determined by commercial kits, as well as the expressions of HIF-1α and the glucose metabolic pathway related genes, including fructose biphoshatase 1 (FBP1), glucose transporter 1 (GLUT1), lactate dehydrogenase A (LDHA), hexokinase 2 (HK2), and isocitrate dehydrogenase 2 (IDH20) were detected by western blotting and/or RT-PCR. The results showed that glucose uptake rate and lactate release rate were increased in cells under hypoxia and/or radiation condition compared with untreated cells (p < 0.05), while the addition of HIF-1α inhibitor decreased these rates in hypoxia + radiation treated cells (p < 0.05). In addition, compared with untreated cells, the mRNA and protein levels of HIF-1α were significantly increased under hypoxia and radiation condition (p < 0.05), while which decreased after the addition of HIF-1α inhibitor (p < 0.05). Similar content changing trends (all p < 0.05) were observed in FBP1, IDH2, GLUT1, and LDHA but not HK2. In conclusion, the combination of radiation and hypoxia could promote the glucose metabolism. Furthermore, HIF-1α might inhibit the promoting effect of radiation on glycolysis in hypoxic MCF-7 cells by regulating the glucose metabolic pathway.
Literature
2.
go back to reference Noguchi S, Masuda N, Iwata H, Mukai H, Horiguchi J, Puttawibul P, Srimuninnimit V, Tokuda Y, Kuroi K, Iwase H (2014) Efficacy of everolimus with exemestane versus exemestane alone in Asian patients with HER2-negative, hormone-receptor-positive breast cancer in BOLERO-2. Breast Cancer 21(6):703–714CrossRefPubMed Noguchi S, Masuda N, Iwata H, Mukai H, Horiguchi J, Puttawibul P, Srimuninnimit V, Tokuda Y, Kuroi K, Iwase H (2014) Efficacy of everolimus with exemestane versus exemestane alone in Asian patients with HER2-negative, hormone-receptor-positive breast cancer in BOLERO-2. Breast Cancer 21(6):703–714CrossRefPubMed
3.
go back to reference Lundgren K, Nordenskjöld B, Landberg G (2009) Hypoxia, snail and incomplete epithelial–mesenchymal transition in breast cancer. Br J Cancer 101(10):1769–1781CrossRefPubMedPubMedCentral Lundgren K, Nordenskjöld B, Landberg G (2009) Hypoxia, snail and incomplete epithelial–mesenchymal transition in breast cancer. Br J Cancer 101(10):1769–1781CrossRefPubMedPubMedCentral
4.
go back to reference Vaupel P, Mayer A, Höckel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381:335–354CrossRefPubMed Vaupel P, Mayer A, Höckel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381:335–354CrossRefPubMed
5.
go back to reference Mees G, Dierckx R, Vangestel C, Van de Wiele C (2009) Molecular imaging of hypoxia with radiolabelled agents. Eur J Nucl Med Mol Imaging 36(10):1674–1686CrossRefPubMedPubMedCentral Mees G, Dierckx R, Vangestel C, Van de Wiele C (2009) Molecular imaging of hypoxia with radiolabelled agents. Eur J Nucl Med Mol Imaging 36(10):1674–1686CrossRefPubMedPubMedCentral
6.
go back to reference Zeng W, Liu P, Pan W, Singh SR, Wei Y (2015) Hypoxia and hypoxia inducible factors in tumor metabolism. Cancer Lett 356(2):263–267CrossRefPubMed Zeng W, Liu P, Pan W, Singh SR, Wei Y (2015) Hypoxia and hypoxia inducible factors in tumor metabolism. Cancer Lett 356(2):263–267CrossRefPubMed
7.
go back to reference Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899CrossRefPubMed Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899CrossRefPubMed
8.
go back to reference Daşu A, Toma-Daşu I, Karlsson M (2003) Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia. Phys Med Biol 48(17):2829CrossRefPubMed Daşu A, Toma-Daşu I, Karlsson M (2003) Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia. Phys Med Biol 48(17):2829CrossRefPubMed
9.
go back to reference Denko NC, Fontana LA, Hudson KM, Sutphin PD, Raychaudhuri S, Altman R, Giaccia AJ (2003) Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 22(37):5907–5914CrossRefPubMed Denko NC, Fontana LA, Hudson KM, Sutphin PD, Raychaudhuri S, Altman R, Giaccia AJ (2003) Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 22(37):5907–5914CrossRefPubMed
10.
go back to reference Brahimi-Horn MC, Chiche J, Pouyssegur J (2007) Hypoxia signalling controls metabolic demand. Curr Opin Cell Biol 19(2):223–229CrossRefPubMed Brahimi-Horn MC, Chiche J, Pouyssegur J (2007) Hypoxia signalling controls metabolic demand. Curr Opin Cell Biol 19(2):223–229CrossRefPubMed
11.
go back to reference J-w K, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185CrossRef J-w K, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185CrossRef
12.
go back to reference Semenza GL (2011) Oxygen sensing, homeostasis, and disease. New England J Med 365(6):537–547CrossRef Semenza GL (2011) Oxygen sensing, homeostasis, and disease. New England J Med 365(6):537–547CrossRef
13.
go back to reference Germain S, Monnot C, Muller L, Eichmann A (2010) Hypoxia-driven angiogenesis: role of tip cells and extracellular matrix scaffolding. Curr Opin Hematol 17(3):245–251PubMed Germain S, Monnot C, Muller L, Eichmann A (2010) Hypoxia-driven angiogenesis: role of tip cells and extracellular matrix scaffolding. Curr Opin Hematol 17(3):245–251PubMed
14.
go back to reference Baker L, Boult J, Walker-Samuel S, Chung Y, Jamin Y, Ashcroft M, Robinson S (2012) The HIF-pathway inhibitor NSC-134754 induces metabolic changes and anti-tumour activity while maintaining vascular function. Br J Cancer 106(10):1638–1647CrossRefPubMedPubMedCentral Baker L, Boult J, Walker-Samuel S, Chung Y, Jamin Y, Ashcroft M, Robinson S (2012) The HIF-pathway inhibitor NSC-134754 induces metabolic changes and anti-tumour activity while maintaining vascular function. Br J Cancer 106(10):1638–1647CrossRefPubMedPubMedCentral
15.
go back to reference Cairns RA, Papandreou I, Sutphin PD, Denko NC (2007) Metabolic targeting of hypoxia and HIF1 in solid tumors can enhance cytotoxic chemotherapy. Proc Natl Acad Sci 104(22):9445–9450CrossRefPubMedPubMedCentral Cairns RA, Papandreou I, Sutphin PD, Denko NC (2007) Metabolic targeting of hypoxia and HIF1 in solid tumors can enhance cytotoxic chemotherapy. Proc Natl Acad Sci 104(22):9445–9450CrossRefPubMedPubMedCentral
16.
go back to reference Hu Y, Liu J, Huang H (2013) Recent agents targeting HIF-1α for cancer therapy. J Cell Biochem 114(3):498–509CrossRefPubMed Hu Y, Liu J, Huang H (2013) Recent agents targeting HIF-1α for cancer therapy. J Cell Biochem 114(3):498–509CrossRefPubMed
17.
go back to reference Lu H, Li X, Luo Z, Liu J, Fan Z (2013) Cetuximab reverses the Warburg effect by inhibiting HIF-1–regulated LDH-A. Mol Cancer Ther 12(10):2187–2199CrossRefPubMed Lu H, Li X, Luo Z, Liu J, Fan Z (2013) Cetuximab reverses the Warburg effect by inhibiting HIF-1–regulated LDH-A. Mol Cancer Ther 12(10):2187–2199CrossRefPubMed
18.
go back to reference Lagadec C, Dekmezian C, Bauche L, Pajonk F (2012) Oxygen levels do not determine radiation survival of breast cancer stem cells. PLoS One 7(3):29CrossRef Lagadec C, Dekmezian C, Bauche L, Pajonk F (2012) Oxygen levels do not determine radiation survival of breast cancer stem cells. PLoS One 7(3):29CrossRef
19.
go back to reference Chandel N, Maltepe E, Goldwasser E, Mathieu C, Simon M, Schumacker P (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci 95(20):11715–11720CrossRefPubMedPubMedCentral Chandel N, Maltepe E, Goldwasser E, Mathieu C, Simon M, Schumacker P (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci 95(20):11715–11720CrossRefPubMedPubMedCentral
20.
go back to reference Jiang B-H, Zheng JZ, Leung SW, Roe R, Semenza GL (1997) Transactivation and inhibitory domains of hypoxia-inducible factor 1α modulation of transcriptional activity by oxygen tension. J Biol Chem 272(31):19253–19260CrossRefPubMed Jiang B-H, Zheng JZ, Leung SW, Roe R, Semenza GL (1997) Transactivation and inhibitory domains of hypoxia-inducible factor 1α modulation of transcriptional activity by oxygen tension. J Biol Chem 272(31):19253–19260CrossRefPubMed
21.
go back to reference An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM (1998) Stabilization of wild-type p53 by hypoxia-inducible factor 1α. Nature 392(6674):405–408CrossRefPubMed An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM (1998) Stabilization of wild-type p53 by hypoxia-inducible factor 1α. Nature 392(6674):405–408CrossRefPubMed
22.
go back to reference Wang G, Hazra TK, Mitra S, Lee H-M, Englander EW (2000) Mitochondrial DNA damage and a hypoxic response are induced by CoCl2 in rat neuronal PC12 cells. Nucleic Acids Symp Ser 28(10):2135–2140CrossRef Wang G, Hazra TK, Mitra S, Lee H-M, Englander EW (2000) Mitochondrial DNA damage and a hypoxic response are induced by CoCl2 in rat neuronal PC12 cells. Nucleic Acids Symp Ser 28(10):2135–2140CrossRef
23.
24.
go back to reference Hoogsteen I, Marres H, Van Der Kogel A, Kaanders J (2007) The hypoxic tumour microenvironment, patient selection and hypoxia-modifying treatments. Clin Oncol 19(6):385–396CrossRef Hoogsteen I, Marres H, Van Der Kogel A, Kaanders J (2007) The hypoxic tumour microenvironment, patient selection and hypoxia-modifying treatments. Clin Oncol 19(6):385–396CrossRef
25.
go back to reference Horsman MR, Wouters BG, Joiner MC, Overgaard J (2009) The oxygen effect and fractionated radiotherapy. Basic clinical radiobiology London: Edward Arnold: 207–209 Horsman MR, Wouters BG, Joiner MC, Overgaard J (2009) The oxygen effect and fractionated radiotherapy. Basic clinical radiobiology London: Edward Arnold: 207–209
26.
go back to reference Gillies RJ, Gatenby RA (2007) Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis? J Bioenerg Biomembr 39(3):251–257CrossRefPubMed Gillies RJ, Gatenby RA (2007) Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis? J Bioenerg Biomembr 39(3):251–257CrossRefPubMed
27.
go back to reference Ganapathy V, Thangaraju M, Prasad PD (2009) Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther 121(1):29–40CrossRefPubMed Ganapathy V, Thangaraju M, Prasad PD (2009) Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther 121(1):29–40CrossRefPubMed
28.
go back to reference Harrison L, Blackwell K (2004) Hypoxia and anemia: factors in decreased sensitivity to radiation therapy and chemotherapy? The Oncologist 9(Supplement 5):31–40CrossRefPubMed Harrison L, Blackwell K (2004) Hypoxia and anemia: factors in decreased sensitivity to radiation therapy and chemotherapy? The Oncologist 9(Supplement 5):31–40CrossRefPubMed
29.
go back to reference Sattler UG, Mueller-Klieser W (2009) The anti-oxidant capacity of tumour glycolysis. Int J Radiat Biol 85(11):963–971CrossRefPubMed Sattler UG, Mueller-Klieser W (2009) The anti-oxidant capacity of tumour glycolysis. Int J Radiat Biol 85(11):963–971CrossRefPubMed
30.
go back to reference Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, Lin Y, Yao J, Shi J, Kang T (2013) Loss of FBP1 by snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23(3):316–331CrossRefPubMedPubMedCentral Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, Lin Y, Yao J, Shi J, Kang T (2013) Loss of FBP1 by snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23(3):316–331CrossRefPubMedPubMedCentral
31.
go back to reference Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M, Yang X (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 13(3):310–316CrossRefPubMedPubMedCentral Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M, Yang X (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 13(3):310–316CrossRefPubMedPubMedCentral
32.
go back to reference Behrooz A, Ismail-Beigi F (1997) Dual control of glut1 glucose transporter gene expression by hypoxia and by inhibition of oxidative phosphorylation. J Biol Chem 272(9):5555–5562CrossRefPubMed Behrooz A, Ismail-Beigi F (1997) Dual control of glut1 glucose transporter gene expression by hypoxia and by inhibition of oxidative phosphorylation. J Biol Chem 272(9):5555–5562CrossRefPubMed
33.
go back to reference Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Aimee YY (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev 12(2):149–162CrossRefPubMedPubMedCentral Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Aimee YY (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev 12(2):149–162CrossRefPubMedPubMedCentral
35.
go back to reference Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9(6):425–434CrossRefPubMed Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9(6):425–434CrossRefPubMed
36.
go back to reference Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ (2009) IDH1 and IDH2 mutations in gliomas. New England J Med 360(8):765–773CrossRef Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ (2009) IDH1 and IDH2 mutations in gliomas. New England J Med 360(8):765–773CrossRef
37.
go back to reference Drabovich AP, Pavlou MP, Dimitromanolakis A, Diamandis EP (2012) Quantitative analysis of energy metabolic pathways in MCF-7 breast cancer cells by selected reaction monitoring assay. Mol Cell Proteomics 11(8):422–434CrossRefPubMedPubMedCentral Drabovich AP, Pavlou MP, Dimitromanolakis A, Diamandis EP (2012) Quantitative analysis of energy metabolic pathways in MCF-7 breast cancer cells by selected reaction monitoring assay. Mol Cell Proteomics 11(8):422–434CrossRefPubMedPubMedCentral
38.
go back to reference Lee J-W, Bae S-H, Jeong J-W, Kim S-H, Kim K-W (2004) Hypoxia-inducible factor (HIF-1) α: its protein stability and biological functions. Exp Mol Med 36(1):1–12CrossRefPubMed Lee J-W, Bae S-H, Jeong J-W, Kim S-H, Kim K-W (2004) Hypoxia-inducible factor (HIF-1) α: its protein stability and biological functions. Exp Mol Med 36(1):1–12CrossRefPubMed
39.
go back to reference Wang B, Wood IS, Trayhurn P (2007) Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch 455(3):479–492CrossRefPubMedPubMedCentral Wang B, Wood IS, Trayhurn P (2007) Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch 455(3):479–492CrossRefPubMedPubMedCentral
40.
go back to reference Ellinghaus P, Heisler I, Unterschemmann K, Haerter M, Beck H, Greschat S, Ehrmann A, Summer H, Flamme I, Oehme F (2013) BAY 87-2243, a highly potent and selective inhibitor of hypoxia-induced gene activation has antitumor activities by inhibition of mitochondrial complex I. Cancer Med 2(5):611–624PubMedPubMedCentral Ellinghaus P, Heisler I, Unterschemmann K, Haerter M, Beck H, Greschat S, Ehrmann A, Summer H, Flamme I, Oehme F (2013) BAY 87-2243, a highly potent and selective inhibitor of hypoxia-induced gene activation has antitumor activities by inhibition of mitochondrial complex I. Cancer Med 2(5):611–624PubMedPubMedCentral
41.
go back to reference Tennant DA, Durán RV, Gottlieb E (2010) Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 10(4):267–277CrossRefPubMed Tennant DA, Durán RV, Gottlieb E (2010) Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 10(4):267–277CrossRefPubMed
Metadata
Title
The Promoting Effect of Radiation on Glucose Metabolism in Breast Cancer Cells under the Treatment of Cobalt Chloride
Authors
Chun-bo Zhao
Lei Shi
Hai-hong Pu
Qing-yuan Zhang
Publication date
01-01-2017
Publisher
Springer Netherlands
Published in
Pathology & Oncology Research / Issue 1/2017
Print ISSN: 1219-4956
Electronic ISSN: 1532-2807
DOI
https://doi.org/10.1007/s12253-016-0076-3

Other articles of this Issue 1/2017

Pathology & Oncology Research 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine