Skip to main content
Top
Published in: Radiological Physics and Technology 4/2020

Open Access 01-12-2020 | Positron Emission Tomography

Iterative framework for image registration and partial volume correction in brain positron emission tomography

Authors: Keisuke Matsubara, Masanobu Ibaraki, Miho Shidahara, Toshibumi Kinoshita, for the Alzheimer’s Disease Neuroimaging Initiative

Published in: Radiological Physics and Technology | Issue 4/2020

Login to get access

Abstract

Imprecise registration between positron emission tomography (PET) and anatomical magnetic resonance (MR) images is a critical source of error in MR imaging-guided partial volume correction (MR-PVC). Here, we propose a novel framework for image registration and partial volume correction, which we term PVC-optimized registration (PoR), to address imprecise registration. The PoR framework iterates PVC and registration between uncorrected PET and smoothed PV-corrected images to obtain precise registration. We applied PoR to the [11C]PiB PET data of 92 participants obtained from the Alzheimer’s Disease Neuroimaging Initiative database and compared the registration results, PV-corrected standardized uptake value (SUV) and its ratio to the cerebellum (SUVR), and intra-region coefficient of variation (CoV) between PoR and conventional registration. Significant differences in registration of as much as 2.74 mm and 3.02° were observed between the two methods (effect size <  − 0.8 or > 0.8), which resulted in considerable SUVR differences throughout the brain, reaching a maximal difference of 62.3% in the sensory motor cortex. Intra-region CoV was significantly reduced using the PoR throughout the brain. These results suggest that PoR reduces error as a result of imprecise registration in PVC and is a useful method for accurately quantifying the amyloid burden in PET.
Appendix
Available only for authorised users
Literature
1.
go back to reference Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55:306–19. CrossRef Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55:306–19. CrossRef
2.
go back to reference Mathis CA, Wang Y, Holt DP, Huang G-F, Debnath ML, Klunk WE. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem. 2003;46:2740–54. CrossRef Mathis CA, Wang Y, Holt DP, Huang G-F, Debnath ML, Klunk WE. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem. 2003;46:2740–54. CrossRef
3.
go back to reference Nelissen N, Laere KV, Thurfjell L, Owenius R, Vandenbulcke M, Koole M, et al. Phase 1 study of the pittsburgh compound b derivative 18F-flutemetamol in healthy volunteers and patients with probable Alzheimer disease. J Nucl Med. 2009;50:1251–9. CrossRef Nelissen N, Laere KV, Thurfjell L, Owenius R, Vandenbulcke M, Koole M, et al. Phase 1 study of the pittsburgh compound b derivative 18F-flutemetamol in healthy volunteers and patients with probable Alzheimer disease. J Nucl Med. 2009;50:1251–9. CrossRef
4.
go back to reference Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010;68:319–29. CrossRef Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010;68:319–29. CrossRef
5.
go back to reference Chien DT, Bahri S, Szardenings AK, Walsh JC, Mu F, Su M-Y, et al. Early clinical pet imaging results with the novel phf-tau radioligand [F-18]-T807. J Alzheimers Dis. 2013;34:457–68. CrossRef Chien DT, Bahri S, Szardenings AK, Walsh JC, Mu F, Su M-Y, et al. Early clinical pet imaging results with the novel phf-tau radioligand [F-18]-T807. J Alzheimers Dis. 2013;34:457–68. CrossRef
6.
go back to reference Harada R, Okamura N, Furumoto S, Furukawa K, Ishiki A, Tomita N, et al. 18F-THK5351: a novel pet radiotracer for imaging neurofibrillary pathology in Alzheimer disease. J Nucl Med. 2016;57:208–14. CrossRef Harada R, Okamura N, Furumoto S, Furukawa K, Ishiki A, Tomita N, et al. 18F-THK5351: a novel pet radiotracer for imaging neurofibrillary pathology in Alzheimer disease. J Nucl Med. 2016;57:208–14. CrossRef
7.
go back to reference Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79:1094–108. CrossRef Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79:1094–108. CrossRef
8.
go back to reference Okamura N, Furumoto S, Harada R, Tago T, Yoshikawa T, Fodero-Tavoletti M, et al. Novel 18F-labeled arylquinoline derivatives for noninvasive imaging of tau pathology in Alzheimer disease. J Nucl Med. 2013;54:1420–7. CrossRef Okamura N, Furumoto S, Harada R, Tago T, Yoshikawa T, Fodero-Tavoletti M, et al. Novel 18F-labeled arylquinoline derivatives for noninvasive imaging of tau pathology in Alzheimer disease. J Nucl Med. 2013;54:1420–7. CrossRef
9.
go back to reference Hoffman EJ, Huang S-C, Phelps ME. Quantitation in positron emission computed tomography: 1. effect of object size. J Comput Assist Tomogr. 1979;3:299–308. CrossRef Hoffman EJ, Huang S-C, Phelps ME. Quantitation in positron emission computed tomography: 1. effect of object size. J Comput Assist Tomogr. 1979;3:299–308. CrossRef
10.
go back to reference Agdeppa ED, Kepe V, Liu J, Flores-Torres S, Satyamurthy N, Petric A, et al. Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for β-amyloid plaques in Alzheimer’s disease. J Neurosci. 2001;21:RC189. CrossRef Agdeppa ED, Kepe V, Liu J, Flores-Torres S, Satyamurthy N, Petric A, et al. Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for β-amyloid plaques in Alzheimer’s disease. J Neurosci. 2001;21:RC189. CrossRef
11.
go back to reference Matsubara K, Ibaraki M, Shimada H, Ikoma Y, Suhara T, Kinoshita T, et al. Impact of spillover from white matter by partial volume effect on quantification of amyloid deposition with [11C]PiB PET. NeuroImage. 2016;143:316–24. CrossRef Matsubara K, Ibaraki M, Shimada H, Ikoma Y, Suhara T, Kinoshita T, et al. Impact of spillover from white matter by partial volume effect on quantification of amyloid deposition with [11C]PiB PET. NeuroImage. 2016;143:316–24. CrossRef
12.
go back to reference Alessio AM, Kinahan PE. Improved quantitation for PET/CT image reconstruction with system modeling and anatomical priors. Med Phys. 2006;33:4095–103. CrossRef Alessio AM, Kinahan PE. Improved quantitation for PET/CT image reconstruction with system modeling and anatomical priors. Med Phys. 2006;33:4095–103. CrossRef
13.
go back to reference Baete K, Nuyts J, Laere KV, Van Paesschen W, Ceyssens S, De Ceuninck L, et al. Evaluation of anatomy based reconstruction for partial volume correction in brain FDG-PET. NeuroImage. 2004;23:305–17. CrossRef Baete K, Nuyts J, Laere KV, Van Paesschen W, Ceyssens S, De Ceuninck L, et al. Evaluation of anatomy based reconstruction for partial volume correction in brain FDG-PET. NeuroImage. 2004;23:305–17. CrossRef
14.
go back to reference Erlandsson K, Dickson J, Arridge S, Atkinson D, Ourselin S, Hutton BF. MR imaging-guided partial volume correction of PET data in PET/MR imaging. PET Clin. 2016;11:161–77. CrossRef Erlandsson K, Dickson J, Arridge S, Atkinson D, Ourselin S, Hutton BF. MR imaging-guided partial volume correction of PET data in PET/MR imaging. PET Clin. 2016;11:161–77. CrossRef
15.
go back to reference Meltzer CC, Leal JP, Mayberg HS, Wagner HN, Frost JJ. Correction of PET data for partial volume effects in human cerebral cortex by MR imaging. J Comput Assist Tomogr. 1990;14:561–70. CrossRef Meltzer CC, Leal JP, Mayberg HS, Wagner HN, Frost JJ. Correction of PET data for partial volume effects in human cerebral cortex by MR imaging. J Comput Assist Tomogr. 1990;14:561–70. CrossRef
16.
go back to reference Müller-Gärtner HW, Links JM, Prince JL, Bryan RN, McVeigh E, Leal JP, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab. 1992;12:571–83. CrossRef Müller-Gärtner HW, Links JM, Prince JL, Bryan RN, McVeigh E, Leal JP, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab. 1992;12:571–83. CrossRef
17.
go back to reference Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med. 1998;39:904–11. PubMed Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med. 1998;39:904–11. PubMed
18.
go back to reference Shidahara M, Tsoumpas C, Hammers A, Boussion N, Visvikis D, Suhara T, et al. Functional and structural synergy for resolution recovery and partial volume correction in brain PET. NeuroImage. 2009;44:340–8. CrossRef Shidahara M, Tsoumpas C, Hammers A, Boussion N, Visvikis D, Suhara T, et al. Functional and structural synergy for resolution recovery and partial volume correction in brain PET. NeuroImage. 2009;44:340–8. CrossRef
19.
go back to reference Thomas BA, Erlandsson K, Modat M, Thurfjell L, Vandenberghe R, Ourselin S, et al. The importance of appropriate partial volume correction for PET quantification in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2011;38:1104–19. CrossRef Thomas BA, Erlandsson K, Modat M, Thurfjell L, Vandenberghe R, Ourselin S, et al. The importance of appropriate partial volume correction for PET quantification in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2011;38:1104–19. CrossRef
20.
go back to reference Arakawa R, Stenkrona P, Takano A, Nag S, Maior RS, Halldin C. Test-retest reproducibility of [11C]-l-deprenyl-d2 binding to MAO-B in the human brain. EJNMMI Res. 2017;7:54. CrossRef Arakawa R, Stenkrona P, Takano A, Nag S, Maior RS, Halldin C. Test-retest reproducibility of [11C]-l-deprenyl-d2 binding to MAO-B in the human brain. EJNMMI Res. 2017;7:54. CrossRef
21.
go back to reference Brendel M, Högenauer M, Delker A, Sauerbeck J, Bartenstein P, Seibyl J, et al. Improved longitudinal [18F]-AV45 amyloid PET by white matter reference and VOI-based partial volume effect correction. NeuroImage. 2015;108:450–9. CrossRef Brendel M, Högenauer M, Delker A, Sauerbeck J, Bartenstein P, Seibyl J, et al. Improved longitudinal [18F]-AV45 amyloid PET by white matter reference and VOI-based partial volume effect correction. NeuroImage. 2015;108:450–9. CrossRef
22.
go back to reference Habert M-O, Bertin H, Labit M, Diallo M, Marie S, Martineau K, et al. Evaluation of amyloid status in a cohort of elderly individuals with memory complaints: validation of the method of quantification and determination of positivity thresholds. Ann Nucl Med. 2018;32:75–86. CrossRef Habert M-O, Bertin H, Labit M, Diallo M, Marie S, Martineau K, et al. Evaluation of amyloid status in a cohort of elderly individuals with memory complaints: validation of the method of quantification and determination of positivity thresholds. Ann Nucl Med. 2018;32:75–86. CrossRef
23.
go back to reference LaPoint MR, Chhatwal JP, Sepulcre J, Johnson KA, Sperling RA, Schultz AP. The association between tau PET and retrospective cortical thinning in clinically normal elderly. NeuroImage. 2017;157:612–22. CrossRef LaPoint MR, Chhatwal JP, Sepulcre J, Johnson KA, Sperling RA, Schultz AP. The association between tau PET and retrospective cortical thinning in clinically normal elderly. NeuroImage. 2017;157:612–22. CrossRef
25.
go back to reference Strul D, Bendriem B. Robustness of anatomically guided pixel-by-pixel algorithms for partial volume effect correction in positron emission tomography. J Cereb Blood Flow Metab. 1999;19:547–59. CrossRef Strul D, Bendriem B. Robustness of anatomically guided pixel-by-pixel algorithms for partial volume effect correction in positron emission tomography. J Cereb Blood Flow Metab. 1999;19:547–59. CrossRef
26.
go back to reference Yang J, Huang SC, Mega M, Lin KP, Toga AW, Small GW, et al. Investigation of partial volume correction methods for brain FDG PET studies. IEEE Trans Nucl Sci. 1996;43:3322–7. CrossRef Yang J, Huang SC, Mega M, Lin KP, Toga AW, Small GW, et al. Investigation of partial volume correction methods for brain FDG PET studies. IEEE Trans Nucl Sci. 1996;43:3322–7. CrossRef
27.
go back to reference Frouin V, Comtat C, Reilhac A, Grégoire M-C. Correction of partial-volume effect for PET striatal imaging: fast implementation and study of robustness. J Nucl Med. 2002;43:1715–26. PubMed Frouin V, Comtat C, Reilhac A, Grégoire M-C. Correction of partial-volume effect for PET striatal imaging: fast implementation and study of robustness. J Nucl Med. 2002;43:1715–26. PubMed
28.
go back to reference Sattarivand M, Kusano M, Poon I, Caldwell C. Symmetric geometric transfer matrix partial volume correction for PET imaging: principle, validation and robustness. Phys Med Biol. 2012;57:7101. CrossRef Sattarivand M, Kusano M, Poon I, Caldwell C. Symmetric geometric transfer matrix partial volume correction for PET imaging: principle, validation and robustness. Phys Med Biol. 2012;57:7101. CrossRef
29.
go back to reference Rullmann M, Dukart J, Hoffmann K-T, Luthardt J, Tiepolt S, Patt M, et al. Partial-volume effect correction improves quantitative analysis of 18F-florbetaben β-amyloid PET scans. J Nucl Med. 2016;57:198–203. CrossRef Rullmann M, Dukart J, Hoffmann K-T, Luthardt J, Tiepolt S, Patt M, et al. Partial-volume effect correction improves quantitative analysis of 18F-florbetaben β-amyloid PET scans. J Nucl Med. 2016;57:198–203. CrossRef
30.
go back to reference Su Y, Blazey TM, Snyder AZ, Raichle ME, Marcus DS, Ances BM, et al. Partial volume correction in quantitative amyloid imaging. NeuroImage. 2015;107:55–64. CrossRef Su Y, Blazey TM, Snyder AZ, Raichle ME, Marcus DS, Ances BM, et al. Partial volume correction in quantitative amyloid imaging. NeuroImage. 2015;107:55–64. CrossRef
31.
go back to reference Schwarz CG, Gunter JL, Lowe VJ, Weigand S, Vemuri P, Senjem ML, et al. A comparison of partial volume correction techniques for measuring change in serial amyloid PET SUVR. J Alzheimers Dis. 2018;Preprint:1–15 Schwarz CG, Gunter JL, Lowe VJ, Weigand S, Vemuri P, Senjem ML, et al. A comparison of partial volume correction techniques for measuring change in serial amyloid PET SUVR. J Alzheimers Dis. 2018;Preprint:1–15
32.
go back to reference Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, et al. Automatically parcellating the human cerebral cortex. Cereb Cortex. 2004;14:11–22. CrossRef Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, et al. Automatically parcellating the human cerebral cortex. Cereb Cortex. 2004;14:11–22. CrossRef
33.
go back to reference Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55. CrossRef Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55. CrossRef
34.
go back to reference Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage. 2006;31:968–80. CrossRef Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage. 2006;31:968–80. CrossRef
35.
go back to reference Jagust WJ, Bandy D, Chen K, Foster NL, Landau SM, Mathis CA, et al. The ADNI PET core. Alzheimers Dement J Alzheimers Assoc. 2010;6:221–9. CrossRef Jagust WJ, Bandy D, Chen K, Foster NL, Landau SM, Mathis CA, et al. The ADNI PET core. Alzheimers Dement J Alzheimers Assoc. 2010;6:221–9. CrossRef
37.
go back to reference Schwarz CG, Jones DT, Gunter JL, Lowe VJ, Vemuri P, Senjem ML, et al. Contributions of imprecision in PET-MRI rigid registration to imprecision in amyloid PETSUVR measurements. Hum Brain Mapp. 2017;38:3323–36. PubMedPubMedCentral Schwarz CG, Jones DT, Gunter JL, Lowe VJ, Vemuri P, Senjem ML, et al. Contributions of imprecision in PET-MRI rigid registration to imprecision in amyloid PETSUVR measurements. Hum Brain Mapp. 2017;38:3323–36. PubMedPubMedCentral
38.
go back to reference Barthel H, Gertz H-J, Dresel S, Peters O, Bartenstein P, Buerger K, et al. Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol. 2011;10:424–35. CrossRef Barthel H, Gertz H-J, Dresel S, Peters O, Bartenstein P, Buerger K, et al. Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol. 2011;10:424–35. CrossRef
39.
go back to reference Carome M, Wolfe S. Florbetapir-pet imaging and postmortem β-amyloid pathology. JAMA. 2011;305:1857–8. CrossRef Carome M, Wolfe S. Florbetapir-pet imaging and postmortem β-amyloid pathology. JAMA. 2011;305:1857–8. CrossRef
40.
go back to reference Müller U, Wächter T, Barthel H, Reuter M, von Cramon DY. Striatal [123I]β-CIT SPECT and prefrontal cognitive functions in Parkinson’s disease. J Neural Transm. 2000;107:303–19. CrossRef Müller U, Wächter T, Barthel H, Reuter M, von Cramon DY. Striatal [123I]β-CIT SPECT and prefrontal cognitive functions in Parkinson’s disease. J Neural Transm. 2000;107:303–19. CrossRef
41.
go back to reference Rinne JO, Sahlberg N, Ruottinen H, Någren K, Lehikoinen P. Striatal uptake of the dopamine reuptake ligand [11C]beta-CFT is reduced in Alzheimer’s disease assessed by positron emission tomography. Neurology. 1998;50:152–6. CrossRef Rinne JO, Sahlberg N, Ruottinen H, Någren K, Lehikoinen P. Striatal uptake of the dopamine reuptake ligand [11C]beta-CFT is reduced in Alzheimer’s disease assessed by positron emission tomography. Neurology. 1998;50:152–6. CrossRef
42.
go back to reference Wardak M, Wong K-P, Shao W, Dahlbom M, Kepe V, Satyamurthy N, Small GW, Barrio JR, Huang S-C. Movement correction method for human brain pet images: application to quantitative analysis of dynamic 18F-FDDNP scans. J Nucl Med. 2010;51(2):210–8.CrossRef Wardak M, Wong K-P, Shao W, Dahlbom M, Kepe V, Satyamurthy N, Small GW, Barrio JR, Huang S-C. Movement correction method for human brain pet images: application to quantitative analysis of dynamic 18F-FDDNP scans. J Nucl Med. 2010;51(2):210–8.CrossRef
Metadata
Title
Iterative framework for image registration and partial volume correction in brain positron emission tomography
Authors
Keisuke Matsubara
Masanobu Ibaraki
Miho Shidahara
Toshibumi Kinoshita
for the Alzheimer’s Disease Neuroimaging Initiative
Publication date
01-12-2020
Publisher
Springer Singapore
Published in
Radiological Physics and Technology / Issue 4/2020
Print ISSN: 1865-0333
Electronic ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-020-00591-2

Other articles of this Issue 4/2020

Radiological Physics and Technology 4/2020 Go to the issue

Acknowledgments

Acknowledgment