Skip to main content
Top
Published in: Pathology & Oncology Research 2/2014

01-04-2014 | Research

MicroRNA-181a Functions as an Oncomir in Gastric Cancer by Targeting the Tumour Suppressor Gene ATM

Authors: Xiangyang Zhang, Yuqiang Nie, Xiaorong Li, Guifu Wu, Qun Huang, Jie Cao, Yanlei Du, Junda Li, Ruoyu Deng, Dongshen Huang, Baozhi Chen, Shang Li, Baojun Wei

Published in: Pathology & Oncology Research | Issue 2/2014

Login to get access

Abstract

Based on our previous experiments, this study is to further investigate the functional significance of miR-181a and its target gene in gastric cancer. Expression of miR-181a was detected by qRT-PCR in three normal gastric tissues and three human gastric cancer cell lines (SGC-7901, MGC-803, and BGC-823 cells). After transfection with miR-181a inhibitor, proliferation, apoptosis, migration, and invasion of the SGC-7901 cells were evaluated. Ataxia-telangiectasia mutation (ATM) was predicted as a target gene of miR-181a with bioinformatics analysis, and was verified by lucifersae reporter assay. Expression of ATM protein in HEK293T cells and tissues was measured by Western Blot. Expression of ATM mRNA in HEK293T cells was measured by RT-PCR. Compared with three non-tumour tissues, the expression of miR-181a in three gastric cancer cells was significantly increased by 26.68, 14.83 and 14.96 folds; Compared with Negative Control(NC) and blank groups, transfection of miR-181a inhibitor led to inhibition of SGC7901 cell proliferation, invasion, and migration as well as promotion of apoptosis. A luciferase reporter assay demonstrated that ATM was a direct target of miR-181a, miR-181a mimics transfection down regulated ATM mRNA and protein expression. There was inverse correlation between miR-181a and ATM protein expression in gastric cancer and normal gastric tissues. Our study demonstrates that over-expression of miR-181a might be involved in development of gastric cancer by promoting proliferation and inhibiting apoptosis probably through directly targeting ATM. miR-181a modulation may be a potential strategy for the development of miRNA-based therapy of gastric cancer.
Literature
1.
go back to reference Kamangar F, Dores GM, Anderson WF (2006) Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 24(14):2137–2150PubMedCrossRef Kamangar F, Dores GM, Anderson WF (2006) Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 24(14):2137–2150PubMedCrossRef
2.
go back to reference Tamura G (2006) Alterations of tumour suppressor and tumour-related genes in the development and progression of gastric cancer. World J Gastroenterol 12(2):192–198PubMed Tamura G (2006) Alterations of tumour suppressor and tumour-related genes in the development and progression of gastric cancer. World J Gastroenterol 12(2):192–198PubMed
3.
4.
go back to reference Esquela-Kerscher A, Slack FJ (2006) Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269PubMedCrossRef Esquela-Kerscher A, Slack FJ (2006) Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269PubMedCrossRef
5.
go back to reference Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529PubMedCentralPubMedCrossRef Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529PubMedCentralPubMedCrossRef
6.
go back to reference Bonci D, Coppola V, Musumeci M et al (2008) The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14(11):1271–1277PubMedCrossRef Bonci D, Coppola V, Musumeci M et al (2008) The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14(11):1271–1277PubMedCrossRef
7.
go back to reference Petrocca F, Visone R, Onelli MR et al (2008) E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosisin gastric cancer. Cancer Cell 13(3):272–286PubMedCrossRef Petrocca F, Visone R, Onelli MR et al (2008) E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosisin gastric cancer. Cancer Cell 13(3):272–286PubMedCrossRef
8.
go back to reference Kim YK, Yu J, Han TS et al (2009) Functional links between clustered microRNAs: suppression of cell-cycleinhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res 37(5):1672–1681PubMedCentralPubMedCrossRef Kim YK, Yu J, Han TS et al (2009) Functional links between clustered microRNAs: suppression of cell-cycleinhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res 37(5):1672–1681PubMedCentralPubMedCrossRef
9.
go back to reference Ueda T, Volinia S, Okumura H et al (2010) Relation between microRNA expression and progression and prognosis of gastriccancer: a microRNA expression analysis. Lancet Oncol 11(2):136–146PubMedCrossRef Ueda T, Volinia S, Okumura H et al (2010) Relation between microRNA expression and progression and prognosis of gastriccancer: a microRNA expression analysis. Lancet Oncol 11(2):136–146PubMedCrossRef
10.
go back to reference Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science (80-) 303(5654):83–86CrossRef Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science (80-) 303(5654):83–86CrossRef
11.
go back to reference Li QJ, Chau J, Ebert PJ et al (2007) miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129(1):147–161PubMedCrossRef Li QJ, Chau J, Ebert PJ et al (2007) miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129(1):147–161PubMedCrossRef
12.
go back to reference Neilson JR, Zheng GX, Burge CB, Sharp PA (2007) Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev 21(5):578–589PubMedCentralPubMedCrossRef Neilson JR, Zheng GX, Burge CB, Sharp PA (2007) Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev 21(5):578–589PubMedCentralPubMedCrossRef
13.
go back to reference Kazenwadel J, Michael MZ, Harvey NL (2010) Prox1 expression is negatively regulated by miR-181 in endothelial cells. Blood 116(13):2395–2401PubMedCrossRef Kazenwadel J, Michael MZ, Harvey NL (2010) Prox1 expression is negatively regulated by miR-181 in endothelial cells. Blood 116(13):2395–2401PubMedCrossRef
14.
go back to reference Naguibneva I, Ameyar-Zazoua M, Polesskaya A et al (2006) The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalianmyoblast differentiation. Nat Cell Biol 8(3):278–284PubMedCrossRef Naguibneva I, Ameyar-Zazoua M, Polesskaya A et al (2006) The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalianmyoblast differentiation. Nat Cell Biol 8(3):278–284PubMedCrossRef
15.
go back to reference Marcucci G, Radmacher MD, Maharry K et al (2008) MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 358(18):1919–1928PubMedCrossRef Marcucci G, Radmacher MD, Maharry K et al (2008) MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 358(18):1919–1928PubMedCrossRef
16.
go back to reference Pallasch CP, Patz M, Park YJ et al (2009) miRNA deregulation by epigenetic silencing disrupts suppression of the oncogenePLAG1 in chronic lymphocytic leukemia. Blood 114(15):3255–3264PubMedCentralPubMedCrossRef Pallasch CP, Patz M, Park YJ et al (2009) miRNA deregulation by epigenetic silencing disrupts suppression of the oncogenePLAG1 in chronic lymphocytic leukemia. Blood 114(15):3255–3264PubMedCentralPubMedCrossRef
17.
go back to reference Pichiorri F, Suh SS, Ladetto M et al (2008) MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci U S A 105(35):12885–12890PubMedCentralPubMedCrossRef Pichiorri F, Suh SS, Ladetto M et al (2008) MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci U S A 105(35):12885–12890PubMedCentralPubMedCrossRef
18.
go back to reference Wang Y, Yu Y, Tsuyada A et al (2011) Transforming growth factor-beta regulates the sphere-initiating stem cell-likefeature in breast cancer through miRNA-181 and ATM. Oncogene 30(12):1470–1480PubMedCentralPubMedCrossRef Wang Y, Yu Y, Tsuyada A et al (2011) Transforming growth factor-beta regulates the sphere-initiating stem cell-likefeature in breast cancer through miRNA-181 and ATM. Oncogene 30(12):1470–1480PubMedCentralPubMedCrossRef
19.
go back to reference Ji J, Yamashita T, Budhu A et al (2009) Identification of microRNA-181 by genome-wide screening as a critical player inEpCAM-positive hepatic cancer stem cells. Hepatology 50(2):472–480PubMedCentralPubMedCrossRef Ji J, Yamashita T, Budhu A et al (2009) Identification of microRNA-181 by genome-wide screening as a critical player inEpCAM-positive hepatic cancer stem cells. Hepatology 50(2):472–480PubMedCentralPubMedCrossRef
20.
go back to reference Bhattacharya SD, Garrison J, Guo H et al (2010) Micro-RNA-181a regulates osteopontin-dependent metastatic function inhepatocellular cancer cell lines. Surgery 148(2):291–297PubMedCentralPubMedCrossRef Bhattacharya SD, Garrison J, Guo H et al (2010) Micro-RNA-181a regulates osteopontin-dependent metastatic function inhepatocellular cancer cell lines. Surgery 148(2):291–297PubMedCentralPubMedCrossRef
21.
go back to reference Yao Y, Suo AL, Li ZF et al (2009) MicroRNA profiling of human gastric cancer. Mol Med Report 2(6):963–970 Yao Y, Suo AL, Li ZF et al (2009) MicroRNA profiling of human gastric cancer. Mol Med Report 2(6):963–970
22.
go back to reference Herzog KH, Chong MJ, Kapsetaki M, Morgan JI, McKinnon PJ (1998) Requirement for ATM in ionizing radiation-induced cell death in the developingcentral nervous system. Science (80-) 280(5366):1089–1091CrossRef Herzog KH, Chong MJ, Kapsetaki M, Morgan JI, McKinnon PJ (1998) Requirement for ATM in ionizing radiation-induced cell death in the developingcentral nervous system. Science (80-) 280(5366):1089–1091CrossRef
24.
go back to reference Thompson D, Duedal S, Kirner J et al (2005) Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst 97(11):813–822PubMedCrossRef Thompson D, Duedal S, Kirner J et al (2005) Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst 97(11):813–822PubMedCrossRef
25.
go back to reference Mandriota SJ, Buser R, Lesne L et al (2010) Ataxia telangiectasia mutated (ATM) inhibition transforms human mammary glandepithelial cells. J Biol Chem 285(17):13092–13106PubMedCentralPubMedCrossRef Mandriota SJ, Buser R, Lesne L et al (2010) Ataxia telangiectasia mutated (ATM) inhibition transforms human mammary glandepithelial cells. J Biol Chem 285(17):13092–13106PubMedCentralPubMedCrossRef
26.
go back to reference Kang B, Guo RF, Tan XH, Zhao M, Tang ZB, Lu YY (2008) Expression status of ataxia-telangiectasia-mutated gene correlated with prognosisin advanced gastric cancer. Mutat Res 638(1–2):17–25PubMedCrossRef Kang B, Guo RF, Tan XH, Zhao M, Tang ZB, Lu YY (2008) Expression status of ataxia-telangiectasia-mutated gene correlated with prognosisin advanced gastric cancer. Mutat Res 638(1–2):17–25PubMedCrossRef
27.
go back to reference Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):402–408PubMedCrossRef Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):402–408PubMedCrossRef
28.
go back to reference Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798PubMedCrossRef Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798PubMedCrossRef
29.
go back to reference Krek A, Grun D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500PubMedCrossRef Krek A, Grun D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500PubMedCrossRef
30.
go back to reference Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36(Database issue):D149–D153PubMedCentralPubMed Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36(Database issue):D149–D153PubMedCentralPubMed
31.
go back to reference Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85PubMedCrossRef Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85PubMedCrossRef
32.
go back to reference Du Y, Xu Y, Ding L et al (2009) Down-regulation of miR-141 in gastric cancer and its involvement in cell growth. J Gastroenterol 44(6):556–561PubMedCrossRef Du Y, Xu Y, Ding L et al (2009) Down-regulation of miR-141 in gastric cancer and its involvement in cell growth. J Gastroenterol 44(6):556–561PubMedCrossRef
33.
go back to reference O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043):839–843PubMedCrossRef O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043):839–843PubMedCrossRef
34.
go back to reference Tchernitsa O, Kasajima A, Schafer R et al (2010) Systematic evaluation of the miRNA-ome and its downstream effects on mRNA expression identifies gastric cancer progression. J Pathol 222(3):310–319PubMedCrossRef Tchernitsa O, Kasajima A, Schafer R et al (2010) Systematic evaluation of the miRNA-ome and its downstream effects on mRNA expression identifies gastric cancer progression. J Pathol 222(3):310–319PubMedCrossRef
35.
go back to reference Ciafre SA, Galardi S, Mangiola A et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334(4):1351–1358PubMedCrossRef Ciafre SA, Galardi S, Mangiola A et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334(4):1351–1358PubMedCrossRef
36.
go back to reference Gao W, Yu Y, Cao H et al (2010) Deregulated expression of miR-21, miR-143 and miR-181a in non small cell lungcancer is related to clinicopathologic characteristics or patient prognosis. Biomed Pharmacother 64(6):399–408PubMedCrossRef Gao W, Yu Y, Cao H et al (2010) Deregulated expression of miR-21, miR-143 and miR-181a in non small cell lungcancer is related to clinicopathologic characteristics or patient prognosis. Biomed Pharmacother 64(6):399–408PubMedCrossRef
37.
go back to reference Shin KH, Bae SD, Hong HS, Kim RH, Kang MK, Park NH (2011) miR-181a shows tumour suppressive effect against oral squamous cell carcinomacells by downregulating K-ras. Biochem Biophys Res Commun 404(4):896–902PubMedCrossRef Shin KH, Bae SD, Hong HS, Kim RH, Kang MK, Park NH (2011) miR-181a shows tumour suppressive effect against oral squamous cell carcinomacells by downregulating K-ras. Biochem Biophys Res Commun 404(4):896–902PubMedCrossRef
38.
go back to reference Jazdzewski K, Boguslawska J, Jendrzejewski J et al (2011) Thyroid hormone receptor beta (THRB) is a major target gene for microRNAsderegulated in papillary thyroid carcinoma (PTC). J Clin Endocrinol Metab 96(3):E546–E553PubMedCentralPubMedCrossRef Jazdzewski K, Boguslawska J, Jendrzejewski J et al (2011) Thyroid hormone receptor beta (THRB) is a major target gene for microRNAsderegulated in papillary thyroid carcinoma (PTC). J Clin Endocrinol Metab 96(3):E546–E553PubMedCentralPubMedCrossRef
39.
go back to reference Noh H, Hong S, Dong Z, Pan ZK, Jing Q, Huang S (2011) Impaired microRNA processing facilitates breast cancer cell invasion by up regulating urokinase-type plasminogen activator expression. Genes Cancer 2(2):140–150PubMedCentralPubMedCrossRef Noh H, Hong S, Dong Z, Pan ZK, Jing Q, Huang S (2011) Impaired microRNA processing facilitates breast cancer cell invasion by up regulating urokinase-type plasminogen activator expression. Genes Cancer 2(2):140–150PubMedCentralPubMedCrossRef
40.
go back to reference Toller IM, Neelsen KJ, Steger M et al (2011) Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strandbreaks and a DNA damage response in its host cells. Proc Natl Acad Sci U S A 108(36):14944–14949PubMedCentralPubMedCrossRef Toller IM, Neelsen KJ, Steger M et al (2011) Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strandbreaks and a DNA damage response in its host cells. Proc Natl Acad Sci U S A 108(36):14944–14949PubMedCentralPubMedCrossRef
41.
go back to reference Zhu KQ, Zhang SJ (2003) Involvement of ATM/ATR-p38 MAPK cascade in MNNG induced G1-S arrest. World J Gastroenterol 9(9):2073–2077PubMed Zhu KQ, Zhang SJ (2003) Involvement of ATM/ATR-p38 MAPK cascade in MNNG induced G1-S arrest. World J Gastroenterol 9(9):2073–2077PubMed
42.
43.
go back to reference Bartkova J, Bakkenist CJ, Rajpert-De ME et al (2005) ATM activation in normal human tissues and testicular cancer. Cell Cycle 4(6):838–845PubMedCrossRef Bartkova J, Bakkenist CJ, Rajpert-De ME et al (2005) ATM activation in normal human tissues and testicular cancer. Cell Cycle 4(6):838–845PubMedCrossRef
44.
go back to reference Song SY, Kang MR, Yoo NJ, Lee SH (2010) Mutational analysis of mononucleotide repeats in dual specificity tyrosinephosphatase genes in gastric and colon carcinomas with microsatellite instability. APMIS 118(5):389–393PubMedCrossRef Song SY, Kang MR, Yoo NJ, Lee SH (2010) Mutational analysis of mononucleotide repeats in dual specificity tyrosinephosphatase genes in gastric and colon carcinomas with microsatellite instability. APMIS 118(5):389–393PubMedCrossRef
Metadata
Title
MicroRNA-181a Functions as an Oncomir in Gastric Cancer by Targeting the Tumour Suppressor Gene ATM
Authors
Xiangyang Zhang
Yuqiang Nie
Xiaorong Li
Guifu Wu
Qun Huang
Jie Cao
Yanlei Du
Junda Li
Ruoyu Deng
Dongshen Huang
Baozhi Chen
Shang Li
Baojun Wei
Publication date
01-04-2014
Publisher
Springer Netherlands
Published in
Pathology & Oncology Research / Issue 2/2014
Print ISSN: 1219-4956
Electronic ISSN: 1532-2807
DOI
https://doi.org/10.1007/s12253-013-9707-0

Other articles of this Issue 2/2014

Pathology & Oncology Research 2/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine